
MRMOGA: Parallel Evolutionary Multiobjective
Optimization using Multiple Resolutions

Antonio López Jaimes and Carlos A. Coello Coello
Centro de Investigaciones y de Estudios Avanzados del IPN

Departamento de Ingenierı́a Eléctrica, Sección de Computación
Av. IPN núm. 2508, col. Sn. Pedro Zacatenco, México, D.F. 07300, MÉXICO

alopez@computacion.cs.cinvestav.mx, ccoello@cs.cinvestav.mx

Abstract- Whereas Multiobjetive Evolutionary Algo-
rithms have reached certain effectiveness in solving
many real-world problems, efficiency still remains as an
open problem. One choice to reduce the execution time
of the Multiobjetive Evolutionary Algorithms is their
parallelization. This paper introduces a novel parallel
MOEA which is based on the island model with hetero-
geneous nodes. This algorithm is characterized by en-
coding the solutions using a different resolution for each
island. In this way, the search space is divided into well-
defined overlapped regions in decision variable space.

1 Introduction

Nowadays Multiobjetive Evolutionary Algorithms (MOEAs)
have solved with acceptable effectiveness plenty of real-
world problems originated in engineering, scientific and in-
dustrial areas [5]. Nonetheless, in some of these problems
is required to evaluate a large number of objective functions
or a large population size in order to reach a desired effec-
tiveness. Furthermore, often the evaluation of the objective
functions is very time-consuming which makes impractical
the running time required to find an acceptable solution.

In order to reduce the execution time to solve these prob-
lems there are mainly two approaches: (1) to improve the
MOEA so that the number of objective functions evaluations
is reduced and (2) to adopt a parallel or distributed execu-
tion of the MOEAs. Besides the time reduction, the paral-
lel MOEAs (pMOEAs) are attractive for many other reasons
such as the possibility to use larger populations, the im-
provement of population diversity, and the ease to cooperate
in parallel with another search technique.

During the last three decades, parallel Evolutionary Al-
gorithms used for global optimization (pEAs) have been
widely studied [2, 4, 15]. However, due to the peculiarities
of multiobjective optimization, there are some issues that
need to be tackled with a different approach. For instance,
the fact that the evaluation of each solution implies the eval-
uation of k (k ≥ 2) objective functions, which gives rise to
more ways for evaluating the solutions in parallel. Addition-
ally, real-world multiobjective optimization problems tend
to have high-dimensionality (i.e., a large number of deci-
sion variables) which also requires of a large computational
effort. Also, we have to solve how to parallelize some fea-
tures of pMOEAs such as archiving and niching techniques.

This paper presents a new scheme to split up deci-
sion variable space in order to distribute it among differ-
ent processors. The proposed algorithm, called Multiple
Resolution Multi-Objective Genetic Algorithm (MRMOGA),

is based on the island paradigm with heterogenous nodes.
This algorithm encodes the solutions using a different res-
olution in each island. In this way, the variable decision
space is divided into hierarchical levels with well-defined
overlaps. The performance assessment of the proposed ap-
proach considers both effectiveness and efficiency. To eval-
uate the effectiveness we adopt well-known metrics tradi-
tionally used to evaluate serial MOEAs, namely: success
counting, inverted generational distance, spacing, and two
set coverage. On the other hand, efficiency was evaluated
using the following well-known metrics from parallel com-
puting: speedup, efficiency and serial fraction. The results
of the proposed algorithm were compared against those of a
parallel version of the NSGA-II [6].

The remainder of this paper is organized as follows:
The next section briefly describes the island model and also
presents an overview of the most relevant related work. Sec-
tion 3 is devoted to describe the proposed approach. Then,
an assessment of our approach performance is discussed in
section 4. Finally, section 5 contains the conclusions about
the viability of the suggested scheme and some research
paths for future work.

2 Related Work

2.1 Parallelization of Multiobjective Evolutionary Algo-
rithms

The parallelization approaches of MOEAs are derived from
the models designed for single-objective optimization:
master-slave, island and diffusion models. Nevertheless,
there is no current standard way to extend these models to
the multiobjective field. Since our approach is based on the
island model, we shall only describe this model.

Island model. In an island pMOEA, the population is
divided into several small subpopulations, called islands or
demes, which evolve independently of each other. In each
of these islands a serial pMOEA is executed for a number of
generations called an epoch. At the end of each epoch, in-
dividuals migrate between neighboring islands. The neigh-
bors are given by the migration topology, which determines
the migration paths along which individuals can move to
other islands.

The model allows each island to have their own parame-
ter setting. Depending on this homogeneity we can recog-
nize two variants of the island model:
• Island pMOEA with homogeneous nodes. Every

MOEA performed in each island has the same parame-
ter values (e.g., population size, mutation, crossover
and migration rate).

• Island pMOEA with heterogeneous nodes. Each is-
land applies a MOEA which has a different parameter
setting, or uses its own evolutionary operators and so-
lution encoding technique. Additionally, each island
may be explicitly instructed to explore a particular re-
gion of decision or objective space.

2.2 Overview of Selected Parallel Multiobjective Evolu-
tionary Algorithms

The Divided Range Multi-Objetive Genetic Algorithm
(DRMOGA) was proposed by Hiroyasu et al. [8]. Here, the
global population is sorted according to an alternating ob-
jective function. Then the population is divided in equally-
sized subpopulations. Each of these subpopulations is al-
located to a different processor in which a serial MOEA is
applied. At the end of a specific number of generations,
the subpopulations are gathered and the process is repeated.
The main goal of this approach is to focus the search ef-
fort of the population on different regions of the objective
space. However, in this approach we cannot guarantee that
the subpopulations will remain in their assigned region.

Zhu and Leung proposed the Asynchronous Self-
Adjustable Island Genetic Algorithm (aSAIGA) [16]. In
aSAIGA rather than migrating a set of individuals, the is-
lands exchange information related with their current ex-
plored region (i.e., an hypercube containing most of the in-
dividuals in the archive). Based on the information com-
ing from other islands, a “self-adjusting” operation mod-
ifies the fitness of the individuals in the island to prevent
two islands to explore the same search region. In a similar
way as DRMOGA, this approach cannot guarantee that the
subpopulations move tightly together throughout the search
space, hence the information about the explored region may
be meaningless.

Other island pMOEA was introduced by Deb et al. [7].
Although all processors search on the entire decision space,
this approach assigns to each processor a different search
region of the Pareto-optimal front. In order to steer the
search towards the assigned region, this approach uses a
guided domination concept based on a concept defined else-
where [3]. The weakness of this approach is that we must
have a priori knowledge of the shape or continuity of the
Pareto-optimal front in order to define accurately the search
directions. Furthermore, this technique can only deal with
convex Pareto fronts.

A recent approach was proposed by Streichert et al.
[14]. This approach partitions the overall population us-
ing a clustering algorithm as to specialize each island on
different areas of the Pareto front. Each certain number of
generations the islands are gathered, clustered and redistrib-
uted onto the available processors. The individuals are kept
within their region using zone constraints, that is, any in-
dividual generated outside its constrained region is consid-
ered “invalid”. The main drawback of the approach is that
the repeated gathering of all subpopulations produces a high
communication overhead, which is increased with the num-
ber of processors.

3 Multiple Resolution Scheme

In most of the current pMOEA approaches that use a “di-
vide and conquer” strategy, the division has been made in
the objective function space [7, 8, 16]. To the best of our
knowledge, only Streichert et al. [14] carried out such divi-
sion in decision variable space. Nonetheless, none of these
approaches guarantees that the generated individuals belong
to their assigned region. On the other hand, the secondary
population (external archive), if any, does not interact in the
search process in any of these approaches.

Taking care of these observations, we designed a model
called Multiple Resolution Multi-Objective Genetic Algo-
rithm (MRMOGA). Our approach is based on the island
model with heterogeneous nodes and is characterized by the
following:
• Each island encodes the solutions with a different res-

olution (i.e., different number of precision digits after
the decimal point). This implies a division of the de-
cision space in such a way that every new individual
belongs to their assigned region.

• It uses a migration strategy that considers both the
primary population and the external archive.

• It uses a strategy to detect the nominal convergence of
the islands in order to increase their initial resolution.

In a single-objective optimization context, Lin et al. [12]
suggested an island model named Injection Island GA

(iiGA). In this approach there is a number of subpopulations
that encode the problem using different resolutions. The
known implementations of iiGA were designed for combi-
natorial optimization, so the binary strings, represent the
problem’s solution. On the contrary, the MRMOGA is de-
signed for numerical optimization and, therefore, it embod-
ies a strategy to convert the binary strings from a resolution
into another one.

The MRMOGA scheme is described in Algorithm 1. Each
island executes a serial MOEA which is initialized as usual,
but each of them uses a different resolution. During migra-
tion, each processor takes some individuals from its archive
(PFknown

(

i
t

)

) to send them to the primary population of
its neighbors. At the end of the search process the root
process combines the non-dominated front of each proces-
sor (PFknown

(

i
)

). Figure 1 shows a schematic view of the
algorithm. All of the components of the approach are de-
scribed in detail in the following sections.

3.1 The Principle of Multiple Resolutions

The idea behind the proposed approach is based on the
following assumption: the Pareto optimal solutions are
found in fewer iterations using low resolution representa-
tions than using higher resolutions representations. In ef-
fect, the search space is smaller as the resolution decreases,
and hence we need to explore fewer solutions to determine
the known Pareto front (PFknown).

Taking advantage of this idea, we can design an island
model in which each island encodes the solutions with a dif-
ferent resolution. The low resolution islands have the pur-

3

�� ������ �� 	�	
�

Replace the worst individuals
from the primary population

archive

primary pop.

1

2

Execute a serial MOEA during an epoch

archiveprimary pop.

Migrate randomly selected
individuals from the archive

x

primary pop.

archive

New

Removed

Figure 1: Schematic view of MRMOGA.

E: Maximum number of epochs.
G: Generations per epoch.
Generate (randomly) the population Pi.
for e← 1 until E do

for g ← 1 until G do
SERIALMOEA(Pi)

end for
if e 6= E then B Do not migrate in last epoch

B According to migration topology
for all outgoing neighbor j of processor i do

MIGRATE(PFknown

(

i
g

)

, Pj)
end for
for all incoming neighbor j of processor i do

REPLACE(Pi, PFknown

(

j
g

)

)
end for

end if
end for
Combine all PFknown

(

i
)

in processor 0.
Filtering using the grid and show PFknown to the user.

Algorithm 1: MRMOGA pseudocode.

pose of approaching quickly towards the true Pareto front
(PFtrue), thus finding individuals with high fitness. After-
wards, these individuals are migrated into higher resolution
nodes for exploiting the region nearby these highly fitted
individuals. This approach can be considered as a division
of the variable decision space. In such a partition there are
well-defined overlapped solutions. That is, the search space
of an island is contained in the search space of the higher
resolution islands.

3.2 Need for Conversion in Migration

Since in the migration process of our approach we exchange
chromosomes (binary strings) with different lengths, we
need to adapt a given string into a longer length string. This
conversion is achieved by the following expression1:

d∗i =
xi − xmin

i

xmax
i − xmin

i

(2`i − 1),

1Derived from the well-known expression that maps a chromosome into
a real value

where `i is the new length of the string that encodes the
i-th variable, and xi ∈ [xmin

i , xmax
i] is the decoded vari-

able produced from a chromosome of length `′i (`′i < `i).
Now, we round up d∗

i to the nearest integer. Finally, we en-
code the rounded value of d∗

i to obtain the new string with
length `.

3.3 Topology and Migration/Replacement Scheme

Since the search space of an island is contained within
the search space of any island with higher resolution, but
not the converse, the migration topology has a hierarchical
structure. In this paper only the so-called strict topology
is presented. In this topology each island migrates solu-
tions only to the island with a higher resolution. In the mi-
gration/replacement scheme are involved both, the primary
population and the external archive.

Migration scheme. Migrate x randomly selected mem-
bers of the archive (i.e., the known Pareto front). If the
archive size is less than x, then the missing individuals are
randomly selected from the primary population.

Replacement scheme. Initially, the members of the pri-
mary population are ranked in non-dominated levels. Later,
x individuals are replaced from the last ranked Pareto front
(the “worst” individuals). If the size of the last front is
less than x, a sufficient number of individuals are taken
from the next ranked fronts until the x individuals are com-
pleted. Lastly, the chromosome of the incoming individuals
are converted to the new length.

3.3.1 Technique for maintaining diversity

In order to retain the non-dominated solutions and to dis-
tribute them evenly along the Pareto front, MRMOGA uses
an adaptive grid similar to the one proposed in [10]. The
adaptive grid is invoked only if the archive has reached its
maximum capacity.

3.3.2 Constraint-handling strategy

Our approach uses a rather simple constraint-handling strat-
egy. The dominance between two solutions is determined
comparing the number of constraints violated by each so-
lution. The solution with smaller number of violated con-

straints will dominate the other. In the case that both indi-
viduals violate the same number of constraints, Pareto dom-
inance is applied as usual.

3.3.3 Increase of the island resolution.

MRMOGA has the ability to generate solutions only within
the decision subspace that each island was devoted for. Un-
fortunately, this approach has some drawbacks since the re-
gions are assigned statically:
• The search space of the low resolution islands is pro-

portionally smaller, therefore, the true Pareto front is
found in fewer iterations than in higher resolution is-
lands. Thus, once the low resolution islands have con-
verged, they spend the remainder of time oscillating
around the Pareto front without any real contribution
to discover other regions of the front.

• For some MOPs, the PFknown obtained with certain
resolutions (particularly the low ones) do not belong
to PFtrue, thus, the islands with those resolutions do
not contribute at all to find portions of PFtrue.

In order to cope with these difficulties, we propose to in-
crease the resolution of each island once it has reached nom-
inal convergence. In this way, at every moment the proces-
sors’ utilization is kept high, and the islands that have al-
ready converged will keep contributing to find other regions
of the true Pareto front.

3.3.4 Criterion to Detect Nonimal Convergence

The detection of the nominal converge in the islands is
achieved by monitoring the movements in the external
archive. The population of an island is near to the nominal
convergence if at each generation only a very few individ-
uals of the archive are dominated by the primary popula-
tion. To detect convergence, we keep a record of the num-
ber of dominated individuals of PFknown(i) at generation i

(dominatedi).
Depending on dominatedi is decided whether an island

has reached the convergence as to increase the resolution
of the population. Every generation is checked to see if in
the k last generations the condition

∑k

i=1

dominatedi

k
≤ ε

is satisfied, where ε is the average of dominated individuals
of PFknown in the last k generations. The constant ε was
experimentally set to 0.05. If the above condition is met,
then the island resolution is increased to the next resolu-
tion. The resolution change is accomplished in the follow-
ing way: one half of the population is randomly reinitialized
taking into account the new resolution. The other half is a
random sample taken from the archive.

4 Results and Discussion

4.1 Methodology to Evaluate the Effectiveness

As a reference point to evaluate the performance of our pro-
posal we used an island model implementation of the NSGA-
II (PNSGA-II) with a ring topology. The test problems used
in this paper are described in Table 2. In order to evaluate

the effectiveness of our approach we used four metrics: the
spacing metric is intended for measuring the distribution;
for evaluating the closeness to the Pareto-optimal front we
used the inverted generational distance2, the two set cov-
erage3, and the success counting4. Finally to evaluate the
spread we also used the inverted generational distance. Be-
sides showing the viability of the proposed approach, we
are interested in analyzing the gain in convergence with in-
creasing number of processors. For this purpose, we set
the subpopulation size of each processor to the minimum so
that both algorithms still achieve acceptable effectiveness
(30 individuals in this study). Thus, we could expect that
the effectiveness increases with the number of processors.
In these experiments both algorithms are run 30 times vary-
ing the number of processors (1, 4, 8, 12 and 16). For the
sake of a fair comparison, in all problems we used the same
parameter setting. The number of evaluations is fixed to
18000 and the size of PFknown is 100. The simulation runs
were carried out in a cluster of 16 dual nodes whose charac-
teristics are described in Table 1.

Characteristic Description
CPU Intel Xeon; 2.45MHz

Number of nodes 16 (2 processors per node)
Memory 2 GB per node

Operating System Red Hat Linux 3.2.2-5
Communications network FastEthernet
Communications library MPICH 1.12

Table 1: Characteristics of the cluster used in the experi-
ments.

4.2 Test Suite ZDT

The size of the search space in the problems adopted is
2510 ≈ 3.352× 10153 (using 5 digits of precision).

¿From the SC graphs (Figs. 6a and 6b) is clear that MR-
MOGA outperforms PNSGA-II when more than one proces-
sor is used on problems ZDT1 and ZDT2. The IGD val-
ues (Figs. 6e– 6g) of both algorithms are very similar for
the three problems, which indicates that the algorithms con-
verged very closely to the true Pareto front. With one
processor, MRMOGA achieves a poor performance in both
problems as reflected by the C metric presented in Figure 4.
On problems ZDT1 and ZDT2, the nondominated fronts re-
ported by MRMOGA-1 are 100% covered by PNSGA-II-1,
while the former covers 0% of the PNSGA-II-1 outcomes.
However, when more processors are used, is remarkable the
improvement of MRMOGA in all metrics, especially in con-
vergence since from 1 to 4 processors SC is improved about
100 times in ZDT1 and around 1000 times in ZDT2. It is
important to note that when MRMOGA uses one processor

2This metric measures the progress of PFknown towards PFtrue and
the spread of PFknown onto PFtrue.

3This metric calculates the fraction of vectors in B which are weakly
dominated by A: C(A, B) = |{b ∈ B | ∃ a ∈ A : a � b}|/|B|.

4This metric counts the number of vectors in PFknown that belong to
PFtrue.

there is no division of the search space. Using more than
one processor, MRMOGA substantially outperforms PNSGA-
II both in ZDT1 and ZDT2. Comparing the best coverage
results achieved by each algorithm on ZDT1, PNSGA-II-16
weakly dominates less than 6% of the MRMOGA-16 out-
comes. Whereas the nondominated fronts produced by the
latter cover about 65% of the PNSGA-II-16 outcomes. A
similar behavior is observed using 4-12 processors. In ZDT2
the difference in convergence is more noticeable.

With reference to ZDT3, the SC metric shows that
MRMOGA has better convergence than PNSGA-II when 8
processors are used (Figure 6c). Considering the SC met-
ric and the C comparison, it can be noted that only when
MRMOGA uses 1 or 4 processors, PNSGA-II performs better.
When both algorithms use 8 or more processors, MRMOGA

weakly dominates a larger fraction of the generated fronts
of PNSGA-II. Again, it is interesting the improvement in
the convergence of MRMOGA when adopting more than one
processor (Figures 6c and 6g).

Concerning the distribution using SP , PNSGA-II per-
forms better than MRMOGA in the three problems. How-
ever, as can be seen in the plots of Figure 2, the distribution
of MRMOGA is very competitive. Also, it is noted that both
algorithms cover all regions of the true Pareto front.

4.3 Test problem OSY

In the plots of Figure 3 is shown that MRMOGA is able to
maintain vectors near to all regions composing the Pareto-
optimal front of OSY. On the contrary, PNSGA-II, for some
runs, does not converge to certain regions of the front, es-
pecially the segment DE. Additionally, based on SC, MR-
MOGA outperforms PNSGA-II for every number of proces-
sors since the former achieves a larger number of vectors
belonging to PFtrue (Figure 6d). Nevertheless, it is in-
teresting to note that PNSGA-II outperforms MRMOGA in
the C comparison (see Fig. 4). For instance, the fronts of
MRMOGA-n (n = 4, ..., 16) weakly dominate around 50%
of the PNSGA-II-n outcomes, whereas PNSGA-II-n, covers
at most 84% of the nondominated fronts of MRMOGA-n.
A possible reason for this discrepancy is that the vectors
of PFknown reported by MRMOGA that do not belong to
PFtrue (and maybe some that do) are weakly dominated by
the PFknown set generated by PNSGA-II. This conjecture
is reinforced by the fact that the values of IGD obtained
by PNSGA-II are marginally better than those achieved by
MRMOGA (Fig. 6h).

It is worth mentioning that using one processor (that
is, without exploring using multiple resolutions), MRMOGA

was not able to find any vector that belongs to PFtrue. Con-
versely, with more than one processor, MRMOGA reported
some solutions that belong to PFtrue. This is an indication
that searching through different resolutions allows to yield
solutions that would not be possible (or easy) to find without
this scheme.

With respect to the distribution, PNSGA-II obtains the
best results in SP (Figure 6(l)), although MRMOGA is com-
petitive as can be seen in the graphs of Figure 3.

4.4 Methodology to Evaluate the Efficiency

In the experiments presented in this section the metrics
were calculated based on the orthodox speedup suggested
by Alba [1]. This speedup allows a fair comparison since
both the serial and the pMOEA are stopped when they have
reached the same target solution “quality”. In order to cal-
culate the speedup, in the experiments of this section the
pMOEA is stopped when it reaches a certain value of the hy-
pervolumen metric (HV), which is defined in advance.5 In
our experiments we assume that the set PFknown

(

p
t

)

in the
higher resolution island reflects closely to PFknown, there-
fore only for this island we calculated HV . Unfortunately,
for PNSGA-II we cannot proceed in a similar way as all is-
lands contribute equally to form the known Pareto front. As
a consequence, we do not include an efficiency compari-
son between PNSGA-II and MRMOGA. Additionally to the
speedup, we use the efficiency metric and the serial frac-
tion [9] which measure the performance of a parallel algo-
rithm on a fixed-size problem.

In this paper only the results for the ZDT1 problem us-
ing the strict topology are shown. The orthodox speedup
of MRMOGA is calculated in the following way: the ser-
ial algorithm is MRMOGA-16 (16 islands) running on a sin-
gle processor. On the other hand, the parallel algorithm is
MRMOGA-16 on an increasing number of processors (from
2 to 16). The population size of each island is set to 25
(16× 25 = 400 individuals) for all runs. Note that is possi-
ble that some processors have unequal workload6 depending
on the number of processors (e.g., with 6 and 10–14).

4.4.1 Evaluation Using the Orthodox Speedup

As can be seen in Figure 5a, with any number of processors
MRMOGA achieves a sublinear speedup, but it is near-linear
for some number of processors. From 2 to 8 processors
the speedup tends to be superlinear as reveals the F metric,
since this decreases with the number of processors (Fig. 5c).
However, between 10 and 14 processors the speedup begins
to decay, and for 16 processors the speedup is again near to
the linear speedup. This behavior is due to the load imbal-
ance when 10–14 processors are used. In a balanced situa-
tion the low resolution islands are faster than the high res-
olution islands, but the imbalance causes that the low reso-
lution islands turn into the slower ones (since there are two
islands in the same processor). Therefore, the high reso-
lution islands stay idle waiting for the immigrants coming
from the low resolution islands, which causes the speedup
drops.

If we consider a balanced environment (e.g., excluding
10–14 processors) the efficiency seems to get better when-
ever a processor is added as shows the graph in Figure 5b.
In a similar manner, F decreases with an increasing number
of processors (Fig. 5c). This behavior might be caused by
the addition of cache memory. Whichever this factor is, we

5Due to time constraints, we did not use hypervolumen in the effective-
ness assessment.

6The unequal workload is due to the fact that MPI assigns cyclicly the
processes (islands) to the available processors

Figure 2: PFknown obtained by MRMOGA (left) and PNSGA-II (right) using 16 processors on ZDT3.

Figure 3: PFknown obtained by MRMOGA (left) and PNSGA-II (right) using 16 processors on OSY.

Figure 4: Comparison between MRMOGA and PNSGA-II using the C metric. Each pair of bars represents the C value for
each number of processor. The left bar indicates C(MRMOGA,PNSGA-II), while the right one C(PNSGA-II,MRMOGA).

(a) Orthodox speedup (b) Efficiency (c) Serial fraction

Figure 5: Results of the efficiency of MRMOGA according to the orthodox speedup, efficiency, and serial fraction on ZDT1.

can say that MRMOGA has great scalability as reveals the
decrease of F . Additionally, the overhead due to communi-
cations and synchronization increases very slowly as more
processors are used as shows E in Figure 5b.

5 Conclusions and Future Work

The main goal of this paper was to propose a novel paral-
lel multiobjective evolutionary algorithm. Our approach is
based on the island model and is characterized by dividing
the decision space through an encoding of the solutions with
a different resolution for each subpopulation.

¿From the comparative study we can conclude that the
proposed scheme to divide the decision space improves no-
ticeably the convergence of a pMOEA. In all problems con-
sidered7 PNSGA-II performs better than MRMOGA when us-
ing one processor8. However, using more than one proces-
sor, MRMOGA surpasses PNSGA-II. Furthermore, we ob-
served that the scheme of MRMOGA has more merit in prob-
lems with large search spaces such as the ZDT problems.
Using multiple resolutions not only improves convergence,
but also yields solutions that would be difficult to find oth-
erwise (as in problem OSY). The main weakness of our ap-
proach is the poor distribution at the “fine-grain level”. That
is, although its PFknown covers all the extent of PFtrue,
the vectors are not equidistantly spaced. Also, it is interest-
ing to realize that in some problems the convergence (con-
sidering the SC metric) of an algorithm reached its maxi-
mum with a certain number of processors and then dropped.
This means that it makes no sense using more processors be-
cause the convergence will not increase. This implies that
the algorithm is not able to take advantage of an increasing
number of processors or, in other words, the algorithm has
poor scalability. This behavior suggests to consider both the
gains in convergence and the speedup to decide whether or
not a pMOEA has good scalability. Since the distribution
is the weakest point of our approach, as part of our future
work we want to integrate a new mechanism to achieve a
better distribution. An option to cope with this problem is
the use of ε-dominance [11]. This technique could be inte-
grated to the optimizer of each island or applied at the final
of the search process when the root processor combines all
the non-dominated fronts.

Acknowledgments

The first author acknowledges support from CONACyT

through a scholarship to pursue graduate studies in Com-
puter Science at the Sección de Computación of the Elec-
trical Engineering Department at CINVESTAV-IPN. The sec-
ond author acknowledges support from CONACyT through
project No. 42435-Y.

7Alongside the four problems of this paper, five more problems were
considered in the experiments but not included here.

8By using only one processor each serial optimizer is isolated, so that
MRMOGA do not divide the search space and PNSGA-II is reduced to the
original NSGA-II.

Bibliography
[1] E. Alba Torres. Parallel evolutionary algorithms can achieve

super-linear performance. Information Processing Letters, Elsevier,
82(1):7–13, April 2002.

[2] E. Alba Torres and J. M. Troya Linero. A survey of parallel distrib-
uted genetic algorithms. Complexity, 4(4):31–51, 1999.

[3] J. Branke, T. Kaußler, and H. Schmeck. Guidance in Evolutionary
Multi-Objective Optimization. Advances in Engineering Software,
32:499–507, 2001.

[4] E. Cantú Paz. Efficient and Accurate Parallel Genetic Algorithms.
Boston: Kluwer Academic Publishers, 2002.

[5] C. A. Coello Coello, D. A. V. Veldhuizen, and G. B. Lamont. Evo-
lutionary Algorithms for Solving Multi-Objective Problems. Nueva
York: Kluwer Academic Publishers, May 2002.

[6] K. Deb, S. Agrawal, A. Pratab, and T. Meyarivan. A Fast Elitist
Non-Dominated Sorting Genetic Algorithm for Multi-Objective Op-
timization: NSGA-II. In M. S. et al., editor, Proceedings of the Par-
allel Problem Solving from Nature VI Conference, pages 849–858,
Paris, France, 2000. Springer. Lecture Notes in Computer Science
No. 1917.

[7] K. Deb, P. Zope, and A. Jain. Distributed Computing of Pareto-
Optimal Solutions with Evolutionary Algorithms. In C. M. F. et al.,
editor, Evolutionary Multi-Criterion Optimization. Second Interna-
tional Conference, EMO 2003, pages 534–549, Faro, Portugal, April
2003. Springer. Lecture Notes in Computer Science. Volume 2632.

[8] T. Hiroyasu, M. Miki, and S. Watanabe. The New Model of Paral-
lel Genetic Algorithm in Multi-Objective Optimization Problems–
Divided Range Multi-Objective Genetic Algorithm–. In 2000
Congress on Evolutionary Computation, volume 1, pages 333–340,
Piscataway, New Jersey, July 2000. IEEE Service Center.

[9] A. H. Karp and H. P. Flatt. Measuring parallel processor perfor-
mance. Communications of the ACM, 33(5):539–543, 1990.

[10] J. D. Knowles and D. W. Corne. The Pareto Archived Evolution
Strategy: A New Baseline Algorithm for Multiobjective Optimisa-
tion. In 1999 Congress on Evolutionary Computation, pages 98–105,
Washington, D.C., July 1999. IEEE Service Center.

[11] M. Laumanns, L. Thiele, K. Deb, and E. Zitzler. Combining con-
vergence and diversity in evolutionary multi-objective optimization.
Evolutionary Computation, 10(3):263–282, Fall 2002.

[12] S.-C. Lin, W. F. Punch III, and E. D. Goodman. Coarse-grain genetic
algorithms, categorization and new approaches. In Sixth IEEE Sym-
posium on Parallel and Distributed Processing, pages 28–37, Dallas,
Texas, USA, October 1994. IEEE Computer Society Press.

[13] A. Osyczka and S. Kundu. A new method to solve generalized mul-
ticriteria optimization problems using the simple genetic algorithm.
Structural Optimization, 10:94–99, 1995.

[14] F. Streichert, H. Ulmer, and A. Zell. Parallelization of Multi-
objective Evolutionary Algorithms Using Clustering Algorithms. In
C. A. Coello Coello and E. Zitzler, editors, Evolutionary Multi-
Criterion Optimization. Fourth International Conference, EMO
2005, pages 92–107, Guanajuato, México, 2005. Springer-Verlag.
Lecture Notes in Computer Science. Volume 3410.

[15] M. Tomassini. Parallel and distributed evolutionary algorithms: A
review. In K. Miettinen et al., editor, Evolutionary Algorithms in
Engineering and Computer Science, pages 113–133. John Wiley and
Sons, 1999.

[16] Z.-Y. Zhu and K.-S. Leung. Asynchronous Self-Adjustable Is-
land Genetic Algorithm for Multi-Objective Optimization Problems.
In Congress on Evolutionary Computation (CEC’2002), volume 1,
pages 837–842, Piscataway, Nueva Jersey, May 2002. IEEE Service
Center.

[17] E. Zitzler, K. Deb, and L. Thiele. Comparison of Multiobjective Evo-
lutionary Algorithms: Empirical Results. Technical Report 70, Com-
puter Engineering and Networks Laboratory (TIK), Swiss Federal
Institute of Technology (ETH) Zurich, Gloriastrasse 35, CH-8092
Zurich, Switzerland, December 1999.

MOP n Constraints Objective functions∗ Characteristics

ZDT1 [17] 30 0 ≤ xi ≤ 1 i = 1, . . . , n

f1(x) = x1

f2(x) = g(x) � 1 − (f1/g(x))1/2 �
g(x) = 1 + 9 × � m

i=2 xi/(m − 1)

convex

ZDT2 [17] 30 0 ≤ xi ≤ 1 i = 1, . . . , n
f1(x) = x1

f2(x) = g(x) � 1 − (f1/g(x))2 �
g(x) = 1 + 9 × � m

i=2 xi/(m − 1)
non-convex

ZDT3 [17] 30 0 ≤ xi ≤ 1 i = 1, . . . , n

f1(x) = x1

f2(x) = g(x) � 1 − (f1

g(x)
)1/2

−
f1

g(x)
sin(10πf1)

�
g(x) = 1 + 9 × � m

i=2 xi/(m − 1)

convex, discontinuous

OSY [13] 6

0 ≤ x1, x2, x6 ≤ 10
1 ≤ x3, x5 ≤ 5, 0 ≤ x4 ≤ 6
0 ≤ x1 + x2 − 2
0 ≤ 6 − x1 − x2

0 ≤ 2 − x2 + x1

0 ≤ 2 − x1 + 3x2

0 ≤ 4 − (x3 − 3)2 − x4

0 ≤ (x5 − 3)2 + x6 − 4

f1(x) = −(25(x1 − 2)2 + (x2 − 2)2

+(x3 − 1)2 + (x4 − 4)2

+(x5 − 1)2)

f2(x) = x2
1 + x2

2 + x2
3 + x2

4 + x2
5 + x2

6

Both Ptrue and PFtrue

are disconnected

∗All objective functions are intended to be minimized

Table 2: Test problems used in this paper.

(a) SC comparison on ZDT1. (b) SC comparison on ZDT2. (c) SC comparison on ZDT3. (d) SC comparison on OSY.

(e) IGD comparison on ZDT1. (f) IGD comparison on ZDT2. (g) IGD comparison on ZDT3. (h) IGD comparison on OSY.

(i) SP comparison on ZDT1. (j) SP comparison on ZDT2. (k) SP comparison on ZDT3. (l) SP comparison on OSY.

Figure 6: Effectiveness of MRMOGA and PNSGA-II according to the number of processors on all problems.

