
Coevolutionary Multi-Objective Optimization using
Clustering Techniques

Margarita Reyes Sierra and Carlos A. Coello Coello

CINVESTAV-IPN (Evolutionary Computation Group)
Electrical Eng. Department, Computer Science Dept.

Av. IPN No. 2508, Col. San Pedro Zacatenco, México D.F. 07300, MÉXICO

Abstract. We propose a new version of a multiobjective coevolutionary algo-
rithm. The main idea of the proposed approach is to concentrate the search effort
on promising regions that arise during the evolutionary process as a product of
a clustering mechanism applied on the set of decision variables corresponding
to the known Pareto front. The proposed approach is validated using several test
functions taken from the specialized literature and it is compared with respect to
its previous version and another approach that is representative of the state-of-
the-art in evolutionary multiobjective optimization.

1 Introduction

Despite the considerable volume of research on evolutionary multiobjective optimiza-
tion [1], little emphasis has been placed on certain algorithmic design aspects such as
efficiency [2, 3]. Additionally, the use of coevolutionary mechanisms has been scarce in
the evolutionary multiobjective optimization literature. As in our original proposal [4],
the main motivation of the work reported here is precisely to take advantage of some
coevolutionary concepts to design a multi-objective evolutionary algorithm (MOEA)
that can be more efficient (in terms of fitness function evaluations). The main idea of
the proposed algorithm is to obtain information along the evolutionary process as to fo-
cus the search in the “promising” sub-regions, and then to use a subpopulation for each
of these subregions. At each generation, these different subpopulations “cooperate” and
“compete” among themselves and from these different processes we obtain a single
Pareto front. The size of each subpopulation is adjusted based on their contribution to
the current Pareto front. The proposed approach uses the adaptive grid proposed in [3]
to store the nondominated vectors obtained along the evolutionary process, enforcing
a more uniform distribution of such vectors along the Pareto front. This new version
of our algorithm performs a clustering analysis on the set of decision variables of the
current Pareto front to find the promising regions of the search space. In this way, the
number of populations needed does not exceed the total number of members on the true
Pareto front.

2 Coevolution

Coevolution refers to a reciprocal evolutionary change between species that interact
with each other. The relationships between the populations of two different species can

be described considering all their possible types of interactions. Such interaction can
be positive or negative depending on the consequences that such interaction produces
on the population. Evolutionary computation researchers have developed several co-
evolutionary approaches in which normally two or more species relate to each other
using any of the possible relationships, mainly competitive (e.g., [5]) or cooperative
(e.g., [6]). Also, in most cases, such species evolve independently through a genetic
algorithm. The key issue in these coevolutionary algorithms is that the fitness of an
individual in a population depends on the individuals of a different population.

3 Previous Work

Parmee and Watson [7] proposed a collaborative scheme in which they use one popu-
lation to optimize each of the objective functions of a problem. The method is really
created to converge to a single (ideal) trade-off solution. However, through the use of
penalties the algorithm can maintain diversity in the population. These penalties relate
to variability in the decision variables’ values. Keerativuttitumrong et.al. [8], Tan et.al.
[9] and Iorio and Li [10], proposed cooperative schemes in which one population is de-
fined for each decision variable of the problem. In order to evaluate an individual in any
population, individuals from the other populations must be selected in order to com-
plete a solution. In [8], the evolution of each of these populations is controlled through
Fonseca and Fleming’s MOGA [11]. The method in [9] uses an external archive to store
and update the nondominated solutions found so far and also to guide the search to the
less exploded subregions of the search space. Finally, in [10] the evolution of each of the
populations is controlled through the scheme of the NSGA-II [2]. After each generation,
the method proposed in [10] uses a nondominated sorting over all the subpopulations
of parents and offspring to determine the new parents subpopulations.

4 Description of Our Approach

As in [4], the main idea of our approach is to focus the search efforts only towards the
promising regions of the search space. Such “promising” regions are determined using
clustering analysis of the current Pareto front. The evolutionary process of our approach
is divided in two main stages. The first stage takes place during the first quarter of the
total of generations. After that, in the second stage (the rest of the generations) we
perform what we call a checkpoint in specific moments that will be mentioned later.
First Stage. During the first stage, the algorithm is allowed to explore all of the search
space, by using a population of individuals which are selected using Fonseca and Flem-
ing’s Pareto ranking scheme [11]. Additionally, the approach uses the adaptive grid
proposed in [3]. At the end of this first stage, the algorithm analyses the current Pareto
front (stored in the adaptive grid) in order to determine the promising regions of the
search space. In this new version, we perform a clustering analysis on the set of val-
ues of the decision variables corresponding to the current Pareto front. The aim is to
determine the promising regions of the search space (line 6, Figure 1). This analysis is
performed independently for each decision variable. Once we know the clusters of the
values corresponding to each one of the decision variables, we proceed to form a set

1. gen = 0
2. populations = 1
3. while (gen < Gmax) {

if (gen ≥ Gmax/4)
4. if (gen = Gmax/4, Gmax/2, 3Gmax/4 or

∃ x ∈ popzero : x ∈ current Pareto front) {
5. check active populations()
6. clustering algorithm()
7. construct new subpopulations()}
8. for (i = 1; i ≤ populations; i + +)
9. if (population i contributes to the current Pareto front)
10. evolve and compete(i)
11. elitism()
12. reassign resources()
13. gen + + }

Fig. 1. Pseudocode of our algorithm.

of new populations. This process is illustrated in Figure 2. A cluster is a set of values,
so for each cluster of each variable, we obtain the limits that bound that cluster. Once
that we know the limits of each cluster, we have a set of intervals for each variable.
Then, a set of sub-regions is created in the following way. For each point in the current
Pareto front, we proceed to locate the interval on each variable to which it belongs.
This process gives us a region in the search space. For each point in the current Pareto
front we first check if it belongs to any region already located. If the point belongs to
an existing region, we continue with the next point. Otherwise, we proceed to create
the corresponding region, and so on. After that, we assign a new population to each
region created, i.e., those that have individuals in the current Pareto front (line 7, Fig-
ure 1). In this way, in the worst case we will have as many populations as points in the
current Pareto front. Finally, we use one extra population (called population zero) that
continues searching for good solutions on the whole search space. This population is
initialized with an 80% of points of the current Pareto front and a 20% of random points
(with the aim of generating intermediate points on the current Pareto front while adding
diversity).

Second Stage. When reaching the end of the first stage, the algorithm consists of a
certain number of populations looking each at different regions of the search space.
At each generation, the evolution of all the populations takes place independently and,
later on, the nondominated elements from each population are sent to the adaptive grid
where they “cooperate” and “compete” in order to conform a single Pareto front. After
this, we count the number of individuals that each of the populations contributed to the
current Pareto front. Our algorithm is elitist (line 11, Figure 1), because after the first
generation of the second stage, all the populations that do not provide any individual to
the current Pareto front are automatically eliminated and the sizes of the other popula-
tions are properly adjusted (line 12, Figure 1). Each population is assigned or removed
individuals such that its final size is proportional to its contribution to the current Pareto
front. These individuals to be added or removed are randomly generated/chosen. This
process is illustrated in Figure 2. Thus, populations compete with each other to get as
many extra individuals as possible. Note that it is, however, possible that the sizes of the

Cluster 1 Cluster 2 Cluster 3
variable 1

variable 2

Cluster 1

Cluster 2

p2

p3

p1

Region 1

Region 2 Region 3

p4

50%

50% 20%

80% 80%

20%

Population 1

Population 2

in the Pareto
front

percentage of individuals

evolving evolving

Fig. 2. (left) Mechanism used to locate the promising regions of the search space. A population
will be assigned to each located promising region. (right) Resources reassignment: Each popula-
tion is assigned or removed individuals such that its final size is proportional to its contribution
to the current Pareto front.

populations “converge” to a constant value once their contribution to the current Pareto
front no longer changes.
Checkpoint. During the second stage, we perform a checkpoint in specific moments
of the evolutionary process (line 4, Figure 1). The checkpoint takes place as before
(see Figure 1) [4], but also when the population zero includes a new individual in the
adaptive grid, that is, in the current Pareto front. When the checkpoint happens, we
perform a check on the current populations in order to determine how many (and which)
of them can continue (i.e., those populations which continue contributing individuals to
the current Pareto front, which are the “good” populations) (line 5, Figure 1). As at the
end of the first stage, we perform again the clustering analysis on the set of values of the
decision variables corresponding to the current Pareto front, and proceed to form a set
of new populations. The non-dominated individuals from the “good” populations are
kept. All the good individuals are distributed across the newly generated populations.
The elitist process continues and the size of each population will be adjusted based on
the same criteria as before. Note however, that we define a minimum population size
and this size is enforced for all populations after each checkpoint.
Clustering Analysis. We implemented a clustering algorithm based on the nature of
the k-means algorithm [12]. Since the k-means algorithm: (1) depends on the initial
centroids and (2) requires the number of clusters needed, we made two modifications
to overcome these drawbacks. Regarding the first disadvantage, when the distance from
a given point x to its centroid is greater than the minimum distance between two cen-
troids, the point x becomes a new centroid. To maintain the number of clusters constant,
once we have selected a point to be a new centroid, we choose one of the closest cen-
troids to be eliminated. With respect to the second disadvantage, we use the following
mechanism [12]: Let xi be a point, di the distance between xi and its centroid, K the
current total number of clusters and d̄i the average distance between xi and the K cen-
troids. We create a new cluster with centroid xi when: |di − d̄i| ≤ d̄iT where T is such
that 0 < T < 1. As big is the value of T , as big is the number of clusters created. Since
the previous mechanism creates new clusters, we use a simple mechanism to also elim-

inate clusters when the corresponding centroids are very close: If the distance between
two centroids is less that T times the average distance between centroids, one of them
is eliminated.
Parameters Required. Our proposed approach requires the following parameters (The
parameter T of the clustering algorithm used was fixed to T = 1): (1) Crossover rate
(pc) and mutation rate (pm), (2) Maximum number of generations (Gmax), (3) Size of
the initial population (popsizeinit) to be used during the first stage and minimum size
of the secondary population (popsizesec) to be used during the second stage.

5 Results

To validate our approach, we performed both quantitative comparisons (adopting four
metrics) and qualitative comparisons (plotting the Pareto fronts produced) with respect
to the previous version of our approach (CO-MOEA) [4] and with respect to one MOEA
that is representative of the state-of-the-art in the area: the Nondominated Sorting Ge-
netic Algorithm II (NSGA-II) [2]. For our comparative study, we implemented the four
following metrics:

Error Ratio (ER) [13]: This metric indicates the percentage of solutions (from
the nondominated vectors found) that are not members of the true Pareto optimal set:
ER =

P

n

i=1
ei

n , where n is the number of vectors in the current set of nondominated
vectors available; ei = 0 if vector i is a member of the Pareto optimal set, and ei = 1
otherwise.

Generational Distance (GD) [14]: The concept of generational distance was in-
troduced as a way of estimating how far are the elements in the Pareto front produced

by our algorithm from those in the true Pareto front of the problem: GD =

√
P

n

i=1
d2

i

n
where n is the number of nondominated vectors found by the algorithm being analyzed
and di is the Euclidean distance (measured in objective space) between each of these
and the nearest member of the true Pareto front.

Spacing (SP) [15]: This metric was proposed as a way of measuring the range
(distance) variance of neighboring vectors in the Pareto front known:

SP =
√

1
n−1

∑n
i=1(d̄ − di)2 where di = minj(

∑m
k=1 |f i

k − f j
k |), i, j = 1, ..., n, m is

the number of objectives, d̄ is the mean of all di, and n is the number of vectors in the
Pareto front found by the algorithm being evaluated.

Two Set Coverage (SC) [16]: Consider X ′, X ′′ as two sets of objective vectors. SC
is defined as the mapping of the order pair (X ′, X ′′) to the interval [0, 1]: SC(X ′, X ′′) ,

|{a′′εX ′′; ∃a′εX ′ : a′ � a′′}|/|X ′′|. If all points in X ′ dominate or are equal to all
points in X ′′, then by definition SC = 1. SC = 0 implies the opposite. In general,
SC(X ′, X ′′) and SC(X ′′, X ′) both have to be considered due to set intersections not
being empty.

For each of the test functions shown below, we performed 30 runs per algorithm
and a total of 10,000 evaluations. The parameters for NSGA-II were popsize=100
and 100 generations. All the algorithms used a bit mutation probability (pm) equal to
1/codesize and a crossover probability (pc) equal 0.8. The Pareto fronts that we will
show correspond to the median of the 30 runs with respect to the ER metric. Regarding

constraint-handling, we used the original scheme provided in the case of the NSGA-
II. However, since our algorithm (both versions) does not have such a mechanism, we
implemented a simple penalty function over the value of objective functions of each
infeasible individual.
Test Function 1 Minimize f1(x1, x2) = x1, f2(x1, x2) = g(x1, x2)h(x1, x2)

subject to: g(x1, x2) = 11 + x2
2 − 10cos(2πx2)

h(x1, x2) =

{

1 −
√

f1(x1,x2)
g(x1,x2)

f1(x1, x2) ≤ g(x1, x2)

0 otherwise
0.0 ≤ x1 ≤ 1.0, −30.0 ≤ x2 ≤ 30.0

In this example, our approach used: popsizeinit = 100, popsizerec = 30 (38 gen).

Test Function 2 Minimize f1(x) =
∑2

i=1(−10e−0.2∗
√

x2
i
+x2

i+1),
f2(x) =

∑3
i=1(|xi|0.8 + 5sin(x3

i)) subject to: −5.0 ≤ x1, x2, x3 ≤ 5.0
In this case, our approach used: popsizeinit = 100, popsizerec = 30 (40 gen).

Test Function 3 Minimize f1(x1, x2) = x1, f2(x1, x2) = x2

subject to: g1(x1, x2) = −x2
1 − x2

2 + 1 + 0.1cos(16arctanx1

x2
) ≤ 0

g2(x1, x2) = (x1 − 1
2)2 + (x2 − 1

2)2 − 1
2 ≤ 0, 0.0 ≤ x1, x2 ≤ π

In this example, our approach used: popsizeinit = 100, popsizerec = 30 (40 gen).
Table 1 shows the values of the metrics for each of the MOEAs compared.

6 Discussion of Results

As we can see in Table 1, in the first function the new version of our approach (CO-
MOEA2) is clearly better than the previous version (CO-MOEA), with respect to all the
metrics. On the other hand, although the results of the NSGA-II are better on average
than the results of CO-MOEA2, the SC metric indicates that the Pareto fronts obtained
by both algorithms are on average almost of the same quality.

As in the first function, in the second function CO-MOEA2 is better than CO-
MOEA. However, in this case the results of the CO-MOEA with respect to the SP
metric are weakly better than the results of CO-MOEA2. In this function, the results
of CO-MOEA2 are better on average than the results of the NSGA-II, except for the
SP metric. However, as in the first function, the SC metric indicates almost the same
quality on the results of CO-MOEA2 and NSGA-II.

In the case of the third function, we can see that CO-MOEA and CO-MOEA2 ob-
tained very similar results. CO-MOEA has better results only with respect to the SP
metric. On the other hand, in this function the NSGA-II has better results on average
only with respect to the ER metric. With respect to the SC metric, the NSGA-II obtained
the best results, followed by CO-MOEA2 and CO-MOEA.

In general, from Table 1 and Figures 3 and 4, we can conclude that in the first two
functions the new version of our approach has clearly improved the original version,
and obtained very competitive results with respect to the NSGA-II. In the third func-
tion, CO-MOEA2 has obtained the same quality on the results than the CO-MOEA and
NSGA-II. Finally, we can conclude that CO-MOEA2 needs to improve the results ob-
tained with respect to the distribution (SP metric). We consider this as part of our future
work.

Test Function 1
CO-MOEA CO-MOEA2 NSGA-II Two Set Coverage

best 0.54 0.02 0.00 X SC(X,CO-MOEA)
median 0.83 0.10 0.07 CO-MOEA 0.00

ER worst 1.00 0.44 0.47 CO-MOEA2 0.67
average 0.83 0.15 0.13 NSGA-II 0.83
std. dev. 0.1223 0.1112 0.1289 Average 75%

best 0.0004 0.0001 0.0047 X SC(X,CO-MOEA2)
median 0.7018 0.0040 0.0056 CO-MOEA 0.00

GD worst 20.237 0.0910 0.0061 CO-MOEA2 0.00
average 2.0042 0.0159 0.0055 NSGA-II 0.02
std. dev. 3.9452 0.0249 0.0004 Average 1%

best 0.0098 0.0045 0.0064 X SC(X,NSGA-II)
median 2.2077 0.0090 0.0073 CO-MOEA 0.00

SP worst 47.351 0.9069 0.0084 CO-MOEA2 0.00
average 4.8611 0.1344 0.0073 NSGA-II 0.00
std. dev. 9.1779 0.2491 0.0006 Average 0%

Test Function 2
CO-MOEA CO-MOEA2 NSGA-II Two Set Coverage

best 0.61 0.12 0.16 X SC(X,CO-MOEA)
median 0.72 0.23 0.27 CO-MOEA 0.00

ER worst 0.83 0.35 0.37 CO-MOEA2 0.66
average 0.72 0.24 0.28 NSGA-II 0.62
std. dev. 0.0557 0.0578 0.0578 Average 64%

best 0.0299 0.0028 0.0032 X SC(X,CO-MOEA2)
median 0.0311 0.0032 0.0036 CO-MOEA 0.02

GD worst 0.0332 0.0038 0.0044 CO-MOEA2 0.00
average 0.0313 0.0032 0.0037 NSGA-II 0.07
std. dev. 0.0008 0.0002 0.0004 Average 5%

best 0.0387 0.0519 0.0450 X SC(X,NSGA-II)
median 0.0980 0.1100 0.0553 CO-MOEA 0.02

SP worst 0.1282 0.1534 0.1060 CO-MOEA2 0.07
average 0.0808 0.1069 0.0606 NSGA-II 0.00
std. dev. 0.0288 0.0306 0.0156 Average 5%

Test Function 3
CO-MOEA CO-MOEA2 NSGA-II Two Set Coverage

best 0.09 0.05 0.01 X SC(X,CO-MOEA)
median 0.15 0.16 0.08 CO-MOEA 0.00

ER worst 0.25 0.29 0.17 CO-MOEA2 0.25
average 0.14 0.15 0.08 NSGA-II 0.21
std. dev. 0.0404 0.0461 0.0339 Average 23%

best 0.0009 0.0009 0.0008 X SC(X,CO-MOEA2)
median 0.0014 0.0012 0.0013 CO-MOEA 0.23

GD worst 0.0015 0.0015 0.0016 CO-MOEA2 0.00
average 0.0014 0.0012 0.0012 NSGA-II 0.17
std. dev. 0.0001 0.0001 0.0002 Average 20%

best 0.0051 0.0047 0.0065 X SC(X,NSGA-II)
median 0.0064 0.0085 0.0099 CO-MOEA 0.13

SP worst 0.0077 0.0185 0.0155 CO-MOEA2 0.14
average 0.0064 0.0092 0.0101 NSGA-II 0.00
std. dev. 0.0007 0.0027 0.0022 Average 14%

Table 1. Comparison of results between the previous version of our approach (denoted by CO-
MOEA [4]), the new version (CO-MOEA2) and the NSGA-II [2], for all the test functions.

Test Function 1

CO-MOEA

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

true front
CO-MOEA

CO-MOEA2 NSGA-II

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

true front
CO-MOEA2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

true front
NSGA-II

Test Function 2

CO-MOEA

-12

-10

-8

-6

-4

-2

 0

 2

-20 -19 -18 -17 -16 -15 -14

true front
CO-MOEA

CO-MOEA2 NSGA-II

-12

-10

-8

-6

-4

-2

 0

 2

-20 -19 -18 -17 -16 -15 -14

true front
CO-MOEA2

-12

-10

-8

-6

-4

-2

 0

 2

-20 -19 -18 -17 -16 -15 -14

true front
NSGA-II

Fig. 3. Pareto fronts obtained by the previous version of our approach (CO-MOEA), the new
version (CO-MOEA2) and the NSGA-II [2], for test functions 1 and 2.

Test Function 3

CO-MOEA

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

true front
CO-MOEA

CO-MOEA2 NSGA-II

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

true front
CO-MOEA2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

true front
NSGA-II

Fig. 4. Pareto fronts obtained by the previous version of our approach (CO-MOEA), the new
version (CO-MOEA2) and the NSGA-II [2], for test function 3.

7 Conclusions and Future Work

We have presented a new version of a coevolutionary multi-objective evolutionary al-
gorithm whose main idea is to detect the most “promising” sub-regions of the search
space and focus the search on them. With this aim, the proposed algorithm applies a
clustering algorithm on the set of decision variables of the known Pareto front. The pro-
posed approach was validated using several test functions taken from the specialized
literature. Our comparative study showed that the proposed approach has improved its
original version and that it is very competitive with respect to another algorithm that is
representative of the state-of-the-art in the area.

Since we are proposing a coevolutionary scheme that uses MOGA as its search en-
gine, we consider as an interesting idea to use another multiobjective algorithm in order
to improve the obtained results. This is a very important advantage of coevolutionary
schemes. On the other hand, we also plan to replace the adaptive grid with another more
efficient mechanism in order to improve our distribution results. Finally, we need to test
our approach with high-dimensional functions so that we can study possible scalability
difficulties.

Acknowledgments

The first author acknowledges support from CONACyT through a scholarship to pursue
graduate studies at CINVESTAV-IPN. The second author acknowledges support from
CONACyT project number 45683.

References

1. Coello Coello, C.A., Van Veldhuizen, D.A., Lamont, G.B.: Evolutionary Algorithms for
Solving Multi-Objective Problems. Kluwer Academic Publishers, New York (2002)

2. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A Fast and Elitist Multiobjective Genetic
Algorithm: NSGA–II. IEEE Transactions on Evolutionary Computation 6 (2002) 182–197

3. Knowles, J.D., Corne, D.W.: Approximating the Nondominated Front Using the Pareto
Archived Evolution Strategy. Evolutionary Computation 8 (2000) 149–172

4. Coello Coello, C.A., Reyes Sierra, M.: A Coevolutionary Multi-Objective Evolutionary Al-
gorithm. In: Proceedings of 2003 CEC. Volume 1., IEEE Press (2003) 482–489

5. Paredis, J.: Coevolutionary algorithms. In Bäck, T., Fogel, D.B., Michalewicz, Z., eds.: The
Handbook of Evolutionary Computation, 1st supplement. Institute of Physics Publishing and
Oxford University Press (1998) 225–238

6. Potter, M., Jong., K.D.: A cooperative coevolutionary approach to function optimization. In:
Proceedings from PPSN V, Springer-Verlag (1994) 530–539

7. Parmee, I.C., Watson, A.H.: Preliminary Airframe Design Using Co-Evolutionary Multiob-
jective Genetic Algorithms. In: Proceedings of GECCO’99. Volume 2., Morgan Kaufmann
(1999) 1657–1665

8. Keerativuttitumrong, N., Chaiyaratana, N., Varavithya, V.: Multi-objective Co-operative Co-
evolutionary Genetic Algorithm. In et al., J.M.G., ed.: Proceedings of PPSN VII, Springer-
Verlag (2002) 288–297

9. Tan, K., Chew, Y., Lee, T., Yang, Y.: A cooperative coevolutionary algorithm for multiob-
jective optimization. In: IEEE International Conference on Systems, Man and Cybernetics.
Volume 1., IEEE Press (2003) 390–395

10. Iorio, A., Li, X.: A cooperative coevolutionary multiobjective algorithm using non-
dominated sorting. In: Proceedings of GECCO, LNCS 3102, Springer-Verlag (2004) 537–
548

11. Fonseca, C.M., Fleming, P.J.: Genetic algorithms for multiobjective optimization: formula-
tion, discussion and generalization. In: Proceedings of the Fifth International Conference on
Genetic Algorithms, Morgan Kauffman Publishers (1993) 416–423

12. Jain, A.K., Dubes, R.C.: Algorithms for Clustering Data. Prentice Hall, New Jersey (1988)
13. Van Veldhuizen, D.A.: Multiobjective Evolutionary Algorithms: Classifications, Analyses,

and New Innovations. PhD thesis, Department of Electrical and Computer Engineering. Air
Force Institute of Technology, Wright-Patterson AFB, Ohio (1999)

14. Van Veldhuizen, D.A., Lamont, G.B.: On Measuring Multiobjective Evolutionary Algorithm
Performance. In: 2000 CEC. Volume 1., IEEE Service Center (2000) 204–211

15. Schott, J.R.: Fault Tolerant Design Using Single and Multicriteria Genetic Algorithm Op-
timization. Master’s thesis, Department of Aeronautics and Astronautics, Massachusetts
Institute of Technology, Cambridge, Massachusetts (1995)

16. Zitzler, E., Deb, K., Thiele, L.: Comparison of Multiobjective Evolutionary Algorithms:
Empirical Results. Evolutionary Computation 8 (2000) 173–195

