
FITNESS INHERITANCE IN MULTI-OBJECTIVE PARTICLE SWARM OPTIMIZATION

Margarita Reyes-Sierra and Carlos A. Coello Coello
�

ABSTRACT

In this paper, we propose to incorporate the concept of fit-
ness inheritance into a Multi-Objective Particle Swarm Op-
timizer previously proposed by the authors, in order to re-
duce the number of function evaluations performed. Four
well-known test functions taken from the multi-objective
optimization literature are used to evaluate the performance
of the proposed approach. The results indicate a very good
performance of the fitness inheritance technique, mainly
when it is applied with a low probability, in which case the
quality of the obtained results is even improved.

1. INTRODUCTION

In many real world applications of Evolutionary Algorithms
(EAs), the fitness evaluation of the individuals in a popula-
tion is computationally expensive. Fitness Inheritance is an
enhancement technique that has been proposed to improve
the performance of EAs [8]. In fitness inheritance, the fit-
ness value of an offspring is obtained from the fitness values
of its parents. In this way, we do not need to evaluate every
individual at each generation, and the computational cost
is reduced. In this paper, we propose the first attempt (to
the best of our knowledge) to incorporate the concept of fit-
ness inheritance to a real-coded Particle Swarm Optimizer
(PSO) that has been proposed previously by the authors
to solve multi-objective problems [7]. Our approach with
fitness inheritance is compared against the same approach
without fitness inheritance and, also, against two other PSO-
based multi-objective algorithms representative of the state-
of-the-art. For our comparative study, we used four well-
known test functions taken from the multi-objective opti-
mization literature and three different measures of perfor-
mance. This paper is organized as follows. An introduction
to Fitness Inheritance is given in Section 2. Section 3 intro-
duces the fitness inheritance technique proposed in this pa-
per and the multi-objective PSO-based algorithm in which
it is incorporated. In Section 4 and 5 we present the ob-
tained results and their discussion, respectively. Finally, the
conclusions and future work are described in Section 6.

�
CINVESTAV-IPN (Evolutionary Computation Group) De-

partamento de Ingenierı́a Eléctrica, Sección Computación Av.
IPN No. 2508, Col. San Pedro Zacatenco, México D.F.
07360, México mreyes@computacion.cs.cinvestav.mx,
ccoello@cs.cinvestav.mx

2. FITNESS INHERITANCE

The use of fitness inheritance to improve the performance
of GAs was originally proposed by Smith et al. [8]. The
authors proposed two possible ways of inheriting fitness:
the first consists of taking the average fitnesses of the two
parents and the other consists of taking a weighted (propor-
tional) average of the fitnesses of the two parents. The se-
cond approach is related to how similar the offspring is with
respect to its parents (this is done using a similarity mea-
sure). They applied inheritance to a very simple problem
(the OneMax problem) [8] and found that the weighted fit-
ness average resulted in a better performance and indicated
that fitness inheritance was a viable alternative to reduce the
computational cost of a genetic algorithm.

Sastry et al. [6] provide some theoretical foundations for
fitness inheritance. They investigated convergence times,
population sizing and the optimal proportion of inheritance
for the OneMax problem. Chen et al. [1] investigate fitness
inheritance as a way to speed up multi-objective GAs and
EAs. They extended the analytical model proposed by Sas-
try et al. for multi-objective problems. Convergence and
population-sizing models are derived and compared with
respect to experimental results. The authors concluded that
the number of function evaluations can be reduced with the
use of fitness inheritance.

Ducheyne et al. [3] tested the performance of average
and weighted average fitness inheritance on a well-known
test suite of multi-objective optimization problems ([10]),
using a binary GA. They concluded that the fitness inheri-
tance efficiency enhancement techniques can be used in or-
der to reduce the number of fitness evaluations provided that
the Pareto front is convex and continuous. They also con-
cluded that if the Pareto surface is not convex or if it is dis-
continuous, the fitness inheritance strategies fail to reach the
true Pareto front.

3. DESCRIPTION OF OUR WORK

We propose to incorporate fitness inheritance into a Multi-
Objective Particle Swarm Optimizer (MOPSO) that was pre-
viously proposed by us [7]. The MOPSO proposed in [7] is
based on Pareto dominance, since it considers every non-
dominated solution as a new leader. Additionally, the ap-

Begin
Initialize swarm. Initialize leaders.
Send leaders to � -archive
crowding(leaders), �����
While �����
	���

For each particle
Select leader. Flight. Mutation.� If(���) Inherit Else Evaluation.
Update ��������� .

EndFor
Update leaders, Send leaders to � -archive
crowding(leaders), � ++

EndWhile
Report results in � -archive

End

Figure 1. Pseudocode of our algorithm.

proach also uses a crowding factor [2] as a second discri-
mination criterion which is also adopted to filter out the list
of available leaders. For each particle, we select the leader
by means of a binary tournament based on the crowding
value of the available leaders. If the size of the set of lea-
ders is greater than the maximum allowable size, only the
best leaders are retained based on their crowding value. We
also incorporated in the proposed approach the use of diffe-
rent mutation (or turbulence) operators which act on diffe-
rent subdivisions of the swarm. We also proposed a scheme
by which the swarm is subdivided in three parts (of equal
size): the first sub-part has no mutation at all, the second
sub-part uses uniform mutation and the third sub-part uses
non-uniform mutation. The available set of leaders is the
same for each of these sub-parts. Finally, the proposed ap-
proach also incorporates the � -dominance concept [4] to fix
the size of the set of final solutions produced by the algo-
rithm. Figure 1 shows the pseudo-code of our proposed ap-
proach.

Since leader selection is a key component in PSO, we
have updated the version of our MOPSO algorithm publi-
shed in [7] by including a new leader selection technique.
In order to speed up the convergence to the true Pareto front
of a multi-objective optimization problem, we have incor-
porated a new technique that is based only on Pareto dom-
inance: given a particle
 , we assign as its leader a particle� , randomly chosen, but if and only if � dominates
 . If it is
the case that
 is a non-dominated particle, the leader will
be randomly chosen. Since this new technique is based only
on Pareto dominance, we have preserved the selection tech-
nique that our original MOPSO includes, in order to avoid
losing diversity within the swarm. After an extensive series
of experiments, we determined that our approach reached its
best performance when using the new selection technique

during 97% of the time (the old selection scheme is adopted
during the remaining 3% of the time).

However, our main contribution in this paper is the in-
corporation of fitness inheritance within our MOPSO. The
aim in this case is to reduce the number of fitness function
evaluations required by our approach. Since PSO has no re-
combination operator, we adopted as “parents” of a particle
the previous position of the particle and its leader. We per-
formed experiments using the weighted average inheritance
over real numbers encoding [8]:

Given a particle
����! , its assigned leader
��! and the new
particle
�"$#&% , we proceed to calculate the distance from

�"�#&% to its “parents” (as defined before): ')(*�+'�,-
�"$#�%/.0
��0�! �1 ,
'324�5'�,6
�"$#&%/.7
8�! �19. where ' is an Euclidean distance in the
decision variable space. Later, we calculate how near is the
new particle from these two previous particles and proceed
to inherit the corresponding objective function values:

: � ' (
';(=<�'�2

> �0,6
�"$#&%=1=� : > �7,-
8�! ?1@<�,0A*B : 1 > �7,-
��0�! ?19.7CD�EA�.GFHF!FH.0I
where

> � is the value of the objective function C and I is the
number of objective functions.

Ducheyne [3] noted that the previous form of fitness in-
heritance has problems when the Pareto front is not convex.
We came across this same limitation and after some anal-
ysis, we concluded that the problem arises in our MOPSO
only when the leader chosen does not dominate the current
particle. So, we changed the fitness inheritance mechanism
when the above situation arises. In this case, we use the va-
lues obtained using the original scheme to locate the closest
leader to that position. Then, the objective function values
of such leader are assigned to the new particle. We can see
both types of inheritance in Figure 2.

In Figure 1, the symbol (�) indicates the line in which
the concept of fitness inheritance is incorporated. The inher-
itance proportion, ��� , is the proportion of individuals in the
population whose fitness is inherited. It is very important
to note that a particle that has inherited its objective values
can not enter into the final Pareto front.

4. PRELIMINARY RESULTS

We have tested our approach using four test functions pro-
posed in [10]: ZDT1, ZDT2, ZDT3 and ZDT4. The func-
tions ZDT1, ZDT2 and ZDT3 have 30 variables and the
function ZDT4 has 10 variables. The four functions have
two objectives. Functions ZDT1 and ZDT4 have convex
Pareto fronts, ZDT2 has a non-convex Pareto front and ZDT3
has a non-convex and discontinuous Pareto front.

We performed experiments with different values of in-
heritance proportion ��� . We experimented with: �J� = 0.1,

0.2, 0.3, 0.4. Note that this proportion of individuals indi-
cates also the percentage by which the number of evalua-
tions is reduced (e.g., � � � �8F!A means that 10% less eva-
luations are performed). Also, we compared our approach
against other two PSO-based multi-objective approaches re-
presentative of the state-of-the-art: the Sigma-MOPSO [5]
and the Cluster-MOPSO [9]. The approaches will be iden-
tified with the following labels: sMOPSO refers to [5], c-
MOPSO refers to [9], and oMOPSO is our MOPSO [7].

We performed 20 runs for each function and each ap-
proach. The parameters of each approach were set such
that they all performed 20000 objective function evalua-
tions. In this way, the approach with fitness inheritance
performed approximately 18000 evaluations when ��� = 0.1,
16000 when ��� = 0.2, 14000 when �J� = 0.3 and 12000 when
��� = 0.4. The parameters adopted for oMOPSO were: 100
particles and 200 generations. cMOPSO used 40 particles,
4 swarms, 5 iterations per swarm and a total number of i-
terations of 100. In the case of sMOPSO, 200 particles
were used through 100 iterations (as suggested by the au-
thor of this method). As recommended in [5], the sMOPSO
used a turbulence probability of �)F �)A for all functions, ex-
cept for ZDT4 in which the turbulence probability used was
�)F � � . Our proposed approach used a probability mutation
of A������?'��?��C	��� . All the algorithms were set such that they
provided Pareto fronts with 100 points. For our comparative
study, we implemented two unary and one binary measures
of performance:
Success Counting (SCC): This measure counts the number
of vectors, in the current set of nondominated vectors avail-
able, that are members of the Pareto optimal set:
��
� �� "���@(� � . where I is the number of vectors in the current
set of nondominated vectors available; � � = 1 if vector C is a
member of the Pareto optimal set, and �?�@��� otherwise.
Inverted Generational Distance (IGD): This measure in-
dicates how far is the true Pareto front from the obtained

Pareto front: ���
� �
� �������� ���

" where I is the number of
elements in the true Pareto front and '
� is the Euclidean dis-
tance (measured in objective space) between each of these
and the nearest member of the set of nondominated vectors
found by the algorithm.
Two Set Coverage (SC) [11]:
���,��! ."�# 1%$'& �8.GA�(gives
the ratio of points in the set �) that are dominated by at
least one point in the set �) . In general,
���,*�! ."�! 1 and
���,*�! ."�! !1 both have to be considered due to set intersec-
tions not being empty. If
���,��! ."�# 1��+� and
���,��# ."�# H1
� A , we say that � is better than � .

Table 1 summarizes the results obtained with respect to
the unary measures and Table 2 summarizes the results ob-
tained for the binary measure. The Pareto fronts shown in
Figures 3 and 4 correspond to the nondominated vectors ob-
tained from the union of the 20 Pareto fronts produced by
each approach. It should be noted that the Pareto fronts

shown were also used to apply the binary measure of per-
formance.

5. DISCUSSION OF RESULTS

As we can see in Table 1, our algorithm oMOPSO with-
out fitness inheritance, has the best results in all cases with
respect to the two the unary measures, compared with the
other two PSO-based approaches. sMOPSO had problems
to reach the true Pareto front of functions ZDT2 and ZDT4
and, although it obtained approximations to the true Pareto
front of functions ZDT1 and ZDT3, sMOPSO was unable
to cover the whole true Pareto front in both cases, as we
can see in Figures 3 and 4. For this reason, sMOPSO has
high values in the IGD measure. The cMOPSO approach
had very similar problems with functions ZDT2 and ZDT4,
however, in function ZDT2 it found a lot of points but all
concentrated in the superior part of the true Pareto front. In
functions ZDT1 and ZDT3, although cMOPSO could not
reach the true Pareto front, it obtained good approximations
to the whole front. For this reason, cMOPSO obtained bet-
ter values than sMOPSO with respect to the IGD measure.

Table 1 shows that, with respect to the SCC measure,
the use of fitness inheritance decreases the quality of the re-
sults as we increase ��� . However, with respect to the IGD
measure all the approaches with fitness inheritance have al-
most the same median and mean values that the approach
without inheritance, except in function ZDT3. In this way,
we can conclude that the approaches with fitness inheritance
obtained as good approximations to the corresponding true
Pareto front, as the approach without inheritance. In fact,
it is very interesting to note that, in some cases, when the
value of ��� is low, the quality of the results with respect to
the SCC measure is better than the algorithm without fit-
ness inheritance. This is the case of functions ZDT1 (��� =
0.1), ZDT3 (��� = 0.1) and ZDT4 (�J� = 0.1,0.2). This ef-
fect in the results may be a product of the diversity that it
is introduced by a particle that has inherited the objective
values of a leader. On the other hand, the reduction in the
number of function evaluations is always greater than the
degradation in the quality of results, on average, with re-
spect to the SCC measure. For example, in functions ZDT1,
ZDT2 and ZDT3, the worst results were obtained by the ap-
proach with � � = 0.4, reducing the quality of the results in a
14.1%, 13.5% and 13.2%, respectively. In function ZDT4,
the worst results were obtained by the approach with �J� =
0.3 reducing the quality of the results in a 25%. In fact, even
in the worst case with a saving of 40% of evaluations, the
results of the approaches with fitness inheritance are better
than the results of the other PSO-based approaches.

Since, in general, the performance with respect to the
IGD of all the approaches with inheritance in very similar,
we choose the approach with the worst results with respect

Test Function ZDT1
sMOPSO cMOPSO oMOPSO 0.1 0.2 0.3 0.4

best 93 37 84 94 94 78 86
median 58 7 74 79 72 69 65

SCC worst 23 1 22 44 27 25 36
mean 59 8 71 77 64 62 61

std. dev. 24.2 7.9 13.6 14.5 19.8 16.4 14.8
best 0.0031 0.0016 0.0009 0.0009 0.0009 0.0009 0.0009

median 0.0260 0.0029 0.0010 0.0009 0.0010 0.0010 0.0010
IGD worst 0.0448 0.0041 0.0011 0.0010 0.0011 0.0012 0.0087

mean 0.0269 0.0030 0.0010 0.0009 0.0010 0.0010 0.0014
std. dev. 0.0095 0.0007 0.00005 0.00003 0.00005 0.00008 0.0017

Test Function ZDT2
sMOPSO cMOPSO oMOPSO 0.1 0.2 0.3 0.4

best 1 94 100 100 100 100 97
median 1 0 91 93 92 88 84

SCC worst 1 0 60 6 54 23 33
mean 1 29 89 83 86 79 77

std. dev. 0 38.9 10 22.5 13.1 22.4 20.7
best 0.0723 0.0030 0.0006 0.0006 0.0006 0.0006 0.0006

median 0.0723 0.0723 0.0007 0.0007 0.0007 0.0007 0.0007
IGD worst 0.0723 0.0852 0.0008 0.0011 0.0009 0.0010 0.0009

mean 0.0723 0.0680 0.0007 0.0007 0.0007 0.0007 0.0007
std. dev. 0.0000 0.0152 0.00005 0.0001 0.00007 0.0001 0.00008

Test Function ZDT3
sMOPSO cMOPSO oMOPSO 0.1 0.2 0.3 0.4

best 89 0 90 88 82 85 92
median 15 0 72 77 66 67 67

SCC worst 0 0 18 51 30 27 8
mean 26 0 68 73 65 64 59

std. dev. 25.4 0 18.2 11.2 13.9 14.5 21.2
best 0.0023 0.0028 0.0008 0.0008 0.0008 0.0008 0.0008

median 0.0249 0.0054 0.0008 0.0008 0.0009 0.0008 0.0009
IGD worst 0.0374 0.0096 0.0021 0.0106 0.0103 0.0014 0.0049

mean 0.0245 0.0062 0.0009 0.0015 0.0014 0.0009 0.0016
std. dev. 0.0095 0.0020 0.0003 0.0022 0.0021 0.0002 0.0012

Test Function ZDT4
sMOPSO cMOPSO oMOPSO 0.1 0.2 0.3 0.4

best 0 0 96 96 96 89 94
median 0 0 88 83 81 63 77

SCC worst 0 0 35 50 55 27 11
mean 0 0 80 81 81 60 68

std. dev. 0 0 16.3 13 12.8 22.7 25.4
best 0.1541 0.4203 0.0009 0.0009 0.0009 0.0009 0.0009

median 0.7393 1.6404 0.0010 0.0010 0.0009 0.0010 0.0009
IGD worst 1.2865 4.1864 0.0010 0.0010 0.0010 0.0010 0.0013

mean 0.7591 1.8621 0.0010 0.0010 0.0009 0.0010 0.0010
std. dev. 0.3147 0.9357 0.00003 0.00003 0.00003 0.00004 0.00009

Table 1. Obtained results for all the test functions, for sMOPSO, cMOPSO, oMOPSO, and oMOPSO with fitness inheritance
(��� =0.1,0.2,0.3,0.4).

particle

leader

particle
new

particle

leader

new
particle

particle

leader

invalid

(a) (b)

Pareto
front

Figure 2. The two possible cases of fitness inheritance: (a) when the leader dominates the particle and (b) when the leader does not
dominate the particle.

Test Function ZDT1
SC(X, sMOPSO) cMOPSO) oMOPSO) 0.1) 0.2) 0.3) 0.4)

sMOPSO 0.00 0.90 0.35 0.25 0.35 0.38 0.41
cMOPSO 0.00 0.00 0.00 0.00 0.00 0.00 0.00
oMOPSO 0.08 0.95 0.00 0.22 0.36 0.46 0.41

0.1 0.08 0.94 0.45 0.00 0.46 0.51 0.52
0.2 0.06 0.94 0.29 0.24 0.00 0.38 0.40
0.3 0.05 0.95 0.21 0.16 0.28 0.00 0.32
0.4 0.05 0.95 0.28 0.16 0.31 0.36 0.00

Test Function ZDT2
SC(X, sMOPSO) cMOPSO) oMOPSO) 0.1) 0.2) 0.3) 0.4)

sMOPSO 0.00 0.00 0.00 0.00 0.00 0.00 0.00
cMOPSO 0.00 0.00 0.00 0.02 0.01 0.01 0.01
oMOPSO 0.00 0.21 0.00 0.28 0.34 0.28 0.47

0.1 0.00 0.21 0.31 0.00 0.39 0.29 0.51
0.2 0.00 0.21 0.26 0.25 0.00 0.24 0.44
0.3 0.00 0.21 0.35 0.32 0.37 0.00 0.48
0.4 0.00 0.21 0.18 0.15 0.22 0.17 0.00

Test Function ZDT3
SC(X, sMOPSO) cMOPSO) oMOPSO) 0.1) 0.2) 0.3) 0.4)

sMOPSO 0.00 0.75 0.13 0.14 0.19 0.20 0.18
cMOPSO 0.01 0.00 0.00 0.00 0.00 0.00 0.00
oMOPSO 0.23 0.92 0.00 0.28 0.40 0.44 0.38

0.1 0.25 0.92 0.41 0.00 0.49 0.53 0.45
0.2 0.22 0.92 0.26 0.22 0.00 0.38 0.31
0.3 0.22 0.92 0.20 0.17 0.29 0.00 0.26
0.4 0.23 0.92 0.26 0.22 0.34 0.39 0.00

Test Function ZDT4
SC(X, sMOPSO) cMOPSO) oMOPSO) 0.1) 0.2) 0.3) 0.4)

sMOPSO 0.00 1.00 0.00 0.00 0.00 0.00 0.00
cMOPSO 0.00 0.00 0.00 0.00 0.00 0.00 0.00
oMOPSO 0.00 0.00 0.00 0.38 0.32 0.54 0.42

0.1 0.00 0.00 0.21 0.00 0.24 0.48 0.33
0.2 0.00 0.00 0.25 0.36 0.00 0.53 0.39
0.3 0.00 0.00 0.11 0.15 0.12 0.00 0.20
0.4 0.00 0.00 0.17 0.24 0.21 0.40 0.00

Table 2. Obtained results for the test function ZDT4, for sMOPSO, cMOPSO, oMOPSO, and oMOPSO with fitness inheritance
(��� =0.1,0.2,0.3,0.4).

Test Function ZDT1
sMOPSO cMOPSO

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

smopso
true front

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

cmopso
true front

oMOPSO oMOPSO ��� =0.4

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

omopso pi=0.0
true front

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

omopso pi=0.4
true front

Test Function ZDT2
sMOPSO cMOPSO

 0.985

 0.99

 0.995

 1

 1.005

 1.01

-1 -0.5 0 0.5 1

"smopso2.dat"

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

cmopso
true front

oMOPSO oMOPSO � � =0.4

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

omopso pi=0.0
true front

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

omopso pi=0.4
true front

Figure 3. Pareto fronts obtained by sMOPSO, cMOPSO, oMOPSO, and oMOPSO with inheritance proportion of 0.4, for functions
ZDT1 y ZDT2.

Test Function ZDT3
sMOPSO cMOPSO

-0.5

 0

 0.5

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

smopso
true front

-0.5

 0

 0.5

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

cmopso
true front

oMOPSO oMOPSO ��� =0.4

-0.5

 0

 0.5

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

omopso pi=0.0
true front

-0.5

 0

 0.5

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

omopso pi=0.4
true front

Test Function ZDT4
sMOPSO cMOPSO

 1.73

 1.735

 1.74

 1.745

 1.75

 1.755

 1.76

 1.765

 1.77

-1 -0.5 0 0.5 1

"smopso4.dat"

 4.45

 4.46

 4.47

 4.48

 4.49

 4.5

 4.51

 4.52

 4.53

 4.54

 4.55

-1 -0.5 0 0.5 1

"cmopso4.dat"

oMOPSO oMOPSO � � =0.3

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

omopso pi=0.0
true front

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

omopso pi=0.3
true front

Figure 4. Pareto fronts obtained by sMOPSO, cMOPSO, oMOPSO, and oMOPSO with inheritance proportion of 0.4, for function
ZDT3, and with inheritance proportion of 0.3, for function ZDT4.

to the SCC measure to be represented by means of its corre-
sponding Pareto front in Figures 3 and 4. Thus, in functions
ZDT1, ZDT2 and ZDT3, we show the Pareto front corre-
sponding to the approach with � � = 0.4 and, in the case of
function ZDT4, the Pareto front corresponding to the ap-
proach with � � = 0.3. We can see in Figures 3 and 4 that
the approaches with inheritance do not lose the Pareto front
even in cases where the true Pareto front is not convex or
discontinuous. As we described in Section 3, we imple-
mented a simple mechanism (shown in Figure 2) in order
to avoid producing invalid particles in the cases of Pareto
fronts non-convex or discontinuous, this is the main reason
why our algorithm does not have problems with these types
of test functions.

Given the definition of the binary Set Coverage (SC)
measure, we will conclude that an approach � is relatively
better than the approach � , when
 ��,�� ."� 1��
���,*� .�� 1 .
In this way, from the results shown in Table 2, we can con-
clude that sMOPSO is relatively better than oMOPSO only
in function ZDT1, and that oMOPSO is relatively better
than sMOPSO in function ZDT3 and than cMOPSO in func-
tions ZDT1, ZDT2 and ZDT3. Since our algorithm has
some problems losing the extreme points of the Pareto fronts
(due to the use of the � -dominance in external archive), it is
unable to dominate the points generated by sMOPSO and
cMOPSO in functions ZDT2 and ZDT4.

On the other hand, our algorithm without inheritance
(oMOPSO) is relatively better than almost all the approaches
with fitness inheritance in all functions, except for the case
when ��� = 0.1. The approach with �J� = 0.1 is relatively bet-
ter than the approach without inheritance in three of the four
functions: ZDT1, ZDT2 and ZDT3. This conclusion agrees
with the results obtained with the unary measures. The only
function in which the algorithm without inheritance is rela-
tively better than all the approaches with fitness inheritance
is ZDT4. These results seem indicate that the fitness inher-
itance approach is more useful when the decision space of
the problem has a high dimension.

6. CONCLUSIONS AND FUTURE WORK

We have proposed an approach to incorporate the concept of
fitness inheritance to a real-coded MOPSO that we proposed
in some of our previous work. The proposed technique
was tested using several multi-objective test functions and
compared against two other PSO-based multi-objective al-
gorithms. From our results, we conclude that the efficiency
enhancement technique proposed in this paper reduces the
computational cost without decreasing the quality of the re-
sults in a significant way. Also, the fitness inheritance tech-
nique used in our approach is able to generate non-convex
and discontinuous Pareto fronts. On the other hand, the ob-
tained results seem indicate that the proposed enhancement

technique is more useful, that is, the quality of the results is
less affected, when the decision space is high-dimensional.
As part of our future work, we plan to explore alternative
ways to incorporate fitness inheritance so that we can have
a more important reduction in the number of evaluations at
the expense of a lower degradation in the quality of the re-
sults.

Acknowledgments. The first author acknowledges support
from CONACyT through a scholarship to pursue graduate
studies at CINVESTAV-IPN. The second author acknowl-
edges support from CONACyT project number 42435-Y.

7. REFERENCES

[1] Jian-Jung Chen, David E. Goldberg, Shinn-Ying Ho, and Ku-
mara Sastry. Fitness Inheritance in Multi-Objective Opti-
mization. In GECCO’2002, pages 319–326. Morgan Kauf-
mann Publishers, 2002.

[2] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and T. Me-
yarivan. A Fast and Elitist Multiobjective Genetic Algo-
rithm: NSGA–II. IEEE Transactions on Evolutionary Com-
putation, 6(2):182–197, April 2002.

[3] Els I. Ducheyne, Bernard De Baets, and Robert De Wulf. Is
Fitness Inheritance Useful for Real-World Applications? In
EMO 2003, pages 31–42. Springer. LNCS 2632, 2003.

[4] Marco Laumanns, Lothar Thiele, Kalyanmoy Deb, and
Eckart Zitzler. Combining Convergence and Diversity in
Evolutionary Multi-objective Optimization. Evolutionary
Computation, 10(3):263–282, 2002.

[5] Sanaz Mostaghim and Jürgen Teich. Strategies for Finding
Good Local Guides in Multi-objective Particle Swarm Opti-
mization (MOPSO). In 2003 IEEE Swarm Intelligence Sym-
posium Proceedings, pages 26–33, USA, 2003. IEEE Service
Center.

[6] Kumara Sastry, David E. Goldberg, and Martin Pelikan.
Don’t Evaluate, Inherit. In GECCO 2001, pages 551–558.
Morgan Kaufmann, 7-11 2001.

[7] Margarita Reyes Sierra and Carlos A. Coello Coello. Improv-
ing PSO-based Multi-objective Optimization using Crowd-
ing, Mutation and � -Dominance. In EMO 2005, pages 505–
519. Springer-Verlag, LNCS 3410, 2005.

[8] Robert E. Smith, B. A. Dike, and S. A. Stegmann. Fitness
Inheritance in Genetic Algorithms. In SAC ’95, pages 345–
350. ACM Press, 1995.

[9] Gregorio Toscano Pulido and Carlos A. Coello Coello. Us-
ing Clustering Techniques to Improve the Performance of a
Particle Swarm Optimizer. In GECCO 2004. Part I, pages
225–237. Springer-Verlag, LNCS Vol. 3102, 2004.

[10] Eckart Zitzler, Kalyanmoy Deb, and Lothar Thiele. Compar-
ison of Multiobjective Evolutionary Algorithms: Empirical
Results. Evolutionary Computation, 8(2):173–195, 2000.

[11] Eckart Zitzler and Lothar Thiele. Multiobjective Optimiza-
tion Using Evolutionary Algorithms—A Comparative Study.
In PPSN V, pages 292–301. Springer-Verlag, 1998.

