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Motivation

Most problems in nature have several (possibly conflicting)
objectives to be satisfied. Many of these problems are frequently
treated as single-objective optimization problems by transforming
all but one objective into constraints.
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What is a multiobjective optimization problem?

The Multiobjective Optimization Problem (MOP) (also
called multicriteria optimization, multiperformance or vector
optimization problem) can be defined (in words) as the problem of
finding (Osyczka, 1985):

a vector of decision variables which satisfies constraints and
optimizes a vector function whose elements represent the
objective functions. These functions form a mathematical
description of performance criteria which are usually in
conflict with each other. Hence, the term “optimize” means
finding such a solution which would give the values of all
the objective functions acceptable to the decision maker.
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A Formal Definition

The general Multiobjective Optimization Problem (MOP) can be
formally defined as:

Find the vector ~x∗ = [x∗1, x
∗
2, . . . , x

∗
n]T which will satisfy the m

inequality constraints:

gi(~x) ≥ 0 i = 1, 2, . . . ,m (1)

the p equality constraints

hi(~x) = 0 i = 1, 2, . . . , p (2)

and will optimize the vector function

~f(~x) = [f1(~x), f2(~x), . . . , fk(~x)]T (3)
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What is the notion of optimum

in multiobjective optimization?

Having several objective functions, the notion of “optimum”
changes, because in MOPs, we are really trying to find good
compromises (or “trade-offs”) rather than a single solution as in
global optimization. The notion of “optimum” that is most
commonly adopted is that originally proposed by Francis Ysidro
Edgeworth in 1881.
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What is the notion of optimum

in multiobjective optimization?

This notion was later generalized by Vilfredo Pareto (in 1896).
Although some authors call Edgeworth-Pareto optimum to this
notion, we will use the most commonly accepted term: Pareto
optimum.
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Definition of Pareto Optimality

We say that a vector of decision variables ~x∗ ∈ F is Pareto optimal
if there does not exist another ~x ∈ F such that fi(~x) ≤ fi(~x∗) for
all i = 1, . . . , k and fj(~x) < fj(~x∗) for at least one j.

Here, F denotes the feasible region of the problem (i.e., where the
constraints are satisfied).
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Definition of Pareto Optimality

In words, this definition says that ~x∗ is Pareto optimal if there
exists no feasible vector of decision variables ~x ∈ F which would
decrease some criterion without causing a simultaneous increase in
at least one other criterion. Unfortunately, this concept almost
always gives not a single solution, but rather a set of solutions
called the Pareto optimal set. The vectors ~x∗ correspoding to the
solutions included in the Pareto optimal set are called
nondominated. The plot of the objective functions whose
nondominated vectors are in the Pareto optimal set is called the
Pareto front.
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Pareto Dominance

A vector ~u = (u1, . . . , uk) is said to dominate ~v = (v1, . . . , vk)
(denoted by ~u � ~v) if and only if u is partially less than v, i.e.,
∀i ∈ {1, . . . , k}, ui ≤ vi ∧ ∃i ∈ {1, . . . , k} : ui < vi.
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Pareto Optimal Set

For a given MOP ~f(x), the Pareto optimal set (P∗) is defined as:

P∗ := {x ∈ F | ¬∃ x′ ∈ F ~f(x′) � ~f(x)}. (4)

CINVESTAV-IPN 2002



Carlos A. Coello Coello Introduction to Evolutionary Multiobjective Optimization

Pareto Front

For a given MOP ~f(x) and Pareto optimal set P∗, the Pareto front
(PF∗) is defined as:

PF∗ := {~u = ~f = (f1(x), . . . , fk(x)) | x ∈ P∗}. (5)
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Convexity

F

F

Figura 1: Examples of Convex Sets.
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Non Convexity

F F

Figura 2: Examples of Non-Convex Sets.
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Ideal Vector

Vector containing the decision variables corresponding to the
optima of the objective functions of the problems considering each
objective separately.
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Weak Dominance

A point ~x∗ ∈ F is a weakly nondominated solution if there is
no ~x ∈ F such that fi(~x) < fi(~x∗), for i = 1, . . . , k.
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Strong Dominance

A point ~x∗ ∈ F is a strongly nondominated solution if there is
no ~x ∈ F such that fi(~x) ≤ fi(~x∗), for i = 1, . . . , k and for at least
one value of i, fi(~x) < fi(~x∗).
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Links to Operations Research

In Operations Research, it is a common practice to differentiate
among attributes, criteria, objectives and goals:

Attributes: differentiating aspects, properties or
characteristics of alternatives or consequences.

Criteria: generally denote evaluative measures, dimensions or
scales against which alternatives may be gauged in a value or
worth sense.
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Links to Operations Research

Objectives: are sometimes viewed in the same way as criteria,
but may also denote specific desired levels of attainment or
vague ideals.

Goals: usually indicate either of the latter notions.

A distinction commonly made in Operations Research is to use the
term goal to designate potentially attainable levels, and objective to
designate unattainable ideals.
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Some Historical Highlights

As early as 1944, John von Neumann and Oskar Morgenstern
mentioned that an optimization problem in the context of a social
exchange economy was “a peculiar and disconcerting mixture of
several conflicting problems” that was “nowhere dealt with in
classical mathematics”.
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Some Historical Highlights

In 1951 Tjalling C. Koopmans edited a book called Activity
Analysis of Production and Allocation, where the concept of
“efficient” vector was first used in a significant way.

CINVESTAV-IPN 2002



Carlos A. Coello Coello Introduction to Evolutionary Multiobjective Optimization

Some Historical Highlights

The origins of the mathematical foundations of multiobjective
optimization can be traced back to the period that goes from 1895
to 1906. During that period, Georg Cantor and Felix Hausdorff laid
the foundations of infinite dimensional ordered spaces.
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Some Historical Highlights

Cantor also introduced equivalence classes and stated the first
sufficient conditions for the existence of a utility function.
Hausdorff also gave the first example of a complete ordering.

CINVESTAV-IPN 2002



Carlos A. Coello Coello Introduction to Evolutionary Multiobjective Optimization

Some Historical Highlights

However, it was the concept of vector maximum problem introduced
by Harold W. Kuhn and Albert W. Tucker (1951) which made
multiobjective optimization a mathematical discipline on its own.
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Some Historical Highlights

Kenneth J. Arrow did very important pioneering work during the
1950s, using the concept of admissible points and stating his
famous theorem on multicriteria decision making (now called
Arrow’s impossibility theorem).
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Some Historical Highlights

However, multiobjective optimization theory remained relatively
undeveloped during the 1950s. It was until the 1960s that the
foundations of multiobjective optimization were consolidated and
taken seriously by pure mathematicians when Leonid Hurwicz
generalized the results of Kuhn & Tucker to topological vector
spaces.
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Some Historical Highlights

Perhaps the most important outcome of the 1950s was the
development of the so-called Goal Programming, which was
introduced by Abraham Charnes and William Wager Cooper in
1957.
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Some Historical Highlights

The application of multiobjective optimization to domains outside
economics began with the work by Koopmans (1951) in production
theory and with the work of Marglin (1967) in water resources
planning.
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Some Historical Highlights

The first engineering application reported in the literature was a
paper by Zadeh in the early 1960s. However, the use of
multiobjective optimization became generalized until the 1970s.
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Current State of the Area

Currently, there are over 30 mathematical programming techniques
for multiobjective optimization. However, these techniques tend to
generate elements of the Pareto optimal set one at a time.
Additionally, most of them are very sensitive to the shape of the
Pareto front (e.g., they do not work when the Pareto front is
concave or when the front is disconnected).
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Why Evolutionary Algorithms?

Evolutionary algorithms seem particularly suitable to solve
multiobjective optimization problems, because they deal
simultaneously with a set of possible solutions (the so-called
population). This allows us to find several members of the Pareto
optimal set in a single run of the algorithm, instead of having to
perform a series of separate runs as in the case of the traditional
mathematical programming techniques. Additionally, evolutionary
algorithms are less susceptible to the shape or continuity of the
Pareto front (e.g., they can easily deal with discontinuous or
concave Pareto fronts), whereas these two issues are a real concern
for mathematical programming techniques.
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