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Motivation

Most problems in nature have several (possibly conflicting)

objectives to be satisfied. Many of these problems are frequently
treated as single-objective optimization problems by transforming

all but one objective into constraints.




What is a multiobjective optimization problem?

The Multiobjective Optimization Problem (MOP) (also
called multicriteria optimization, multiperformance or vector

optimization problem) can be defined (in words) as the problem of
finding (Osyczka, 1985):

a vector of decision variables which satisfies constraints and
optimizes a vector function whose elements represent the
objective functions. These functions form a mathematical
description of performance criteria which are usually in
conflict with each other. Hence, the term “optimize” means
finding such a solution which would give the values of all

the objective functions acceptable to the decision maker.




A Formal Definition

The general Multiobjective Optimization Problem (MOP) can be
formally defined as:
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What is the notion of optimum

in multiobjective optimization?

Having several objective functions, the notion of “optimum”
changes, because in MOPs, we are really trying to find good
compromises (or “trade-offs”) rather than a single solution as in
global optimization. The notion of “optimum” that is most
commonly adopted is that originally proposed by Francis Ysidro
Edgeworth in 188]1.




What is the notion of optimum

in multiobjective optimization?

This notion was later generalized by Vilfredo Pareto (in 1896).
Although some authors call Edgeworth-Pareto optimum to this
notion, we will use the most commonly accepted term: Pareto

optimum.




Definition of Pareto Optimality

We say that a vector of decision variables £* € F is Pareto optimal
if there does not exist another & € F such that f;(¥) < f;(&*) for
all i =1,...,k and f;(Z) < f;(Z*) for at least one j.




Definition of Pareto Optimality

In words, this definition says that x* is Pareto optimal if there
exists no feasible vector of decision variables £ € F which would
decrease some criterion without causing a simultaneous increase in
at least one other criterion. Unfortunately, this concept almost
always gives not a single solution, but rather a set of solutions
called the Pareto optimal set. The vectors £* correspoding to the
solutions included in the Pareto optimal set are called
nondominated. The plot of the objective functions whose
nondominated vectors are in the Pareto optimal set is called the
Pareto front.




Sample Pareto Front




Some Historical Highlights

As early as 1944, John von Neumann and Oskar Morgenstern
mentioned that an optimization problem in the context of a social
exchange economy was “a peculiar and disconcerting mixture of
several conflicting problems” that was “nowhere dealt with in
classical mathematics”.




Some Historical Highlights

In 1951 Tjalling C. Koopmans edited a book called Activity
Analysis of Production and Allocation, where the concept of
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“efficient” vector was first used in a significant way.




Some Historical Highlights

The origins of the mathematical foundations of multiobjective
optimization can be traced back to the period that goes from 1895
to 1906. During that period, Georg Cantor and Felix Hausdorfl laid
the foundations of infinite dimensional ordered spaces.




Some Historical Highlights

Cantor also introduced equivalence classes and stated the first
sufficient conditions for the existence of a utility function.

Hausdorff also gave the first example of a complete ordering.




Some Historical Highlights

However, it was the concept of vector maximum problem introduced
by Harold W. Kuhn and Albert W. Tucker (1951) which made

multiobjective optimization a mathematical discipline on its own.




Some Historical Highlights

Nevertheless, multiobjective optimization theory remained
relatively undeveloped during the 1950s. It was until the 1960s that
the foundations of multiobjective optimization were consolidated
and taken seriously by pure mathematicians when Leonid Hurwicz
generalized the results of Kuhn & Tucker to topological vector
spaces.




Some Historical Highlights

The application of multiobjective optimization to domains outside
economics began with the work by Koopmans (1951) in production
theory and with the work of Marglin (1967) in water resources

planning.




Some Historical Highlights

The first engineering application reported in the literature was a
paper by Zadeh in the early 1960s. However, the use of

multiobjective optimization became generalized until the 1970s.




Current State of the Area

NONLINEAR
MULTIOBJECTIVE
OPTIMIZATION

Currently, there are over 30 mathematical programming techniques
for multiobjective optimization. However, these techniques tend to
generate elements of the Pareto optimal set one at a time.
Additionally, most of them are very sensitive to the shape of the

Pareto front (e.g., they do not work when the Pareto front is

concave or when the front is disconnected).




Why Heuristics?

Heuristics seem particularly suitable to solve multiobjective
optimization problems, because they are less susceptible to the
shape or continuity of the Pareto front (e.g., they can easily deal
with discontinuous or concave Pareto fronts), whereas this is a real
concern for mathematical programming techniques. Additionally,
many current heuristics (e.g., evolutionary algorithms, particle
swarm optimization, etc.) are population-based, which means that
we can aim to generate several elements of the Pareto optimal set

in a single run.




Evolutionary Algorithms

We can consider, in general, two main types of multi-objective
evolutionary algorithms (MOEAs):

1. Algorithms that do not incorporate the concept of Pareto
dominance in their selection mechanism (e.g., approaches that

use linear aggregating functions).

2. Algorithms that rank the population based on Pareto
dominance. For example, MOGA, NSGA, NPGA, etc.




Evolutionary Algorithms

Historically, we can consider the existence of two main generations
of MOEAs:

1. First Generation: Characterized by the use of Pareto
ranking and niching (or fitness sharing). Relatively simple
algorithms. Other (more rudimentary) approaches were also
developed (e.g., linear aggregating functions). It is also worth
mentioning VEGA, which is a population-based (not
Pareto-based) approach.

. Second Generation: The concept of elitism is introduced in
two main forms: using (u + ) selection and using a secondary

(external) population.




Representative MOEAs (First Generation)

VEGA
MOGA
NSGA
NPGA




Vector Evaluated Genetic Algorithm (VEGA)

e Proposed by Schaffer in the mid-1980s (1984,1985).

e It uses subpopulations that optimize each objective separately.
The concept of Pareto optimum is not directly incorporated

into the selection mechanism of the GA.




Vector Evaluated Genetic Algorithm (VEGA)
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Figure 1: Schematic of VEGA selection.




Multi-Objective Genetic Algorithm (MOGA)

e Proposed by Fonseca and Fleming (1993).

e The approach consists of a scheme in which the rank of a
certain individual corresponds to the number of individuals in

the current population by which it is dominated.

e It uses fitness sharing and mating restrictions.




Nondominated Sorting Genetic Algorithm
(NSGA)

e Proposed by Srinivas and Deb (1994).

e It is based on several layers of classifications of the individuals.
Nondominated individuals get a certain dummy fitness value
and then are removed from the population. The process is

repeated until the entire population has been classified.

e To maintain the diversity of the population, classified
individuals are shared (in decision variable space) with their

dummy fitness values.




Niched-Pareto Genetic Algorithm (NPGA)

e Proposed by Horn et al. (1993,1994).

e It uses a tournament selection scheme based on Pareto
dominance. Two individuals randomly chosen are compared
against a subset from the entire population (typically, around
10% of the population). When both competitors are either
dominated or nondominated (i.e., when there is a tie), the
result of the tournament is decided through fitness sharing in
the objective domain (a technique called equivalent class

sharing is used in this case).




Representative MOEAs (Second Generation)

e SPEA and SPEA2

o NSGA-II
PAES, PESA and PESA 11
MOMGA and MOMGA II

The microGA for multiobjective optimization




The Strength Pareto
Evolutionary Algorithm (SPEA)

SPEA was introduced by Zitzler & Thiele (1999).

It uses an external archive containing nondominated solutions

previously found.

It computers a strength value similar to the ranking value used by

MOGA.

A clustering technique called “average linkage method” is used to

keep diversity.




The Strength Pareto
Evolutionary Algorithm 2 (SPEA2)

A revised version of SPEA has been recently proposed: SPEA?2
(Zitzler, 2001). SPEA2 has three main differences with respect to
its predecessor: (1) it incorporates a fine-grained fitness assignment
strategy which takes into account for each individual the number of
individuals that dominate it and the number of individuals by
which it is dominated; (2) it uses a nearest neighbor density
estimation technique which guides the search more efficiently, and
(3) it has an enhanced archive truncation method that guarantees

the preservation of boundary solutions.




The Nondominated Sorting
Genetic Algorithm IT (NSGA-II)

Deb et al. (2000,2002) proposed a new version of the
Nondominated Sorting Genetic Algorithm (NSGA), called
NSGA-II, which is more efficient (computationally speaking), it
uses elitism and a crowded comparison operator that keeps

diversity without specifying any additional parameters.




The Pareto Archived Evolution Strategy (PAES)

PAES was introduced by Knowles & Corne (2000).

It uses a (1+1) evolution strategy together with an external archive

that records all the nondominated vectors previously found.

It uses an adaptive grid to maintain diversity.




The Pareto Envelope-based
Selection Algorithm (PESA)

PESA was proposed by Corne et al. (2000). This approach uses a
small internal population and a larger external (or secondary)
population. PESA uses the same hyper-grid division of phenotype
(i.e., objective funcion) space adopted by PAES to maintain
diversity. However, its selection mechanism is based on the
crowding measure used by the hyper-grid previously mentioned.
This same crowding measure is used to decide what solutions to
introduce into the external population (i.e., the archive of

nondominated vectors found along the evolutionary process).




The Pareto Envelope-based
Selection Algorithm-I1 (PESA-II)

PESA-II (Corne et al., 2001) is a revised version of PESA in which
region-based selection is adopted. In region-based selection, the
unit of selection is a hyperbox rather than an individual. The
procedure consists of selecting (using any of the traditional
selection techniques) a hyperbox and then randomly select an

individual within such hyperbox.




The Multi-Objective Messy
Genetic Algorithm (MOMGA)

MOMGA was proposed by Van Veldhuizen and Lamont (2000).
This is an attempt to extend the messy GA to solve multiobjective

optimization problems.

MOMGA consists of three phases: (1) Initialization Phase, (2)
Primordial Phase, and (3) Juxtapositional Phase. In the
Initialization Phase, MOMGA produces all building blocks of a
certain specified size through a deterministic process known as
partially enumerative initialization. The Primordial Phase
performs tournament selection on the population and reduces the
population size if necessary. In the Juxtapositional Phase, the
messy GA proceeds by building up the population through the use
of the cut and splice recombination operator.




The Multi-Objective Messy
Genetic Algorithm-IT (MOMGA-II)

Zydallis et al. (2001) proposed MOMGA-II. In this case, the
authors extended the fast-messy GA, which consists of three
phases: (1) Initialization Phase, (2) Building Block Filtering, and
(3) Juxtapositional Phase. Its main difference with respect to the
original messy GA is in the two first phases. The Initialization
Phase utilizes probabilistic complete initialization which creates a
controlled number of building block clones of a specified size. The
Building Block Filtering Phase reduces the number of building
blocks through a filtering process and stores the best building

blocks found. The Juztapositional Phase is the same as in the
MOMGA.




The Micro Genetic Algorithm
for Multiobjective Optimization

Population Memory

Random

Population Replaceable Non-Replaceable

Fill in N
both parts ! |

of the ! Initial
population ! Population

memory ¢
- @ @
Selection

{

Crossover

{

Mutation

{

Elitism

{

New
Population

micro-GA

Filter

{

External
Memory




Current Trends in MOEASs

o After great success for almost 10 years, first generation
MOEASs have finally started to become obsolete in the
literature (NSGA, NPGA, MOGA and VEGA).

e From the late 1990s, second generation MOEASs are considered

the state-of-the-art in evolutionary multiobjective optimization
(e.g., SPEA, SPEA2, NSGA-II, MOMGA, MOMGA-II, PAES,
PESA, PESA II, microGA, etc.).




Current Trends in MOEASs

e Second generation MOEAs emphasize computational efficiency.

One of the main goals is to find ways around the computational

complexity of Pareto ranking (O(kM?), where k is the number

of objective functions and M is the population size) and

around the computational cost of niching (O(M?)).

Largely ignored by a significant number of researchers,
non-Pareto MOEASs are still popular in Operations Research
(e.g., in multiobjective combinatorial optimization), where they

have been very successful.




Current state of the literature (beginning of 2003)
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Citations by type of MOEA (mid-2002)
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of objective functions used (mid-2002)
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Alternative Heuristics

Simulated Annealing

Tabu Search

Ant System

Particle Swarm Optimization
Artificial Immune System

Cultural Algorithms




Simulated Annealing

Based on an algorithm originally proposed by Metropolis et al.
(1953) to simulate the evolution of a solid in a heat bath until it
reaches its thermal equilibrium.

Kirkpatrick et al. (1983) and Cerny (1985) independently pointed
out the analogy between the “annealing” process proposed by

Metropolis and combinatorial optimization and proposed the
so-called “simulated annealing algorithm”.




Simulated Annealing

1. Select an initial (feasible) solution sg
2. Select an initial temperature tg > 0
3. Select a cooling schedule C'S
4. Repeat
Repeat
Randomly select s € N(so) (IN = neighborhood structure)
6 = f(s) — f(so) (f = objective function)
If 6 <0 then sg <« s
Else
Generate random z (uniform distribution in the range (0,1))
If x < exp(—9/t) then sp « s
Until max. number of iterations IT'E'R reached
t— CS(1)

5. Until stopping condition is met




Simulated Annealing

SA generates local movements in the neighborhood of the current
state, and accepts a new state based on a function depending on
the current “temperature” ¢. The two main parameters of the
algorithm are ITE R (the number of iterations to apply the
algorithm) and C'S (the cooling schedule), since they have the most
serious impact on the algorithm’s performance.

Despite the fact that it was originally intended for combinatorial
optimization, other variations of simulated annealing have been

proposed to deal with continuous search spaces.




Simulated Annealing

The key in extending simulated annealing to handle multiple
objectives lies in determining how to compute the probability of

accepting an individual &’ where f(Z’) is dominated with respect to

F(Z).




Simulated Annealing

Some multiobjective versions of SA are the following:

Serafini (1994): Uses a target-vector approach to solve a bi-objective
optimization problem (several possible transition rules are

proposed).

Ulungu (1993): Uses an Loo-Tchebycheff norm and a weighted sum
for the acceptance probability.

Czyzak & Jaszkiewicz (1997,1998): Population-based approach that

also uses a weighted sum.

Ruiz-Torres et al. (1997): Uses Pareto dominance as the selection

criterion.

Suppapitnarm et al. (1999,2000): Uses Pareto dominance plus a

secondary population.



Some Applications of

Multiobjective Simulated Annealing

Design of a cellular manufacturing system (Czyzak, 1997).
Nurse scheduling (Jaszkiewicz, 1997).

Portfolio optimization (Chang, 1998).

Aircrew rostering (Luci¢ & Teodorovié, 1999).

Ship design (Ray, 1995).

Optimization of bicycle frames (Suppapitnarm, 1999).
Parallel machine scheduling (Ruiz-Torres, 1997)

Analog Filter Tuning (Thompson, 2001)




Tabu Search

In general terms, tabu search has the three following components
(Glover & Laguna, 1997):

e A short-term memory to avoid cycling.
e An intermediate-term memory to intensify the search.

e A long-term memory to diversify the search.




Tabu Search

. Select x € F (F represents feasible solutions)
. * =z (x* is the best solution found so far)
. ¢ = 0 (iteration counter)
. T =0 (T set of “tabu” movements)
I N(z) =T =0, goto step 4 (N (x) is the neighborhood function)
. Otherwise, c «+— c+1
Select n. € N(x) — T such that: n.(x) = opt(n(x) :n € N(x) —T)
opt() is an evaluation function defined by the user
. T +— ne(x)
If f(z) < f(«*) then * «— x
. Check stopping conditions:
Maximum number of iterations has been reached
N(z) — T = () after reaching this
step directly from step 2.
. If stopping conditions are not met, update T

and return to step 2




Tabu Search

The basic idea of tabu search is to create a subset T" of N/, whose
elements are called “tabu moves” (historical information of the
search process is used to create T'). Membership in 7' is conferred

either by a historical list of moves previously detected as

improductive, or by a set of tabu conditions (e.g., constraints that

need to be satisfied). Therefore, the subset T' constrains the search
and keeps tabu search from becoming a simple hillclimber. At each
step of the algorithm, a “best” movement (defined in terms of the
evaluation function opt()) is chosen. Note that this approach is
more aggressive than the gradual descent of simulated annealing.




Tabu Search

Tabu search tends to generate moves that are in the area
surrounding a candidate solution. Therefore, the main problem
when extending this technique to deal with multiple objectives is
how to maintain diversity so that the entire Pareto front can be

generated. The proper use of the historial information stored is

another issue that deserves attention.




Tabu Search

Some multiobjective versions of tabu search are the following:

e Hansen (1997): MOTS*, which uses a A-weighted Tchebycheff

metric.

e Gandibleux et al. (1997): MOTS, which is based on the use of

an utopian reference point.

e Hertz et al. (1994): Proposed 3 approaches (weighted sum of

objectives, lexicographic ordering and the e-constraint method).




Some Applications of
Multiobjective Tabu Search

e Resource constrained project scheduling (Viana and Pinho de
Sousa, 2000).

e Flowshop scheduling (Marett and Wright, 1996).

e Cell formation problems (Hertz et al., 1994).




Ant System

The Ant System (AS) is a meta-heuristic inspired by colonies of
real ants, which deposit a chemical substance on the ground called
pheromone (Dorigo, 1999). This substance influences the behavior
of the ants: they tend to take those paths where there is a larger
amount of pheromone. Pheromone trails can thus be seen as an
indirect communication mechanism among ants. From a computer
science perspective, the AS is a multi-agent system where low level
interactions between single agents (i.e., artificial ants) result in a
complex behavior of the entire ant colony.




Ant System

The AS was originally proposed for the traveling salesman problem
(TSP), and most of the current applications of the algorithm
require the problem to be reformulated as one in which the goal is
to find the optimal path of a graph. A way to measure the distances

between nodes is also required in order to apply the algorithm.




Ant-Q

Gambardella and Dorigo (1995) realized the AS can be interpreted
as a particular kind of distributed learning technique and proposed
a family of algorithms called Ant-Q. This family of algorithms is
really a hybrid between Q-learning and the AS. The algorithm is
basically a reinforcement learning approach with some aspects

incrementing its exploratory capabilities.




Ant System and Ant-Q

Some multiobjective versions of AS and Ant-Q are the following:

e Mariano and Morales (1999): proposed Multi-Objective Ant-Q
(MOAQ), which uses lexicographic ordering.

e Gambardella et al. (1999): proposed the use of two ant colonies (one

for each objective), and applied lexicographic ordering.

e Iredi et al. (2001): proposed a multi colony approach to handle the

two objectives of a single machine total tardiness problem.

e Gagné et al. (2001): proposed an approach in which the heuristic
values used to decide the movements of an ant take into

consideration several objectives.




Some Applications of
Multiobjective Ant System or Ant-Q

Optimization of a water distribution irrigation network
(Mariano and Morales, 1999).

Vehicle routing problems (Gambardella et al., 1999).
Single machine total tardiness problem (Iredi et al., 2001).
Industrial scheduling (Gravel et al. 2001).

Reliability optimization (Shelokar et al., 2002).




Particle Swarm Optimization

Kennedy and Eberhart (1995) proposed an approach called
“particle swarm optimization” (PSO) inspired by the choreography
of a bird flock. The idea of this approach is to simulate the
movements of a group (or population) of birds which aim to find
food. The approach can be seen as a distributed behavioral
algorithm that performs (in its more general version)
multidimensional search. In the simulation, the behavior of each
individual is affected by either the best local (i.e., within a certain
neighborhood) or the best global individual.




Particle Swarm Optimization

It is worth mentioning that PSO is an unconstrained search
technique. Therefore, it is also necessary to develop an additional
mechanism to deal with constrained multiobjective optimization
problems. The design of such a mechanism is also a matter of

current research even in single-objective optimization (see for
example (Ray, 2001)).




Particle Swarm Optimization

. Fori=1to M (M = population size)
Initialize P[i] randomly
(P is the population of particles)
Initialize V'[i] = 0 (V = speed of each particle)
Evaluate P[i]
GBEST = Best particle found in P[i]
. End For
. Fori=1to M
PBESTS[i| = PJi]
(Initialize the “memory” of each particle)
. End For




Particle Swarm Optimization

5. Repeat
Fori=1to M
V0i] =w x V[i] + C1 X Ry X (PBESTS[i] — P[i])
+Co X Ra X (PBESTS|[GBEST] — PJi])
(Calculate speed of each particle)
(W = Inertia weight, C;1 & C2 are positive constants)
(R1 & Rz are random numbers in the range [0..1])
POP[i]| = Pli] + V[i]
If a particle gets outside the pre-defined hypercube
then it is reintegrated to its boundaries
Evaluate P[i]
If new position is better then PBESTS[i] = PJi]
GBEST = Best particle found in P|i]
End For
6. Until stopping condition is reached




Particle Swarm Optimization

To extend PSO for multiobjective optimization, it is necessary to
modify the guidance mechanism of the algorithm such that
nondominated solutions are considered as leaders. Note however,
that it’s important to have a diversity maintenance mechanism.
Also, an additional exploration mechanism (e.g., a mutation
operator) may be necessary to generate all portions of the Pareto

front (mainly in disconnected fronts).




Particle Swarm Optimization

Some multiobjective versions of particle swarm optimization are

the following:

e Moore & Chapman (1999): Based on Pareto dominance. The
authors emphasize the importance of performing both an individual
and a group search (a cognitive component and a social component).

No scheme to maintain diversity is adopted.

Ray & Liew (2002): Uses Pareto dominance and combines concepts
of evolutionary techniques with the particle swarm. The approach
uses crowding to maintain diversity and a multilevel sieve to handle

constraints.




Particle Swarm Optimization

e Parsopoulos & Vrahatis (2002): Uses an aggregating function (three
types of approaches were implemented: a conventional linear
aggregating function, a dynamic aggregating function and the
bang-bang weighted aggregation approach (Jin, 2001) in which the
weights are varied in such a way that concave portions of the Pareto

front can be generated).

Hu & Eberhart (2002): Only one objective is optimized at a time
using a scheme similar to lexicographic ordering. Note that
lexicographic ordering tends to be useful only when few objective
functions are used (two or three), and it may be sensitive to the

ordering of the objectives.




Particle Swarm Optimization

e Coello & Lechuga (2002): Uses Pareto dominance and a secondary
population to retain the nondominated vectors found along the
search process. The approach is very fast and has performed well
compared to other techniques considered representative of the

state-of-the-art in evolutionary multiobjective optimization.




Particle Swarm Optimization

e Fieldsend & Singh (2002): Also uses Pareto dominance and a
secondary population. However, in this case, a data structure called
“dominated trees” is used to handle an unconstrained archive, as to
avoid the truncation traditionally adopted with MOEAs. A

mutation operator (called “turbulence”) is also adopted.




Some Applications of

Multiobjective Particle Swarm Optimization

It has been used only in test functions taken from the evolutionary
multiobjective optimization literature and from the engineering

optimization literature.




Artificial Immune System

Computationally speaking, the immune system is a highly parallel
intelligent system that is able to learn and retrieve previous
knowledge (i.e., it has “memory”) to solve recognition and
classification tasks. Due to these interesting features, several
researchers have developed computational models of the immune

system and have used it for a variety of tasks.




Artificial Immune System

There are several computational models of the immune system,

from which the main ones are the following:
e Immune network theory.
e Negative selection.

e Clonal selection theory




Artificial Immune System

The main issues to extend an artificial immune system to deal with
multiple objectives are how to influence the propagation of
antibodies (i.e., how to couple the Pareto selection mechanism) and
how to maintain diversity. The use of a secondary population may

also be useful, if possible in the model adopted.




Artificial Immune System (fitness scoring)

Repeat
1. Select an antigen A from PA
(PA = Population of Antigens)
2. Take (randomly) R antibodies from PS
(PS = Population of Antibodies)
3. For each antibody r € R, match it against
the selected antigen A
Compute its match score (e.g., using Hamming distance)
4. Find the antibody with the highest match score
Break ties at random
5. Add match score of winning antibody to its fitness

Until maximum number of cycles is reached




Artificial Immune System

There have been very few attempts to extend an artificial immune

system for multiobjective optimization:

e Yoo & Hajela (1999): Use of a linear aggregating function combined

with the fitness scoring function previously indicated.

e Kurapati & Azarm (2000): Hybridization of an artificial immune

system with a multiobjective evolutionary algorithm.

e Cui et al. (2001): Another hybrid approach that uses entropy to
maintain diversity.




Artificial Immune System

e Anchor et al. (2002): Adopt both lexicographic ordering and
Pareto-based selection in an evolutionary programming algorithm
used to detect attacks with an artificial immune system for virus

and computer intrusion detection.

e Coello and Cruz (2002): Extend a clonal selection algorithm to

handle multiple objectives. A secondary population is adopted.




Some Applications of Multiobjective

Artificial Immune Systems

e Structural optimization (Yoo & Hajela, 1999).
e Computer security (Anchor et al., 2002).

e Multidisciplinary design optimization (Kurapati & Azarm,
2000).




Cultural Algorithms

Some social researchers have suggested that culture might be
symbolically encoded and transmitted within and between
populations, as another inheritance mechanism. Using this idea,
Reynolds (1994) developed a computational model in which cultural
evolution is seen as an inheritance process that operates at two

levels: the micro-evolutionary and the macro-evolutionary levels.




Cultural Algorithms

At the micro-evolutionary level, individuals are described in terms
of “behavioral traits” (which can be socially acceptable or
unacceptable). These behavioral traits are passed from generation
to generation using several socially motivated operators. At the
macro-evolutionary level, individuals are able to generate “mappa”,
or generalized descriptions of their experiences. Individual mappa
can be merged and modified to form “group mappa” using a set of
generic or problem specific operators. Both levels share a

communication link.




Cultural Algorithms (pseudo-code)

. t =0 (t = iteration counter)
. Initialize POP(0) (POP = Population)
. Initialize BELF(0) (BELF = Belief Network)
. Initialize CHAN(0) (CHAN = Communication Channel)
. Evaluate POP(0)
6. t=1
Repeat
Communicate (POP(0), BELF(t))
Adjust (BELF(t))
Communicate (BELF(t), POP(t))
Modulate Fitness (BELF(t), POP(t))
t<—t+1
Select POP(t) from POP(t — 1)
Evolve POP(t)
Evaluate POP(t)
Until Stopping Condition is Reached




Cultural Algorithms

It is possible to extend a cultural algorithm to multiobjective
optimization problems if nondominance is incorporated in the

acceptance mechanism of the approach.

The approach could work in a similar way to some proposals to
extend the ant system to handle multiple objectives. In this case,
an individual’s cultural component could lead it to a local
nondominated solution, and the global mechanism of the approach
(intended for sharing group’s solving experiences and behaviors)

could lead the population towards global nondominated solutions.




Cultural Algorithms

The same acceptance mechanism could incorporate additional
criteria to encourage a smooth distribution of nondominated
solutions (e.g., make unacceptable a nondominated solution
generated in a region of the search space that is already too densely

populated).




Cultural Algorithms

There are only 2 known efforts to use cultural algorithms to solve

multiobjective optimization problems:

1. The shell available at:
http://zeus.cs.wayne.edu/ " sms/caep/cultural.html

However, in this shell a simple linear combination of weights is used

to aggregate multiple objectives into a single scalar value.

2. The algorithm (based on Pareto dominance and using a secondary

population) presented at this conference (Coello & Landa, 2003).




Some Applications of
Multiobjective Cultural Algorithms

Only test functions and some engineering optimization problems (Coello
& Landa, 2003a).

The main motivation for using cultural algorithms in multiobjective
optimization should be to reduce computational cost. The use of domain
knowledge extracted during the evolutionary process should allow faster
convergence rates, but no proposals in that direction are currently

available.




Statistics of alternative heuristics (mid-2002)

Number of Publications

AS DR MA
Type of Heuristic

Figure 2: The following labels are used: SA = Simulated Annealing, TS =
Tabu Search, AS = Ant System, DR = Distributed Reinforcement Learning,
MA = Memetic Algorithm, HY = Hybrid techniques, PS = Particle Swarm
Optimization.




Promising areas of future research

e Incorporation of user’s preferences.

e Emphasis on efficiency (alternative data structures and clever

algorithms that minimize Pareto dominance checkings).

e More test functions and metrics.




Promising areas of future research

More theoretical studies (convergence, mathematical models,
etc.).

New approaches (hybrids with other heuristics) and extensions
of alternative heuristics (e.g., scatter search, cultural

algorithms, reinforcement learning, etc.).
New applications.

What to expect for the third generation?




Promising areas of future research

e Tackling dynamic (multiobjective) test functions, handling

uncertainty and high epistasis.

Answering fundamental questions such as: what makes difficult
a multiobjective optimization problem for an EA? Can we
really produce reliable metrics for multiobjective optimization?
Can we design robust MOEAs? Is there a way around the
dimensionality curse in multiobjective optimization? Can we

benefit from coevolutionary schemes?




To know more about evolutionary

multiobjective optimization

Please visit our EMOO repository located at:
http://delta.cs.cinvestav.mx/ " ccoello/EMOO
with mirrors at:

http://www.jeo.org/emo

http://www.lania.mx /" ccoello/EMOO




To know more about evolutionary

multiobjective optimization

Complete List of References
in alphabetical order

Books
Book Chapters
Joumal Papers
Conference Papers
Technical Reports
Masters Theses
PhD Theses
Researchers
Software
Test Functions and Problems
Events
Miscellaneous

Other links of interest




To know more about evolutionary

multiobjective optimization

The EMOO repository currently contains:
e Over 1230 bibliographic references including 50 PhD theses
e Contact info of 50 EMOO researchers

e Public domain implementations of SPEA, NSGA, NSGA-II,
the microGA, MOPSO and PAES, among others.




To know more about evolutionary

multiobjective optimization

zzzzzzzz . Lamont

Evolutionary
Algorithms

for Solving
Multi=Objective
Problems

You can consult the following book recently published:

Carlos A. Coello Coello, David A. Van Veldhuizen and Gary B.
Lamont, Evolutionary Algorithms for Solving
Multi-Objective Problems, Kluwer Academic Publishers, New
York, May 2002, ISBN 0-3064-6762-3.




