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Abstract

This paper proposes an approach, called Multi-
objective Algorithm for Dynamic Environments
(MADE), which extendes Fonseca and Fleming’s
MOGA (with an external archive) so that it can
deal with dynamic environments. MADE in-
cludes two techniques to maintain diversity and
also uses specialized functions that implements
the dynamism required. In order to validate
MADE, we defined a dynamic version of a static
test problem (with 3 objectives) previously pro-
posed in the specialized literature. The prelimi-
nary results obtained indicate that the proposed
approach provides an acceptable response to the
type of changes studied.

1 Introduction

In the context of single-objective optimization,
many real-world problems are dynamic in nature.
If there is a change over time in a certain problem,
either because the objective function changes or
because some of its constraint changes (or both),
then evidently the global optimum changes as
well. In order to deal with this type of prob-
lems, it is necessary to have heuristics that can
adapt quickly enough to any changes. Given that
adaptation in nature is a continuous process, the
use of evolutionary algorithms to deal with non-
stationary environments seems a natural choice.
However, note that in practice evolutionary al-
gorithms tend to converge to a stationary point
(i.e., local optimum) over time, losing the diver-
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sity of the population necessary to explore the
search space. Once this happens, an evolution-
ary algorithm loses its capability to adapt to any
changes in the environment. Thus, the use of
good mechanisms to maintain diversity is critical
when dealing with dynamic functions.

The use of evolutionary algorithms for dealing
with non-stationary (or dynamic) environments
has received increasing attention from researchers
[1, 2, 3]. However, the definion of dynamic multi-
objective test functions and algorithms has been
the subject of very little work in the special-
ized literature [4]. This paper provides a prelimi-
nary study regarding the use of a multi-objective
evolutionary algorithm in dynamic environments.
Unlike the work of Farina et al. [4], in our case, we
don’t focus our research on dynamic control prob-
lems nor on the design of dynamic test functions.
Instead, the focus of our work is to study the be-
havior of relatively simple mechanisms to respond
to dynamic changes. Such mechanisms are incor-
porated into a well-known multi-objective evolu-
tionary algorithm (Fonseca and Fleming’s MOGA
[5]) aiming to provide some preliminary insights
regarding the possible challenges that dynamic
functions present for current MOEAs.

The remainder of this paper is organized as fol-
lows. In Section 2, we provide a brief introduction
to optimization in non-stationary environments
both in the single-objective and in the multi-
objective cases. Section 3 describes our proposed
approach. In Section 4, we provide the test func-
tion adopted for our study. Section 5 describes
the performance measures adopted in our study.
Section 6 describes our experiments and provides
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a discussion of our findings. Finally, Section 8
provides our conclusions and some possible paths
of future research.

2 Optimization in Non-
stationary Environments

One possible approach to deal with dynamic func-
tions is to treat each change as a new optimization
problem that has to be solved from scratch [6]. Tt
should be obvious that this sort of approach is
impractical in many cases, because disregarding
previous information from the problem will cer-
tainly increase the computational cost to solve it.
Moreover, if the change is small, one would as-
sume that the new solution will be similar to the
previous one. Thus, it is desirable to have op-
timization algorithms capable of adapting solu-
tions to a dynamic (i.e., non-stationary) environ-
ment, reusing information obtained in the past.
In single-objective dynamic problems, as evolu-
tion progresses, different environments emerge,
which must be optimized. Thus, the main goal
is to find a set of points such that each of them
satisfies each of the existing environments. The
same situation arises when dealing with multiob-
jective optimization problems, only that in this
case, the goal is not to find a single solution for
each environment, but a set of them. Based on
the previous discussion, we will denote as P*(t)
and PF*(t) to the Pareto optimal set and the
Pareto front, respectively, both defined at time ¢.

Two issues are of particular importance when
dealing with dynamic environments: (1) the abil-
ity of an approach to detect that a change has
occurred and (2) the proper reaction (i.e., the ve-
locity of the response) to those changes. In the
context of dynamic multiobjective optimization,
we will call environment both to decision variable
space and to objective function space. So, when
we refer to changes in the environment, this could
be in either of these spaces or in both. Farina et
al. [4] proposed several types of changes that can
be produced in dynamic multiobjective optimiza-
tion:

e Type I: The Pareto optimal set P* changes,
while the Pareto front PF™* does not.

e Type II: Both P* and PF* change.
e Type III: P* does not change but PF™* does.

e Type IV: The problem dynamically
changes, but neither P* nor PF* change.
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The change of Type IV is not of interest for
us for obvious reasons. For the work reported in
this paper, we considered only changes of Type
II1, because what changes is the location of the
true Pareto front. Although the Pareto optimal
set does not need to be changed for such prob-
lems to remain on the new PF™, there may be an
effect on the distribution of the solution on the
new PF* for the old solutions [4]. Thus, we im-
plemented random changes as defined in [1] (i.e.,
each change does not depend from the previous
change nor from time). Note that in this case,
if the change is too large, the new problem to
be optimized will be completely different to the
previous one. It is worth noticing that we won’t
deal with the automatic detection of the changes,
but only the reaction of the algorithm to such
changes. Thus, we assume in this work that it is
known that a change in the environment has oc-
curred, since they are systematic (i.e., the changes
are performed at certain intervals defined in terms
of a number of generations).

3 Proposed Approach

The approach proposed in this paper is called
Multiobjective Algorithm for Dynamic Environ-
ments (MADE), and it consists of an extension of
Fonseca and Fleming’s MOGA [5] with an exter-
nal archive. The main focus of this work was to
experiment with a relatively conventional multi-
objective evolutionary algorithm extended with
special diversity maintenance mechanisms that
allow it to adapt to changes in the enviroment.

MADE keeps the basic characteristics from
MOGA but adds specialized functions that im-
plement the dynamism required. One of the few
changes to MOGA is that we have eliminated its
mating restrictions. This is mainly due to the fact
that there is no clear consensus regarding the use-
fulness of mating restrictions [7]. Furthermore,
MADE includes two techniques to maintain diver-
sity and we considered unnecessary to introduce
this additional mechanism. MADE uses real-
numbers encoding, proportional selection, one-
point crossover and uniform mutation.

We use two mechanisms to maintain diversity:

e Recrudescence: This approach was pro-
posed in [8] and it consists of macromuta-
tions. The approach increases both recombi-
nation and mutation probabilities of a por-
tion of the population. The operator is ap-
plied at each generation with a certain prob-
ability (precro) and produces a radical phe-
notypic reorganization of the individuals over
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1.t=0

2. Initialize (P(0)) and Empty_External File()
3. Evaluate (P(0), F(0))

4. while (t < Num_max_gen) do

d. t=t+1

6. New_Generation (P(t), P'(t))
7. P(t) = P'(t)

8. Evaluate (P(t), F(t))

9. Elistism ()

10. if (Change_Function (t))

11. Statistical_Report()

12. Elitist_Set_to_External File()
13. Clean_Elitist_Set/()

14. Function_go_to_Change (F'(t), F'(¢))
15. F(t)=F'(¥)

16. Evaluate (P(t), F'(t))

17. Elistim ()

18. Insert_Random_Inmigrants()
19. Evaluate (P(t), F(t))

20. Elitism()

21. end if

22. end while
Figure 1: General outline of our MADE approach

which it operates. Individuals to which the
operator is applied are randomly selected
(adopting a uniform distribution).

e Random Immigrants: This idea was pro-
posed in [9, 10]. The approach consists of
replacing a percentage of the population by
randomly generated individuals. The tech-
nique is applied only when there is a change
in the environment.

3.1 Pseudocode of our MADE

Once we initialize the main and secondary popu-
lations (line 2), the main population is evaluated
with the base function F'(0) (line 3). The algo-
rithm enters a loop (line 4) that is executed dur-
ing a certain number of generations. Such a num-
ber is determined based on the number of changes
that the environment experiments, and the gen-
erational interval between them. In the proce-
dure New_Generation, for each pair of individu-
als selected as parents, the recombination opera-
tor is invoked. Such a recombination operator in-
cludes the mutation operator, which is used with
a low probability if the recrudescence operator is
not applied. Otherwise, the recrudescence opera-
tor (macromutation) is invoked and the mutation
and recombination probabilities are incremented.
Once the next population P'(t) has been gener-
ated, it replace to the current P(t) and is evalu-
ated with the current F'(¢) (line 8), and we apply
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elitism (line 9). The procedure elitism takes
each nondominated individual from the popula-
tion and verifies if it is not dominated with re-
spect to the elistist set (which is the set of all the
solutions that are nondominated with respect to
all the solutions generated so far). Should that be
the case, the individual is inserted in the elitist
set. If during this checking, an individual in the
elitist set is dominated by an individual from the
current population, then the dominated individ-
ual is removed from the elitist set.

The function Change Function (line 10) de-
termines if it is necessary to produce a change
in the environment in the current generation.
This is done by checking if the current genera-
tion is a multiple of the number of generations
between changes that was provided as an input
to the algorithm. The changes in the environ-
ment are produced at constant intervals (defined
in terms of a certain number of generations) dur-
ing the evolutionary process. Each time the en-
vironment is about to change, the correspond-
ing statistics are reported (line 11). Such statis-
tics include the number of nondominated indi-
viduals, ESS, etc. The nondominated solutions
found so far (and temporarily retained in mem-
ory) are dumped into an external archive (line
12). Then, the elitist set is emptied, since the ob-
jective functions stored within do not correspond
to the new function any more (line 13). The
function Function_go_to_Change is responsible
for introducing changes in the environment. The
changes implemented are both ascending and de-
scending displacements in all the objective func-
tions or some of them. This is determined by
the user (line 14). The old objective function is
replaced by the new one (line 15) and the popula-
tion is evaluated using the new objective function
(line 16). We then apply elitism (line 17) so that
we can retain the nondominated vectors present
in the population. Next, a percentage of the pop-
ulation is replaced by individuals randomly gen-
erated (line 18). The individuals selected to be
replaced are those dominated by some other indi-
vidual in the population. In case the number of
individuals to be replaced is less than the num-
ber of individuals that are dominated, then we
replace as many nondominated individuals as nec-
essary until completing the (pre-defined) percent-
age. It is worth noticing that it is irrelevant to
lose nondominated individuals from the popula-
tion, since they have already been stored in the
secondary population (line 20). We then evalu-
ate again the population (with the new inserted
individuals) and we apply elitism all over again.
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4 Test Function

In order to validate our proposed approach, we
introduce a dynamic version of a well-known test
problem (DTLZ2 [11]) which, in its static version,
has been used to validate multi-objective evolu-
tionary algorithms. This function was chosen be-
cause it is scalable both in decision variable space
and in objective function space. Such scalability
facilitates to study the capability of an algorithm
to react to changes in both spaces. Although
other test functions have been adopted to vali-
date our approach, we chose to include only one
to allow a more detailed analysis of the behavior
of the mechanisms proposed.

DTLZ2: Min (fi(z), fo(z), f3(x)), where:
i) = (1 + glas,24))cos(wr7/2)cos(wam/2).
f2(x) = (14+g(x3,24))cos(x17/2)sin(x27/2), and
fa(x) = (1 + g(ws, z4))sin(z17/2),

with 0 < @; < ;i =4 and g(z) = Y, . (2 —
0.5)2.

On this base function, all objective functions take
non-negative values and the desired front is the
first quadrant of a sphere of radius one. The
dynamic environment is generated by translating
the base function DTLZ2 along a linear trajec-
tory according to [12]:

DTLZ2 Dyn(z,t) = DTLZ2(z) + 6(2)

where t € Ny denotes time (generation number).
The displacement of the function is determined by
function §(¢) = (81(¢), d2(t), 03(¢)) and it depends
on the update frequency of the function (i.e., the
number of generations between changes) and the
severity s (a factor that determines the length of
the function displacement).

For an ascending linear displacement, we have:

61(0) = 62(0) = d5(0) = 0

[ 6;(t) +s; if (t+1) mod interval = 0
o(t+1) = { 8;(t) otherwise
(1)

where 4 is the objective function number to be
changed, interval is the number of generations
between changes and s; is the severity degree of
the displacement of f;.

For a linear descending displacement, we have:

01(0) = amount_of _change * s,
02(0) = amount_of _change  so
05(0) = amount_of _change * s3

_ [ 6i(t) —s; if (t+ 1) mod interval =0
o(t+1) = { 8;(t) otherwise
(2)
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where i is index of the objective function to
be changed, interval is the number of gener-
ations allowed between changes, s; is the de-
gree of severity of the displacement of f; and
amount_of _change is the number of changes that
the environment will experiment.

If the severity is too high, then the sequence of
problems to be optimized won’t share anything
in common. This would be similar to solving
completely different problems by separate. On
the contrary, if the severity is small, there could
be no perceptible difference between two consecu-
tive changes and this can be considered as a non-
dynamic problem (i.e., it could be treated as a
static problem and one could build robust solu-
tions for such problem [1]). As a consequence,
the severity of the changes produced in our ex-
periments is such that the set of feasible solutions
between changes gets partially overlapped.

5 Performance Measures

It is obviously desirable that our multi-objective
evolutionary algorithm (MOEA) is able to reach
(either in static or dynamic environments) the
true Pareto front of a problem with a good spread
of points. In order to evaluate the performance
of our approach, we adopted the following perfor-
mance measures:

1. Unsuccessful Counting (USCC): We de-
fine this measure based on the idea of the
Error Ratio metric proposed in [13] which in-
dicates the percentage of solutions (from the
nondominated vectors found so far) that are
not members of the true Pareto optimal set.
In this case, we count the number of vectors
(in the current set of nondominated vectors
available) that are not members of the Pareto
optimal set: USCC = 3" u;, where n is
the number of vectors in the current set of
nondominated vectors available; u;, = 1 if
vector 4 is not a member of the Pareto opti-
mal set, and u; = 0 otherwise. It should then
be clear that USCC = 0 indicates an ideal
behavior, since it would mean that all the
vectors generated by our algorithm belong
to the true Pareto optimal set of the prob-
lem. For a fair comparison, when we use this
measure, all the algorithms should limit their
final number of non-dominated solutions to
the same value.

2. Inverted Generational Distance (IGD):
The concept of generational distance was in-
troduced by Van Veldhuizen [13] as a way
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of estimating how far are the elements in the
Pareto front produced by our algorithm from
those in the true Pareto front of the problem.

2%

This measure is defined as: GD = =
where n is the number of nondominated vec-
tors found by the algorithm being analyzed
and d; is the Euclidean distance (measured
in objective space) between each of these
and the nearest member of the true Pareto
front. It should be clear that a value of
GD = 0 indicates that all the elements gen-
erated are in the true Pareto front of the
problem. Therefore, any other value will
indicate how “far” we are from the global
Pareto front of our problem. In our case,
we implemented an “inverted” generational
distance measure (IGD) in which we use as
a reference the true Pareto front, and we
compare each of its elements with respect to
the front produced by an algorithm. In this
way, we are calculating how far are the ele-
ments of the true Pareto front, from those in
the Pareto front produced by our algorithm.
Computing this “inverted” generational dis-
tance value reduces the bias that can arise
when an algorithm didn’t fully cover the true
Pareto front.

. Efficiently Spaced Set (ESS): Here, one
desires to measure the spread (distribution)
of vectors throughout the nondominated vec-
tors found so far. Since the “beginning”
and “end” of the current Pareto front found
are known, a suitably defined metric judges
how well the solutions in such front are dis-
tributed. Schott [14] proposed such a met-
ric measuring the range (distance) variance
of neighboring vectors in the nondominated
vectors found so far. This metric is defined
as:

5= |- S@-dr,  ®

n—1~4%
i=1

where d; = min (| f{(Z) - f{ (@) | + | f3(2) -
BE D+ | fE@- @) ] i5=1....n,
d is the mean of all d;, and n is the num-
ber of nondominated vectors found so far.
A value of zero for this metric indicates all
members of the Pareto front currently avail-
able are equidistantly spaced.

. Number of Nondominated Individuals
per Environment (NNIE): This measure is
self-explanatory.
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1. Average Unsuccessful Counting
(AUSCC): Average of the unsuccessful
counting values of the population in the
generation just before the change. It is
defined as:

AUSCC = (1/k) Y5, UsC;

where k is the number of changes in the envi-
ronment, USCC} is the unsuccessful count-
ing in the environment j.

2. Average Inverted Generational Dis-
tance (AIGD): The average of the genera-
tional distance values of the population at
the generation just before the change. It is
defined by:

AIGD = (1/k) ¥5_, IGD;

where k is the number of changes in the envi-
ronment, IGD; is the generational distance
in the environment j.

3. Average Efficiently Spaced Set (AESS):
The average of the ESS values of the popula-
tion at the generation just before the change.
It is defined by:

AESS = (1/k) Y%, ESS,

where k is the number of changes in the envi-
ronment, ESS; is the Efliciently Spaced Set
in the environment j.

4. Average Number of Nondominated In-
dividuals (ANNIE): Average of the NNIE
values of the population in the generation
just before the change. It is defined by:

ANNIE = (1/k)Y.5_ NNIE;

where k is the number of changes in the envi-
ronment, NNIE; is the number of individu-
als nondominated in the environment j.

6 Description of the Experi-
ments

This section aims to describe the experiments
performed to validate our proposed approach.
Obviously, the aim is to evaluate the capability
of our approach to track down the new location
of the true Pareto front, once the algorithm has
detected a change in the environment. The ex-
periments took place on different scenarios. Each

Furthermore, we also considered the following of these scenarios represents a different type of
performance measures: change:
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1. Scenario 1: Positive Linear Displacement, of
fi(z) only,

2. Scenario 2: Positive Linear Displacement of
f2(z) only,

3. Scenario 3: Positive Linear Displacement of
f3(z) only,

4. Scenario 4: Positive Linear Displacement of
both fi(z) and fa(z) only,

5. Scenario 5: Positive Linear Displacement of
both fi(z) and fs(z) only,

6. Scenario 6: Positive Linear Displacement of
both fo(z) and f3(z) only,

7. Scenario 7: Negative Linear Displacement of
fi(z) only,

8. Scenario 8: Negative Linear Displacement of
f2(z) only,

9. Scenario 9: Negative Linear Displacement of
f3(z) only,

10. Scenario 10: Negative Linear Displacement

of both fi(x) and f2(z) only,

11. Scenario 11: Negative Linear Displacement

of both fi(x) and f3(z) only,

12. Scenario 12: Negative Linear Displacement

of both fo(x) and f3(z) only,

13. Scenario 13: Positive Linear Displacement of

fi(x), f2(z) and fs(x) simultaneously, and

14. Scenario 14: Negative Linear Displacement

of fi(z), fo(z) and f3(z) simultaneously.

The parameters required by our approach are
the following;:

1. Probabilities for the operators: recombina-
tion, mutation, recrudescence, increase for
the recombination, increase for the mutation.

2. Percentage of Random Immigrants,

3. Number of Generations between Changes of
the Environment,

4. Number of Changes of the Function,
5. Objective Functions that we wish to modify,
6. Degree of severity for f; ,fo and fs,

7. Type of Displacement (positive or negative).
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Table 1: Values adopted for the parameters used
by our approach

Population size 200
Size of the secondary population 250
Initialization of the Secondary Population Random

Perossover 0.65

Prutation 0.5

Precombinationfincrease 0.8

Pmutationfincrease 0.8

Precrudescence 0.2
Percentage of Random Immigrants 30 individuals

Number of Changes of the Function 9

s1 for DTLZ2 Dyn 0.5

s2 for DTLZ2_Dyn 0.5

s3 for DTLZ2_Dyn 0.5

Each experiment was repeated 10 times (with
10 different random seeds), and we collected
statistics from the corresponding runs. For each
scenario, the changes in the environment were
produced at every 5 and 10 generations. The val-
ues adopted for the parameters of our approach
are shown in Table 1.

7 Results

The performance of MADE using the benchmark
function previously described (with changes at
every 5 and 10 generations, and with both ascend-
ing descending displacements) varies from good
to relatively good on the different scenarios. In
the following Tables, the labels of the columns 2
to 4 and 2 to 5 are interpreted as follows: the
A or D means Ascending or Descending displace-
ment, respectively, and the number following the
underscore indicates the scenario number. First,
we analyze the results for the scenarios 13 and 14
where we apply positive and negative displace-
ments over the three objectives, simultaneously.
In this case, regardless of the size of the interval
between changes and regardless of the displace-
ment types, the Pareto fronts produced by MADE
are very close to the true Pareto fronts with a
good distribution of points in both cases. This is
shown in Figures 2 to 5 for the case in which the
changes are produced at every 5 generations.

Analogously, when analyzing the results from
Table 2, we can see that we obtain little variabil-
ity of results for all metrics, except for ANNIE.
In the case of this metric (average number of non-
dominated individuals), we obtain a lower value
for descending displacements. Between two con-
secutive changes, regardless of the displacement,
the old and new feasible zone share a set of so-
lutions. But, when the displacements are 1) de-
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scending: the old PF* is contained in the new
feasible zone and 2) ascending: the new PF* is
contained in the old feasible zone. The reason
of the MADE’s poor performance, on descending
displacements could be because of the new PF™*
is not contained in the old feasible zone, so any
nondominated individuals from the old feasible
zone belong to the new PF*. The new PF* has
to be found from scratch but the old PF™* could
be used like a base to find the new PF*. How-
ever, on ascending displacements, the new PF™ is
contained in the old feasible zone, so the search of
the new PF™ could not start from scratch if some
nondominated individuals belong to the new PF*
or they are close from it.

For scenarios 4 to 6 and 10 to 12, where the
displacements are applied simultaneously to pairs
of objectives (see Tables 3 to 6), we can see in
Figures 6 to 11 that our approach can obtain rea-
sonably good approximations and a good spread

of solutions.

Finally, for the scenarios 1 to 3 and 7 to 9,
where only one of the objective functions is dis-
placed, MADE produces good approximations of
the true Pareto front, with a good spread of so-
lutions. However, in all cases, a few solutions are
produced away from the true Pareto front (see
Figures 12 to 17).

When looking at the numerical results in Ta-
bles 7, 8, 9 and 10, we observe that when only
f1 is displaced, regardless of the interval between
changes, ascending displacements seem to be the
most difficult to handle by MADE.

It is worth emphasizing that, despite the high
values obtained for the AUSCC metric in all the
scenarios studied, our approach systematically
converged very close to the true Pareto front (this
can be appreciated by looking at the values of the
IGD metric). However, since the exact front was
not reached, the AUSCC metric provided poor
results. So, the reachability problem seems to
be more an accurancy problem which may be
related to the small number of generations be-
tween changes (i.e., the algorithm doesn’t have
enough time to produce a finer approximation of
the Pareto front).
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o -muboo

Figure 2: Front generated by MADE when f;, fo
and f3 are displaced in an ascending way

o aNnw s OO

Figure 3: PF}.q. corresponding to the change in-
dicated in Figure 2

o anwbao

Figure 4: Front generated by MADE when f;, fo
and f3 are displaced in a descending way

.5\‘\\“

o -nw s oo

Figure 5: PF}.y. corresponding to the change in-
dicated in Figure 4
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Table 2: DTLZ2_Dyn, modifications in fy, fs and
f3, values taken from the run in the median re-
spect of IGD

Interval = 5 Interval = 10
Displacement A_13 D_14 A_13 D_14
AESS 0.04 0.05 0.04 0.05
IGD 0.000022 0.000025 0.000023 0.000024
ANNIFE 114 97 113 98
AUSCC 249.9 246.1 250.0 249.5
Table 3: DTLZ2_Dyn, modifications in f; fo;

fifs; fofs; values of the run in the median re-
spect of IGD

Interval=>5
Displacement A4 Ab A6
AESS 0.05 0.05 0.05
AIGD 0.000023 | 0.000024 | 0.000024
ANNIE 100 104 97
AUSCC 248.5 249.8 247.6
Table 4: DTLZ2_Dyn, modifications in f; fo;

fifs; fofs; values of the run in the median re-
spect of IGD

Interval=>5
Displacement D_10 D_11 D_12
AESS 0.04 0.05 0.04
AIGD 0.000023 | 0.000023 | 0.000023
ANNIE 113 105 108
AUSCC 249.6 249.6 248.8
Table 5: DTLZ2 Dyn, modifications in f; fo;

fif3; fofs; values of the run in the median re-
spect of IGD

Interval = 10
Displacement A4 Ab A6
AESS 0.04 0.05 0.04
AIGD 0.000023 | 0.000024 | 0.000024
ANNIE 113 95 99
AUSCC 249.9 249.1 247.1
Table 6: DTLZ2 Dyn, modifications in f; fo;

fifs; fofs; values of the run in the median re-
spect of IGD

Interval = 10
Displacement D_10 D_11 D_12
AESS 0.04 0.05 0.05
AIGD 0.000022 | 0.000023 | 0.000023
ANNIE 111 108 110
AUSCC 249.9 249.6 250.0
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6: Front generated by MADE when fi,
are displaced in an ascending way

Figure 7: PF},,. corresponding to the change in-
dicated in Figure 6

o 2N w s oo

Figure 8: Front generated by MADE when f; and
f3 are displaced in a descending way

camusoOo

Figure 9: PF},,. corresponding to the change in-
dicated in Figure 8
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Table 7: DTLZ2_Dyn, modifications in fq; fa; f3;
values of the run in the median respect of IGD

Interval=5
Displacement Al A2 A3
AESS 0.05 0.04 0.05
ATIGD 0.000024 | 0.000024 | 0.000024
ANNIE 94 101 97
AUSCC 247.0 248.3 249.3

Table 8: DTLZ2 Dyn, modifications in f;; fo; f3;
values of the run in the median respect of IGD

Interval=>5
Displacement D7 D38 D9
AESS 0.05 0.04 0.04
AIGD 0.000023 | 0.000023 | 0.000023
ANNIE 104 111 110
AUSCC 249.3 250.0 250.0

Table 9: DTLZ2_Dyn, modifications in f1; fa;f3;
values of the run in the median respect of GDM

Interval = 10
Displacement Al A2 A3
AESS 0.054 0.05 0.05
AIGD 0.000025 | 0.000024 | 0.000024
ANNIE 98 99 101
AUSCC 246.1 248.1 249.8

Table 10: DTLZ2 Dyn, modifications in fi; fa;fs;
values of the run in the median respect of GDM

Interval = 10
Displacement D7 D38 D9
AESS 0.04 0.04 0.04
AIGD 0.000023 | 0.000022 | 0.000023
ANNIE 113 111 108
AUSCC 250.0 249.8 249.8
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o aNnw s OO

Figure 10: Front generated by MADE when fo,
and f3 are displaced in an ascending way
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Figure 11: PFj,.,. corresponding to the change
indicated in Figure 10

—-

Figure 12: Front generated by MADE when f; is

displaced in an ascending way

Figure 13: PFj.y. corresponding to the change
indicated in Figure 12
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Figure 14: Front generated by MADE when f5 is
displaced in a descending way

ooooccoooo
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Figure 15: PFj.y. corresponding to the change
indicated in Figure 14

o 2N wr OO

Figure 16: Front generated by MADE when f; is
displaced in an ascending way

o -nuwsOo

Figure 17: PFj}.y. corresponding to the change
indicated in Figure 16
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8 Conclusions and Future

Work

The performance of the proposed approach in the
test case adopted turned out to be satisfactory
in the sense that the aim was not to generate
the complete true Pareto fronts, but to determine
if the proposed approach was able to adapt fast
enough to the changes in the location of the true
Pareto front.

As part of our future work, we intend to explore
the use of other (more sophisticated) operators
to handle dynamic environments [15]. We will
also validate the performance of our MADE when
scaling the test function both on the number of
decision variables and objective functions. Also,
we want to explore the impact of e-dominance [16]
in the performance of our approach.

Another aspect that deserves more attention
is the choice of performance measures adopted
to validate the performance of our approach. Fi-
nally, we also aim to evaluate other search engines
different from MOGA (e.g., we intend to use the
NSGA-II [17] which is a highly competitive multi-
objective evolutionary algorithm).
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