
Evolutionary Multiobjective Optimization inNon-Stationary EnvironmentsVictoria Arag�on, Susana EsquivelLab. de Investigaci�on y Desarrollo en Inteligencia Computacional (LIDIC).Dpto. de Inform�atica - Universidad Nacional de San LuisEj�ercito de los Andes 950 - 5700 - San Luis - Argentinafesquivel, vsaragong@unsl.edu.arCarlos A. Coello CoelloCINVESTAV-IPN (Evolutionary Computation Group)Electrical Eng. Department, Computer Science Dept.Av. IPN No. 2508, Col. San Pedro ZacatencoM�exico D.F. 07300, M�EXICOccoello@cs.cinvestav.mxAbstractThis paper proposes an approach, called Multi-objective Algorithm for Dynamic Environments(MADE), which extendes Fonseca and Fleming'sMOGA (with an external archive) so that it candeal with dynamic environments. MADE in-cludes two techniques to maintain diversity andalso uses specialized functions that implementsthe dynamism required. In order to validateMADE, we de�ned a dynamic version of a statictest problem (with 3 objectives) previously pro-posed in the specialized literature. The prelimi-nary results obtained indicate that the proposedapproach provides an acceptable response to thetype of changes studied.1 IntroductionIn the context of single-objective optimization,many real-world problems are dynamic in nature.If there is a change over time in a certain problem,either because the objective function changes orbecause some of its constraint changes (or both),then evidently the global optimum changes aswell. In order to deal with this type of prob-lems, it is necessary to have heuristics that canadapt quickly enough to any changes. Given thatadaptation in nature is a continuous process, theuse of evolutionary algorithms to deal with non-stationary environments seems a natural choice.However, note that in practice evolutionary al-gorithms tend to converge to a stationary point(i.e., local optimum) over time, losing the diver-

sity of the population necessary to explore thesearch space. Once this happens, an evolution-ary algorithm loses its capability to adapt to anychanges in the environment. Thus, the use ofgood mechanisms to maintain diversity is criticalwhen dealing with dynamic functions.The use of evolutionary algorithms for dealingwith non-stationary (or dynamic) environmentshas received increasing attention from researchers[1, 2, 3]. However, the de�nion of dynamic multi-objective test functions and algorithms has beenthe subject of very little work in the special-ized literature [4]. This paper provides a prelimi-nary study regarding the use of a multi-objectiveevolutionary algorithm in dynamic environments.Unlike the work of Farina et al. [4], in our case, wedon't focus our research on dynamic control prob-lems nor on the design of dynamic test functions.Instead, the focus of our work is to study the be-havior of relatively simple mechanisms to respondto dynamic changes. Such mechanisms are incor-porated into a well-known multi-objective evolu-tionary algorithm (Fonseca and Fleming's MOGA[5]) aiming to provide some preliminary insightsregarding the possible challenges that dynamicfunctions present for current MOEAs.The remainder of this paper is organized as fol-lows. In Section 2, we provide a brief introductionto optimization in non-stationary environmentsboth in the single-objective and in the multi-objective cases. Section 3 describes our proposedapproach. In Section 4, we provide the test func-tion adopted for our study. Section 5 describesthe performance measures adopted in our study.Section 6 describes our experiments and provides
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a discussion of our �ndings. Finally, Section 8provides our conclusions and some possible pathsof future research.2 Optimization in Non-stationary EnvironmentsOne possible approach to deal with dynamic func-tions is to treat each change as a new optimizationproblem that has to be solved from scratch [6]. Itshould be obvious that this sort of approach isimpractical in many cases, because disregardingprevious information from the problem will cer-tainly increase the computational cost to solve it.Moreover, if the change is small, one would as-sume that the new solution will be similar to theprevious one. Thus, it is desirable to have op-timization algorithms capable of adapting solu-tions to a dynamic (i.e., non-stationary) environ-ment, reusing information obtained in the past.In single-objective dynamic problems, as evolu-tion progresses, di�erent environments emerge,which must be optimized. Thus, the main goalis to �nd a set of points such that each of themsatis�es each of the existing environments. Thesame situation arises when dealing with multiob-jective optimization problems, only that in thiscase, the goal is not to �nd a single solution foreach environment, but a set of them. Based onthe previous discussion, we will denote as P �(t)and PF �(t) to the Pareto optimal set and thePareto front, respectively, both de�ned at time t.Two issues are of particular importance whendealing with dynamic environments: (1) the abil-ity of an approach to detect that a change hasoccurred and (2) the proper reaction (i.e., the ve-locity of the response) to those changes. In thecontext of dynamic multiobjective optimization,we will call environment both to decision variablespace and to objective function space. So, whenwe refer to changes in the environment, this couldbe in either of these spaces or in both. Farina etal. [4] proposed several types of changes that canbe produced in dynamic multiobjective optimiza-tion:� Type I: The Pareto optimal set P � changes,while the Pareto front PF � does not.� Type II: Both P � and PF � change.� Type III: P � does not change but PF � does.� Type IV: The problem dynamicallychanges, but neither P � nor PF � change.

The change of Type IV is not of interest forus for obvious reasons. For the work reported inthis paper, we considered only changes of TypeIII, because what changes is the location of thetrue Pareto front. Although the Pareto optimalset does not need to be changed for such prob-lems to remain on the new PF �, there may be ane�ect on the distribution of the solution on thenew PF � for the old solutions [4]. Thus, we im-plemented random changes as de�ned in [1] (i.e.,each change does not depend from the previouschange nor from time). Note that in this case,if the change is too large, the new problem tobe optimized will be completely di�erent to theprevious one. It is worth noticing that we won'tdeal with the automatic detection of the changes,but only the reaction of the algorithm to suchchanges. Thus, we assume in this work that it isknown that a change in the environment has oc-curred, since they are systematic (i.e., the changesare performed at certain intervals de�ned in termsof a number of generations).3 Proposed ApproachThe approach proposed in this paper is calledMultiobjective Algorithm for Dynamic Environ-ments (MADE), and it consists of an extension ofFonseca and Fleming's MOGA [5] with an exter-nal archive. The main focus of this work was toexperiment with a relatively conventional multi-objective evolutionary algorithm extended withspecial diversity maintenance mechanisms thatallow it to adapt to changes in the enviroment.MADE keeps the basic characteristics fromMOGA but adds specialized functions that im-plement the dynamism required. One of the fewchanges to MOGA is that we have eliminated itsmating restrictions. This is mainly due to the factthat there is no clear consensus regarding the use-fulness of mating restrictions [7]. Furthermore,MADE includes two techniques to maintain diver-sity and we considered unnecessary to introducethis additional mechanism. MADE uses real-numbers encoding, proportional selection, one-point crossover and uniform mutation.We use two mechanisms to maintain diversity:� Recrudescence: This approach was pro-posed in [8] and it consists of macromuta-tions. The approach increases both recombi-nation and mutation probabilities of a por-tion of the population. The operator is ap-plied at each generation with a certain prob-ability (precru) and produces a radical phe-notypic reorganization of the individuals over
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1. t = 02. Initialize (P (0)) and Empty External File()3. Evaluate (P (0); F (0))4. while (t < Num max gen) do5. t = t+ 16. New Generation (P (t); P 0(t))7. P (t) = P 0(t)8. Evaluate (P (t); F (t))9. Elistism()10. if (Change Function (t))11. Statistical Report()12. Elitist Set to External File()13. Clean Elitist Set()14. Function go to Change (F (t); F 0(t))15. F (t) = F 0(t)16. Evaluate (P (t); F (t))17. Elistim()18. Insert Random Inmigrants()19. Evaluate (P (t); F (t))20. Elitism()21. end if22. end whileFigure 1: General outline of our MADE approachwhich it operates. Individuals to which theoperator is applied are randomly selected(adopting a uniform distribution).� Random Immigrants: This idea was pro-posed in [9, 10]. The approach consists ofreplacing a percentage of the population byrandomly generated individuals. The tech-nique is applied only when there is a changein the environment.3.1 Pseudocode of our MADEOnce we initialize the main and secondary popu-lations (line 2), the main population is evaluatedwith the base function F (0) (line 3). The algo-rithm enters a loop (line 4) that is executed dur-ing a certain number of generations. Such a num-ber is determined based on the number of changesthat the environment experiments, and the gen-erational interval between them. In the proce-dure New Generation, for each pair of individu-als selected as parents, the recombination opera-tor is invoked. Such a recombination operator in-cludes the mutation operator, which is used witha low probability if the recrudescence operator isnot applied. Otherwise, the recrudescence opera-tor (macromutation) is invoked and the mutationand recombination probabilities are incremented.Once the next population P 0(t) has been gener-ated, it replace to the current P (t) and is evalu-ated with the current F (t) (line 8), and we apply

elitism (line 9). The procedure elitism takeseach nondominated individual from the popula-tion and veri�es if it is not dominated with re-spect to the elistist set (which is the set of all thesolutions that are nondominated with respect toall the solutions generated so far). Should that bethe case, the individual is inserted in the elitistset. If during this checking, an individual in theelitist set is dominated by an individual from thecurrent population, then the dominated individ-ual is removed from the elitist set.The function Change Function (line 10) de-termines if it is necessary to produce a changein the environment in the current generation.This is done by checking if the current genera-tion is a multiple of the number of generationsbetween changes that was provided as an inputto the algorithm. The changes in the environ-ment are produced at constant intervals (de�nedin terms of a certain number of generations) dur-ing the evolutionary process. Each time the en-vironment is about to change, the correspond-ing statistics are reported (line 11). Such statis-tics include the number of nondominated indi-viduals, ESS, etc. The nondominated solutionsfound so far (and temporarily retained in mem-ory) are dumped into an external archive (line12). Then, the elitist set is emptied, since the ob-jective functions stored within do not correspondto the new function any more (line 13). Thefunction Function go to Change is responsiblefor introducing changes in the environment. Thechanges implemented are both ascending and de-scending displacements in all the objective func-tions or some of them. This is determined bythe user (line 14). The old objective function isreplaced by the new one (line 15) and the popula-tion is evaluated using the new objective function(line 16). We then apply elitism (line 17) so thatwe can retain the nondominated vectors presentin the population. Next, a percentage of the pop-ulation is replaced by individuals randomly gen-erated (line 18). The individuals selected to bereplaced are those dominated by some other indi-vidual in the population. In case the number ofindividuals to be replaced is less than the num-ber of individuals that are dominated, then wereplace as many nondominated individuals as nec-essary until completing the (pre-de�ned) percent-age. It is worth noticing that it is irrelevant tolose nondominated individuals from the popula-tion, since they have already been stored in thesecondary population (line 20). We then evalu-ate again the population (with the new insertedindividuals) and we apply elitism all over again.
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4 Test FunctionIn order to validate our proposed approach, weintroduce a dynamic version of a well-known testproblem (DTLZ2 [11]) which, in its static version,has been used to validate multi-objective evolu-tionary algorithms. This function was chosen be-cause it is scalable both in decision variable spaceand in objective function space. Such scalabilityfacilitates to study the capability of an algorithmto react to changes in both spaces. Althoughother test functions have been adopted to vali-date our approach, we chose to include only oneto allow a more detailed analysis of the behaviorof the mechanisms proposed.DTLZ2: Min (f1(x); f2(x); f3(x)), where:f1(x) = (1 + g(x3; x4))cos(x1�=2)cos(x2�=2),f2(x) = (1+g(x3; x4))cos(x1�=2)sin(x2�=2), andf3(x) = (1 + g(x3; x4))sin(x1�=2),with 0 � xi � 1; i = 4 and g(x) = Pxi2x(xi �0:5)2.On this base function, all objective functions takenon-negative values and the desired front is the�rst quadrant of a sphere of radius one. Thedynamic environment is generated by translatingthe base function DTLZ2 along a linear trajec-tory according to [12]:DTLZ2 Dyn(x; t) = DTLZ2(x) + Æ(t)where t 2 N0 denotes time (generation number).The displacement of the function is determined byfunction Æ(t) = (Æ1(t); Æ2(t); Æ3(t)) and it dependson the update frequency of the function (i.e., thenumber of generations between changes) and theseverity s (a factor that determines the length ofthe function displacement).For an ascending linear displacement, we have:Æ1(0) = Æ2(0) = Æ3(0) = 0Æ(t+1) = � Æi(t) + si if (t+ 1) mod interval = 0Æi(t) otherwise (1)where i is the objective function number to bechanged, interval is the number of generationsbetween changes and si is the severity degree ofthe displacement of fi.For a linear descending displacement, we have:Æ1(0) = amount of change � s1Æ2(0) = amount of change � s2Æ3(0) = amount of change � s3Æ(t+1) = � Æi(t)� si if (t+ 1) mod interval = 0Æi(t) otherwise (2)

where i is index of the objective function tobe changed, interval is the number of gener-ations allowed between changes, si is the de-gree of severity of the displacement of fi andamount of change is the number of changes thatthe environment will experiment.If the severity is too high, then the sequence ofproblems to be optimized won't share anythingin common. This would be similar to solvingcompletely di�erent problems by separate. Onthe contrary, if the severity is small, there couldbe no perceptible di�erence between two consecu-tive changes and this can be considered as a non-dynamic problem (i.e., it could be treated as astatic problem and one could build robust solu-tions for such problem [1]). As a consequence,the severity of the changes produced in our ex-periments is such that the set of feasible solutionsbetween changes gets partially overlapped.5 Performance MeasuresIt is obviously desirable that our multi-objectiveevolutionary algorithm (MOEA) is able to reach(either in static or dynamic environments) thetrue Pareto front of a problem with a good spreadof points. In order to evaluate the performanceof our approach, we adopted the following perfor-mance measures:1. Unsuccessful Counting (USCC): We de-�ne this measure based on the idea of theError Ratio metric proposed in [13] which in-dicates the percentage of solutions (from thenondominated vectors found so far) that arenot members of the true Pareto optimal set.In this case, we count the number of vectors(in the current set of nondominated vectorsavailable) that are not members of the Paretooptimal set: USCC = Pni=1 ui; where n isthe number of vectors in the current set ofnondominated vectors available; ui = 1 ifvector i is not a member of the Pareto opti-mal set, and ui = 0 otherwise. It should thenbe clear that USCC = 0 indicates an idealbehavior, since it would mean that all thevectors generated by our algorithm belongto the true Pareto optimal set of the prob-lem. For a fair comparison, when we use thismeasure, all the algorithms should limit their�nal number of non-dominated solutions tothe same value.2. Inverted Generational Distance (IGD):The concept of generational distance was in-troduced by Van Veldhuizen [13] as a way
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of estimating how far are the elements in thePareto front produced by our algorithm fromthose in the true Pareto front of the problem.This measure is de�ned as: GD = pPni=1 d2inwhere n is the number of nondominated vec-tors found by the algorithm being analyzedand di is the Euclidean distance (measuredin objective space) between each of theseand the nearest member of the true Paretofront. It should be clear that a value ofGD = 0 indicates that all the elements gen-erated are in the true Pareto front of theproblem. Therefore, any other value willindicate how \far" we are from the globalPareto front of our problem. In our case,we implemented an \inverted" generationaldistance measure (IGD) in which we use asa reference the true Pareto front, and wecompare each of its elements with respect tothe front produced by an algorithm. In thisway, we are calculating how far are the ele-ments of the true Pareto front, from those inthe Pareto front produced by our algorithm.Computing this \inverted" generational dis-tance value reduces the bias that can arisewhen an algorithm didn't fully cover the truePareto front.3. EÆciently Spaced Set (ESS): Here, onedesires to measure the spread (distribution)of vectors throughout the nondominated vec-tors found so far. Since the \beginning"and \end" of the current Pareto front foundare known, a suitably de�ned metric judgeshow well the solutions in such front are dis-tributed. Schott [14] proposed such a met-ric measuring the range (distance) varianceof neighboring vectors in the nondominatedvectors found so far. This metric is de�nedas: S =vuut 1n� 1 nXi=1(d� di)2 ; (3)where di = minj(j f i1(~x)�f j1 (~x) j + j f i2(~x)�f j2 (~x) j) + : : : j f ik(~x� f jk(~x) j, i; j = 1; : : : ; n,d is the mean of all di, and n is the num-ber of nondominated vectors found so far.A value of zero for this metric indicates allmembers of the Pareto front currently avail-able are equidistantly spaced.4. Number of Nondominated Individualsper Environment (NNIE): This measure isself-explanatory.Furthermore, we also considered the followingperformance measures:

1. Average Unsuccessful Counting(AUSCC): Average of the unsuccessfulcounting values of the population in thegeneration just before the change. It isde�ned as:AUSCC = (1=k)Pkj=1 USCCjwhere k is the number of changes in the envi-ronment, USCCj is the unsuccessful count-ing in the environment j.2. Average Inverted Generational Dis-tance (AIGD): The average of the genera-tional distance values of the population atthe generation just before the change. It isde�ned by:AIGD = (1=k)Pkj=1 IGDjwhere k is the number of changes in the envi-ronment, IGDj is the generational distancein the environment j.3. Average EÆciently Spaced Set (AESS):The average of the ESS values of the popula-tion at the generation just before the change.It is de�ned by:AESS = (1=k)Pkj=1 ESSjwhere k is the number of changes in the envi-ronment, ESSj is the EÆciently Spaced Setin the environment j.4. Average Number of Nondominated In-dividuals (ANNIE): Average of the NNIEvalues of the population in the generationjust before the change. It is de�ned by:ANNIE = (1=k)Pkj=1NNIEjwhere k is the number of changes in the envi-ronment, NNIEj is the number of individu-als nondominated in the environment j.6 Description of the Experi-mentsThis section aims to describe the experimentsperformed to validate our proposed approach.Obviously, the aim is to evaluate the capabilityof our approach to track down the new locationof the true Pareto front, once the algorithm hasdetected a change in the environment. The ex-periments took place on di�erent scenarios. Eachof these scenarios represents a di�erent type ofchange:
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1. Scenario 1: Positive Linear Displacement off1(x) only,2. Scenario 2: Positive Linear Displacement off2(x) only,3. Scenario 3: Positive Linear Displacement off3(x) only,4. Scenario 4: Positive Linear Displacement ofboth f1(x) and f2(x) only,5. Scenario 5: Positive Linear Displacement ofboth f1(x) and f3(x) only,6. Scenario 6: Positive Linear Displacement ofboth f2(x) and f3(x) only,7. Scenario 7: Negative Linear Displacement off1(x) only,8. Scenario 8: Negative Linear Displacement off2(x) only,9. Scenario 9: Negative Linear Displacement off3(x) only,10. Scenario 10: Negative Linear Displacementof both f1(x) and f2(x) only,11. Scenario 11: Negative Linear Displacementof both f1(x) and f3(x) only,12. Scenario 12: Negative Linear Displacementof both f2(x) and f3(x) only,13. Scenario 13: Positive Linear Displacement off1(x), f2(x) and f3(x) simultaneously, and14. Scenario 14: Negative Linear Displacementof f1(x), f2(x) and f3(x) simultaneously.The parameters required by our approach arethe following:1. Probabilities for the operators: recombina-tion, mutation, recrudescence, increase forthe recombination, increase for the mutation.2. Percentage of Random Immigrants,3. Number of Generations between Changes ofthe Environment,4. Number of Changes of the Function,5. Objective Functions that we wish to modify,6. Degree of severity for f1 ,f2 and f3,7. Type of Displacement (positive or negative).

Table 1: Values adopted for the parameters usedby our approachPopulation size 200Size of the secondary population 250Initialization of the Secondary Population RandomPcrossover 0.65Pmutation 0.5Precombination�increase 0.8Pmutation�increase 0.8Precrudescence 0.2Percentage of Random Immigrants 30 individualsNumber of Changes of the Function 9s1 for DTLZ2 Dyn 0.5s2 for DTLZ2 Dyn 0.5s3 for DTLZ2 Dyn 0.5Each experiment was repeated 10 times (with10 di�erent random seeds), and we collectedstatistics from the corresponding runs. For eachscenario, the changes in the environment wereproduced at every 5 and 10 generations. The val-ues adopted for the parameters of our approachare shown in Table 1.7 ResultsThe performance of MADE using the benchmarkfunction previously described (with changes atevery 5 and 10 generations, and with both ascend-ing descending displacements) varies from goodto relatively good on the di�erent scenarios. Inthe following Tables, the labels of the columns 2to 4 and 2 to 5 are interpreted as follows: theA or D means Ascending or Descending displace-ment, respectively, and the number following theunderscore indicates the scenario number. First,we analyze the results for the scenarios 13 and 14where we apply positive and negative displace-ments over the three objectives, simultaneously.In this case, regardless of the size of the intervalbetween changes and regardless of the displace-ment types, the Pareto fronts produced byMADEare very close to the true Pareto fronts with agood distribution of points in both cases. This isshown in Figures 2 to 5 for the case in which thechanges are produced at every 5 generations.Analogously, when analyzing the results fromTable 2, we can see that we obtain little variabil-ity of results for all metrics, except for ANNIE.In the case of this metric (average number of non-dominated individuals), we obtain a lower valuefor descending displacements. Between two con-secutive changes, regardless of the displacement,the old and new feasible zone share a set of so-lutions. But, when the displacements are 1) de-
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scending: the old PF � is contained in the newfeasible zone and 2) ascending: the new PF � iscontained in the old feasible zone. The reasonof the MADE's poor performance, on descendingdisplacements could be because of the new PF �is not contained in the old feasible zone, so anynondominated individuals from the old feasiblezone belong to the new PF �. The new PF � hasto be found from scratch but the old PF � couldbe used like a base to �nd the new PF �. How-ever, on ascending displacements, the new PF � iscontained in the old feasible zone, so the search ofthe new PF � could not start from scratch if somenondominated individuals belong to the new PF �or they are close from it.For scenarios 4 to 6 and 10 to 12, where thedisplacements are applied simultaneously to pairsof objectives (see Tables 3 to 6), we can see inFigures 6 to 11 that our approach can obtain rea-sonably good approximations and a good spreadof solutions.Finally, for the scenarios 1 to 3 and 7 to 9,where only one of the objective functions is dis-placed, MADE produces good approximations ofthe true Pareto front, with a good spread of so-lutions. However, in all cases, a few solutions areproduced away from the true Pareto front (seeFigures 12 to 17).When looking at the numerical results in Ta-bles 7, 8, 9 and 10, we observe that when onlyf1 is displaced, regardless of the interval betweenchanges, ascending displacements seem to be themost diÆcult to handle by MADE.It is worth emphasizing that, despite the highvalues obtained for the AUSCC metric in all thescenarios studied, our approach systematicallyconverged very close to the true Pareto front (thiscan be appreciated by looking at the values of theIGD metric). However, since the exact front wasnot reached, the AUSCC metric provided poorresults. So, the reachability problem seems tobe more an accurancy problem which may berelated to the small number of generations be-tween changes (i.e., the algorithm doesn't haveenough time to produce a �ner approximation ofthe Pareto front).

Figure 2: Front generated by MADE when f1, f2and f3 are displaced in an ascending way

Figure 3: PFtrue corresponding to the change in-dicated in Figure 2

Figure 4: Front generated by MADE when f1, f2and f3 are displaced in a descending way

Figure 5: PFtrue corresponding to the change in-dicated in Figure 4
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Table 2: DTLZ2 Dyn, modi�cations in f1, f2 andf3, values taken from the run in the median re-spect of IGD Interval = 5 Interval = 10Displacement A 13 D 14 A 13 D 14AESS 0.04 0.05 0.04 0.05IGD 0.000022 0.000025 0.000023 0.000024ANNIE 114 97 113 98AUSCC 249.9 246.1 250.0 249.5Table 3: DTLZ2 Dyn, modi�cations in f1f2;f1f3; f2f3; values of the run in the median re-spect of IGD Interval=5Displacement A 4 A 5 A 6AESS 0.05 0.05 0.05AIGD 0.000023 0.000024 0.000024ANNIE 100 104 97AUSCC 248.5 249.8 247.6Table 4: DTLZ2 Dyn, modi�cations in f1f2;f1f3; f2f3; values of the run in the median re-spect of IGD Interval=5Displacement D 10 D 11 D 12AESS 0.04 0.05 0.04AIGD 0.000023 0.000023 0.000023ANNIE 113 105 108AUSCC 249.6 249.6 248.8Table 5: DTLZ2 Dyn, modi�cations in f1f2;f1f3; f2f3; values of the run in the median re-spect of IGD Interval = 10Displacement A 4 A 5 A 6AESS 0.04 0.05 0.04AIGD 0.000023 0.000024 0.000024ANNIE 113 95 99AUSCC 249.9 249.1 247.1Table 6: DTLZ2 Dyn, modi�cations in f1f2;f1f3; f2f3; values of the run in the median re-spect of IGD Interval = 10Displacement D 10 D 11 D 12AESS 0.04 0.05 0.05AIGD 0.000022 0.000023 0.000023ANNIE 111 108 110AUSCC 249.9 249.6 250.0

Figure 6: Front generated by MADE when f1,and f2 are displaced in an ascending way

Figure 7: PFtrue corresponding to the change in-dicated in Figure 6

Figure 8: Front generated by MADE when f1 andf3 are displaced in a descending way

Figure 9: PFtrue corresponding to the change in-dicated in Figure 8
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Table 7: DTLZ2 Dyn, modi�cations in f1; f2; f3;values of the run in the median respect of IGDInterval=5Displacement A 1 A 2 A 3AESS 0.05 0.04 0.05AIGD 0.000024 0.000024 0.000024ANNIE 94 101 97AUSCC 247.0 248.3 249.3Table 8: DTLZ2 Dyn, modi�cations in f1; f2; f3;values of the run in the median respect of IGDInterval=5Displacement D 7 D 8 D 9AESS 0.05 0.04 0.04AIGD 0.000023 0.000023 0.000023ANNIE 104 111 110AUSCC 249.3 250.0 250.0Table 9: DTLZ2 Dyn, modi�cations in f1; f2;f3;values of the run in the median respect of GDMInterval = 10Displacement A 1 A 2 A 3AESS 0.054 0.05 0.05AIGD 0.000025 0.000024 0.000024ANNIE 98 99 101AUSCC 246.1 248.1 249.8Table 10: DTLZ2 Dyn, modi�cations in f1; f2;f3;values of the run in the median respect of GDMInterval = 10Displacement D 7 D 8 D 9AESS 0.04 0.04 0.04AIGD 0.000023 0.000022 0.000023ANNIE 113 111 108AUSCC 250.0 249.8 249.8

Figure 10: Front generated by MADE when f2,and f3 are displaced in an ascending way

Figure 11: PFtrue corresponding to the changeindicated in Figure 10

Figure 12: Front generated by MADE when f1 isdisplaced in an ascending way

Figure 13: PFtrue corresponding to the changeindicated in Figure 12
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Figure 14: Front generated by MADE when f2 isdisplaced in a descending way

Figure 15: PFtrue corresponding to the changeindicated in Figure 14

Figure 16: Front generated by MADE when f3 isdisplaced in an ascending way

Figure 17: PFtrue corresponding to the changeindicated in Figure 16
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