Handling Multiple Objectives

with Particle Swarm Optimization

Carlos A. Coello Coellof, Gregorio Toscano Pulido?
and Maximino Salazar Lechuga?
TCINVESTAV-IPN
Seccién de Computaciéon
Departamento de Ing. Eléctrica
Seccion de Computacién
México, D.F., 07300, MEXICO
ccoello@cs.cinvestav.mx
gtoscano@computacion.cs.cinvestav.mx
!The University of Birmingham
School of Computer Science
Edgbaston, Birmingham B15 2TT, UK
M.S.Lechuga@cs.bham.ac.uk

Abstract

This paper presents an approach in which Pareto dominance is incor-
porated into particle swarm optimization (PSO) in order to allow this
heuristic to handle problems with several objective functions. Unlike
other current proposals to extend PSO to solve multiobjective optimiza-
tion problems, our algorithm uses a secondary (i.e., external) repository of
particles that is later used by other particles to guide their own flight. We

also incorporate a special mutation operator that enriches the exploratory

capabilities of our algorithm. The proposed approach is validated using
several test functions and metrics taken from the standard literature on
evolutionary multiobjective optimization. Results indicate that the ap-
proach is highly competitive and that can be considered a viable alterna-

tive to solve multiobjective optimization problems.

1 Introduction

The use of evolutionary algorithms for multiobjective optimization (an area
called “evolutionary multiobjective optimization”, or EMO for short) has sig-
nificantly grown in the last few years, giving rise to a wide variety of algorithms
[7]. As any other research area, EMO currently presents certain trends. One of
them is to improve the efficiency both of the algorithms and of the data struc-
tures used to store nondominated vectors. EMO researchers have produced
some clever techniques to maintain diversity (e.g., the adaptive grid used by
PAES [21]), new algorithms that use very small populations (e.g., the microGA
[6]), and data structures that allow to handle unconstrained external archives
(e.g., the dominated tree [12]).

Particle swarm optimization (PSO) is a relatively recent heuristic inspired
by the choreography of a bird flock. PSO has been found to be successful in
a wide variety of optimization tasks [19], but until recently it had not been
extended to deal with multiple objectives.

PSO seems particularly suitable for multiobjective optimization mainly be-
cause of the high speed of convergence that the algorithm presents for single-
objective optimization [19]. In this paper, we present a proposal, called “multi-
objective particle swarm optimization” (MOPSQ), which allows the PSO algo-
rithm to be able to deal with multiobjective optimization problems. Our cur-
rent proposal is an improved version of the algorithm reported in [5] in which
we have added a constraint-handling mechanism and a mutation operator that
considerably improves the exploratory capabilities of our original algorithm.

MOPSO is validated using several standard test functions reported in the

specialized literature and compared against three highly competitive EMO al-
gorithms: the Non-dominated Sorting Genetic Algorithm-II [11] (NSGA-II), the
Pareto Archived Evolution Strategy (PAES) [21], and the micro-genetic algo-

rithm for multiobjective optimization (microGA) [6].

2 Basic Concepts

Definition 1 (Global Minimum): Given o function f : & C R™ — R,
Q£ 0, for T € Q the value f* £ f(@*) > —oco is called a global minimum if and

only if
VieQ: f(@) < f(7). (1)

Then, &* is the global minimum solution, f is the objective function, and the
set Q is the feasible region (2 € S), where S represents the whole search space.

O

Definition 2 (General Multiobjective Optimization Problem (MOP)):
Find the vector ¥* = [z},x3,. .. ,a:;]T which will satisfy the m inequality con-
straints:

the p equality constraints

hi(@) =0 i=1,2,...,p (3)

and will optimize the vector function

F@ = [A@), (@), .., (@] (4)

— T
where & = [£1,%a,...,Zy] is the vector of decision variables. O

Definition 3 (Pareto Optimality:): A point & € Q is Pareto optimal
if for every Z € Q and I = {1,2,...,k} either,

Vier(fi(Z) = fi(Z")) (5)

or, there is at least one i € I such that

fi(@) > fi(7") (6)

O

In words, this definition says that Z* is Pareto optimal if there exists no
feasible vector & which would decrease some criterion without causing a simul-
taneous increase in at least one other criterion. The phrase “Pareto optimal”
is considered to mean with respect to the entire decision variable space unless

otherwise specified.

Definition 4 (Pareto Dominance): A wvector @ = (u1,...,ux) is said to
dominate U = (v1,...,v;) (denoted by @ < ¥) if and only if u is partially less
than v, i.e., Vi€ {1,...,k}, us <v; AT € {1,...,k} :u; < ;. |

—

Definition 5 (Pareto Optimal Set): For a given MOP f(x), the Pareto
optimal set (P*) is defined as:

—

P :={zeQ|-32' €Q f(a') =< flz)}. (7

O

-

Definition 6 (Pareto Front:): For a given MOP f(z) and Pareto optimal
set P*, the Pareto front (PF*) is defined as:

PF* = {i=f= (fi(@),..., fu(@)) |2 € P*}. (8)

O
In the general case, it is impossible to find an analytical expression of the

line or surface that contains these points. The normal procedure to generate the

Pareto front is to compute the feasible points 2 and their corresponding f(2).
When there is a sufficient number of these, it is then possible to determine the
nondominated points and to produce the Pareto front.

Pareto optimal solutions are also termed non-inferior, admissible, or efficient

solutions [15]; their corresponding vectors are termed nondominated.

3 Related Work

Kennedy & Eberhart [19] proposed an approach called “particle swarm opti-
mization” (PSO) which was inspired on the choreography of a bird flock. The
approach can be seen as a distributed behavioral algorithm that performs (in its
more general version) multidimensional search. In the simulation, the behavior
of each individual is affected by either the best local (i.e., within a certain neigh-
borhood) or the best global individual. The approach uses then the concept of
population and a measure of performance similar to the fitness value used with
evolutionary algorithms. Also, the adjustments of individuals are analogous to
the use of a crossover operator. The approach also introduces the use of flying
potential solutions through hyperspace (used to accelerate convergence) which
can be seen as a mutation operator. An interesting aspect of PSO is that it
allows individuals to benefit from their past experiences (note that in other
approaches such as the genetic algorithm, normally the current population is

the only “memory”

used by the individuals). PSO has been successfully used
for both continuous nonlinear and discrete binary single-objective optimization
[19]. Particle swarm optimization seems particularly suitable for multiobjective
optimization mainly because of the high speed of convergence that the algorithm
presents for single-objective optimization [19].

In fact, there have been several recent proposals to extend PSO to handle

multiobjectives. We will review the most important of them:

e The algorithm of Moore and Chapman [24]: This algorithm was

presented in an unpublished document and it is based on Pareto dom-

inance. The authors emphasize the importance of performing both an
individual and a group search (a cognitive component and a social com-
ponent). However, the authors did not adopt any scheme to maintain

diversity.

e The Swarm Metaphor of Ray & Liew [28]: This algorithm also uses
Pareto dominance and combines concepts of evolutionary techniques with
the particle swarm. The approach uses crowding to maintain diversity
and a multilevel sieve to handle constraints (for this, the authors adopt
the constraint and objective matrices proposed in some of their previous

research [27]).

e The algorithm of Parsopoulos & Vrahatis [26]: Unlike the previous
proposals, this algorithm adopts an aggregating function (three types of
approaches were implemented: a conventional linear aggregating function,
a dynamic aggregating function and the bang-bang weighted aggregation
approach [18] in which the weights are varied in such a way that concave

portions of the Pareto front can be generated).

e Dynamic Neighborhood PSO proposed by Hu and Eberhart [16]:
In this algorithm, only one objective is optimized at a time using a scheme
similar to lexicographic ordering [7]. Lexicographic ordering tends to be
useful only when few objective functions are used (two or three), and
it may be sensitive to the ordering of the objectives. The idea of the
dynamic neighborhood is, with no doubt quite interesting and is novel in

this context.

At the time in which this paper was originally prepared, none of the existing
proposals to extend PSO to solve multiobjective optimization problems used a
secondary population (the most common notion of elitism in EMO). This may
certainly limit the performance of the algorithm, unless a very good diversity
maintainance approach is used (unfortunately, this is not the case in most of

the approaches available at that time). Also, none of these techniques had been

properly validated using test functions and metrics normally adopted by EMO
researchers.

Note however, that in more recent papers these ideas have been already
incorporated by other authors. The most representative proposals are the fol-

lowing (published after the submission of the original version of this paper):

e Fieldsend & Singh [13] proposed an approach in which they use an uncon-
strained elite archive (in which a special data structure called “dominated
tree” is adopted) to store the nondominated individuals found along the
search process. The archive interacts with the primary population in or-
der to define local guides. The approach is compared (using four test
functions and two metrics) against an algorithm similar to PAES [21] and
with a variation of our original MOPSO [5]. Their approach also uses a
“turbulence” operator that is basically a mutation operator that acts on
the velocity value used by PSO. The approach seems to have the same
problems of our original MOPSO with multifrontal problems such as the
fourth example included in this paper. It is important to note that the new
version of our MOPSO provided in this paper does not have the problems

of the original version in multifrontal problems.

e Huet al. [17] adopted a secondary population (called “extended memory”)
and introduced some further improvements to their dynamic neighborhood
PSO approach [16]. Nevertheless, it is worth indicating that this approach
completely fails in generating the true Pareto front of some problems (see
[17] for details). Hu et al. [17] also compared their algorithm with respect
to the Strength Pareto Evolutionary Algorithm (SPEA) [37] using the set

coverage metric [34].

e Mostaghim & Teich [25] proposed a sigma method in which the best lo-
cal guides for each particle are adopted to improve the convergence and
diversity of a PSO approach used for multiobjective optimization. They

also use a “turbulence” operator, but applied on decision variable space.

The idea of the sigma approach is similar to compromise programming
[7]. The use of the sigma values increases the selection pressure of PSO
(which was already high). This may cause premature convergence in some
cases (e.g., in multifrontal problems). In this approach, the authors pro-
vide comparisons with SPEA2 [36] and the dominated trees of Fieldsend

& Singh [13] using four test functions and the coverage metric.

o Li [23] proposed an approach in which the main mechanisms of the NSGA-
IT [11] are adopted in a PSO algorithm. The proposed approach showed a
very competitive performance with respect to the NSGA-II (even outper-

forming it in some cases).

The main differences of our approach with respect to the other proposals

existing in the literature are the following:

e We adopt an external (or secondary) repository similar to the adaptive
grid of PAES [21] (see Section 4.2). None of the other proposals use such

a mechanism in the way adopted in this paper.

e The mutation operator that we use acts both on the particles of the swarm,
and on the range of each design variable of the problem to be solved (see
Section 4.3). This aims not only to explore remote regions of the search
space, but also tries to ensure that the full range of each decision variable

is explored.

e We provide an extensive analysis of the impact of the parameters of our
MOPSO on its performance. We also compare our MOPSO with respect
to three other algorithms (which are representative of the state-of-the-art

in evolutionary multiobjective optimization), using three metrics.

4 Description of the Proposed Approach

The analogy of particle swarm optimization with evolutionary algorithms makes

evident the notion that using a Pareto ranking scheme [14] could be the straight-

forward way to extend the approach to handle multiobjective optimization prob-
lems. The historical record of best solutions found by a particle (i.e., an indi-
vidual) could be used to store nondominated solutions generated in the past
(this would be similar to the notion of elitism used in evolutionary multiob-
jective optimization). The use of global attraction mechanisms combined with
a historical archive of previously found nondominated vectors would motivate

convergence towards globally nondominated solutions.

4.1 Main Algorithm

The algorithm of MOPSO is the following:
1. Initialize the population POP:

(a) FOR i =0TO MAX /* MAX = number of particles */

(b) Initialize POPYi]
2. Initialize the speed of each particle:

(a) FORi=0TO MAX

(b) VEL[{]]=0
3. Evaluate each of the particles in POP.

4. Store the positions of the particles that represent nondominated vectors

in the repository REP.

5. Generate hypercubes of the search space explored so far, and locate the
particles using these hypercubes as a coordinate system where each parti-
cle’s coordinates are defined according to the values of its objective func-

tions.

6. Initialize the memory of each particle (this memory serves as a guide
to travel through the search space. This memory is also stored in the

repository):

(a) FOR i =0 TO MAX
(b) PBESTS]i] = POP]i]

7. WHILE maximum number of cycles has not been reached DO

(a) Compute the speed of each particle! using the following expression:

VEL[i] = W x VEL[i] + Ry X
(PBESTS[i] — POPJi]) +
Ry x (REP[h] — POPJi))

where W (inertia weight) takes a value of 0.4; Ry and R, are ran-
dom numbers in the range [0..1]; PBESTS[i] is the best position
that the particle i has had?; REPI[h] is a value that is taken from
the repository; the index h is selected in the following way: those
hypercubes containing more than one particle are assigned a fitness
equal to the result of dividing any number z > 1 (we used z = 10 in
our experiments) by the number of particles that they contain. This
aims to decrease the fitness of those hypercubes that contain more
particles and it can be seen as a form of fitness sharing [10]. Then,
we apply roulette-wheel selection using these fitness values to select
the hypercube from which we will take the corresponding particle.
Once the hypercube has been selected, we select randomly a particle

within such hypercube. POP]i] is the current value of the particle 4.

(b) Compute the new positions of the particles adding the speed pro-

duced from the previous step:

POP[i] = POP[i] + VEL[i] (9)

1Each particle has a dimensionality that can vary depending on the problem solved. When
we say that we compute the speed of a particle, we refer to computing the speed for each of

its dimensions.
2We will explain later on how do we define “better” in this context.

10

(¢) Maintain the particles within the search space in case they go beyond
their boundaries (avoid generating solutions that do not lie on valid
search space). When a decision variable goes beyonds its boundaries,
then we do two things: (1) the decision variable takes the value of its
corresponding boundary (either the lower or the upper boundary),
and (b) its velocity is multiplied by (-1) so that it searches in the

opposite direction.
(d) Evaluate each of the particles in POP.

(e) Update the contents of REP together with the geographical repre-
sentation of the particles within the hypercubes. This update consists
of inserting all the currently nondominated locations into the reposi-
tory. Any dominated locations from the repository are eliminated in
the process. Since the size of the repository is limited, whenever it
gets full, we apply a secondary criterion for retention: those particles
located in less populated areas of objective space are given priority

over those lying in highly populated regions.

(f) When the current position of the particle is better than the position

contained in its memory, the particle’s position is updated using:

PBESTS[i] = POPJi] (10)

The criterion to decide what position from memory should be re-
tained is simply to apply Pareto dominance (i.e., if the current po-
sition is dominated by the position in memory, then the position in
memory is kept; otherwise, the current position replaces the one in
memory; if neither of them is dominated by the other, then we select

one of them randomly).

(g) Increment the loop counter

8. END WHILE

11

4.2 External Repository

The main objective of the external repository (or archive) is to keep a historical
record of the nondominated vectors found along the search process. The external

repository consists of two main parts:

1. The archive controller
2. The grid

We will proceed to discuss each of these two components in more detail.

4.2.1 The archive controller

The function of the archive controller is to decide whether a certain solution
should be added or not to the archive. The decision-making process is the
following;:

The nondominated vectors found at each iteration in the primary population
of our algorithm are compared (on a one-per-one basis) with respect to the
contents of the external repository which, at the beginning of the search will be
empty). If the external archive is empty, then the current solution is accepted
(see case 1 in Figure 1). If this new solution is dominated by an individual
within the external archive, then such a solution is automatically discarded (see
case 2 in Figure 1). Otherwise, if none of the elements contained in the external
population dominates the solution wishing to enter, then such a solution is stored
in the external archive. If there are solutions in the archive that are dominated
by the new element, then such solutions are removed from the archive (see cases
3 and 4 from Figure 1). Finally, if the external population has reached its
maximum allowable capacity, then the adaptive grid procedure is invoked (see

case 5 from Figure 1).

4.2.2 The grid

To produce well-distributed Pareto fronts, our approach uses a variation of the

adaptive grid proposed in [21]. The basic idea is to use an external archive to

12

store all the solutions that are nondominated with respect to the contents of
the archive. Into the archive, objective function space is divided into regions
as shown in Figure 2. Note that if the individual inserted into the external
population lies outside the current bounds of the grid, then the grid has to be
recalculated and each individual within it has to be relocated (see Figure 3).

The adaptive grid is really a space formed by hypercubes?. Such hypercubes
have as many components as objective functions. Each hypercube can be in-
terpreted as a geographical region that contains an no number of individuals.
The main advantage of the adaptive grid is that its computational cost is lower
than niching (see [21] for a detail complexity analysis). The only exception
would be if the grid had to be updated at each generation. In such case, the
computational complexity of the adaptive grid would be the same as niching
(i.e., O(N?)).

The adaptive grid is used to distribute in a uniform way the largest possible
amount of hypercubes. In order to achieve this goal, it is necessary to provide
and obtain certain information which is problem-dependant (i.e., the number of

grid subdivisions).

4.3 Use of a Mutation Operator

This operator deserves a more detailed discussion. PSO is known to have a very
high convergence speed. However, such convergence speed may be harmful in
the context of multiobjective optimization, because a PSO-based algorithm may
converge to a false Pareto front (i.e., the equivalent of a local optimum in global
optimization). This drawback of PSO is evident in some problems (e.g., in test
function 1 described in Section 5) in which our original approach did not perform
very well. This motivated the development of a mutation operator that tries to
explore with all the particles at the beginning of the search. Then, we decrease

rapidly (with respect to the number of iterations) the number of particles that

3Strictly speaking, it is formed by hyperparallelepids when the ranges of the objective
functions are not scaled. If scaled, however, we are talking of hypercubes, which is the

assumption made in this paper.

13

are affected by the mutation operator (see Figure 4). Note that our mutation
operator is applied not only to the particles of the swarm, but also to the range
of each design variable of the problem to be solved (using the same variation
function). What this does is to cover the full range of each design variable at
the beginning of the search and then we narrow the range covered over time,
using a nonlinear function. From Figure 4, we can see that at the beginning, all
the particles in the population are affected by the mutation operator (as well
as the full range of the decision variables). This intends to produce a highly
explorative behavior in the algorithm. As the number of iterations increases,
the effect of the mutation operator decreases. The pseudocode of our mutation
operator is shown in Figure 5.

The use of mutation operators in PSO is not new. Frans van den Bergh [31],
proposed the Randomised Particle Optimiser (RPSO) in which the aim was to
construct a PSO-based global search algorithm. The RPSO resets the position
of an specific particle, at a certain (fixed) number of iterations. Note however,
that our approach is not only adding exploratory capabilities to PSO (as in
the RPSO), but it also ensures that the full range of every decision variable
is explored. Such type of mutation operator is novel (to the authors’ best
knowledge), at least in the context of PSO approaches used for multiobjective

optimization.

4.4 Handling Constraints

We also added a relatively simple scheme to handle constraints: Whenever
two individuals are compared, we check their constraints. If both are feasible,
nondominance is directly applied to decide who is the winner. If one is feasible
and the other is infeasible, the feasible dominates. If both are infeasible, then
the one with the lowest amount of constraint violation dominates the other.
This is the same approach that we originally proposed to handle constraints

within the micro genetic algorithm for multiobjective optimization (microGA)

[6]-

14

5

Comparison of Results

Several test functions were taken from the specialized literature to compare our

approach. In order to allow a quantitative assessment of the performance of

a multiobjective optimization algorithm, three issues are normally taken into

consideration [35]:

1.

3.

Minimize the distance of the Pareto front produced by our algorithm with

respect to the global Pareto front (assuming we know its location).

. Maximize the spread of solutions found, so that we can have a distribution

of vectors as smooth and uniform as possible.

Maximize the number of elements of the Pareto optimal set found.

Based on this notion, we adopted one metric to evaluate each of three aspects

previously indicated:

1.

Generational Distance (GD): The concept of generational distance was
introduced by Van Veldhuizen & Lamont [33] as a way of estimating how
far are the elements in the set of nondominated vectors found so far from

those in the Pareto optimal set and is defined as:

E?:l df

n

GD = (11)

where n is the number of vectors in the set of nondominated solutions
found so far and d; is the Euclidean distance (measured in objective space)
between each of these and the nearest member of the Pareto optimal set.
It should be clear that a value of GD = 0 indicates that all the elements
generated are in the Pareto optimal set. Therefore, any other value will
indicate how “far” we are from the global Pareto front of our problem.

This metric addresses the first issue from the list previously provided.

Spacing (SP): Here, one desires to measure the spread (distribution) of
vectors throughout the nondominated vectors found so far. Since the “be-

ginning” and “end” of the current Pareto front found are known, a suitably

15

defined metric judges how well the solutions in such front are distributed.
Schott [29] proposed such a metric measuring the range (distance) vari-
ance of neighboring vectors in the nondominated vectors found so far.

This metric is defined as:

se | LS @-ay, (12)

-1
n i=1

where d; = min (| fi(&) - @) | + | @ - B@ 1), 3,5 =1,...,n, d
is the mean of all d;, and n is the number of nondominated vectors found
so far. A value of zero for this metric indicates all members of the Pareto
front currently available are equidistantly spaced. This metric addresses

the second issue from the list previously provided.

. Error Ratio (ER): This metric was proposed by Van Veldhuizen [32] to
indicate the percentage of solutions (from the nondominated vectors found

so far) that are not members of the true Pareto optimal set:

ER = Zi=® (13)

n
where n is the number of vectors in the current set of nondominated
vectors available; e; = 0 if vector 7 is a member of the Pareto optimal set,
and e; = 1 otherwise. It should then be clear that ER = 0 indicates an
ideal behavior, since it would mean that all the vectors generated by our

algorithm belong to the Pareto optimal set of the problem. This metric

addresses the third issue from the list previously provided.

Additionally, times were also evaluated (using the same hardware platform

and the exact same environment for each of the algorithms) in order to establish

if our MOPSO algorithm was really faster than the other techniques as we

hypothesized.

In order to know how competitive was our approach, we decided to compare

it against three multiobjective evolutionary algorithms that are representative

16

of the state-of-the-art:

1. Nondominated Sorting Genetic Algorithm II: Proposed by Deb et
al. [9, 11], this algorithm is a revised version of the Nondominated Sorting
Genetic Algorithm proposed by Srinivas & Deb [30]. The original NSGA
is based on several layers of classifications of the individuals as suggested
by Goldberg [14]. Before selection is performed, the population is ranked
on the basis of nondomination: all nondominated individuals are classified
into one category (with a dummy fitness value, which is proportional to the
population size, to provide an equal reproductive potential for these indi-
viduals). Then this group of classified individuals is ignored and another
layer of nondominated individuals is considered. The process continues
until all individuals in the population are classified. Since individuals in
the first front have the maximum fitness value, they always get more copies
than the rest of the population. This allows to search for nondominated

regions, and results in convergence of the population toward such regions.

The NSGA-IT is more efficient (computationally speaking) than the orig-
inal NSGA, uses elitism and a crowded comparison operator that keeps
diversity without specifying any additional parameters (the original NSGA
used fitness sharing). This algorithm uses (u + \)-selection as its elitist

mechanism.

2. Pareto Archived Evolution Strategy: This algorithm was introduced
by Knowles and Corne [21]. PAES consists of a (141) evolution strat-
egy (i.e., a single parent that generates a single offspring) in combination
with a historical archive that records some of the nondominated solutions
previously found. This archive is used as a reference set against which
each mutated individual is being compared. Such a historical archive is
the elitist mechanism adopted in PAES. However, an interesting aspect
of this algorithm is the procedure used to maintain diversity which con-
sists of a crowding procedure that divides objective space in a recursive

manner. Each solution is placed in a certain grid location based on the

17

values of its objectives (which are used as its “coordinates” or “geograph-
ical location”). A map of such grid is maintained, indicating the number
of solutions that reside in each grid location. Since the procedure is adap-
tive, no extra parameters are required (except for the number of divisions

of the objective space).

3. Micro-Genetic Algorithm for Multiobjective Optimization: This
approach was introduced by Coello Coello & Toscano Pulido [3, 6]. A
micro-genetic algorithm is a GA with a small population and a reinitial-
ization process. The way in which the microGA works is illustrated in
Figure 6. First, a random population is generated. This random pop-
ulation feeds the population memory, which is divided in two parts: a
replaceable and a non-replaceable portion. The non-replaceable portion
of the population memory never changes during the entire run and is
meant to provide the required diversity for the algorithm. In contrast, the

replaceable portion experiences changes after each cycle of the microGA.

The population of the microGA at the beginning of each of its cycles is
taken (with a certain probability) from both portions of the population
memory so that there is a mixture of randomly generated individuals (non-
replaceable portion) and evolved individuals (replaceable portion). During
each cycle, the microGA undergoes conventional genetic operators. After
the microGA finishes one cycle, two nondominated vectors are chosen*
from the final population and they are compared with the contents of the
external memory (this memory is initially empty). If either of them (or
both) remains as nondominated after comparing it against the vectors in
this external memory, then they are included there (i.e., in the external
memory). This is the historical archive of nondominated vectors. All

dominated vectors contained in the external memory are eliminated.

The microGA uses then three forms of elitism: (1) it retains nondomi-

4This is assuming that there are two or more nondominated vectors. If there is only one,

then this vector is the only one selected.

18

nated solutions found within the internal cycle of the microGA, (2) it uses
a replaceable memory whose contents is partially “refreshed” at certain
intervals, and (3) it replaces the population of the microGA by the nom-
inal solutions produced (i.e., the best solutions found after a full internal

cycle of the microGA).

In the following examples, the NSGA-II was run using a population size
of 100, a crossover rate of 0.8 (uniform crossover was adopted), tournament
selection, and a mutation rate of 1/L, where L = chromosome length (binary
representation was adopted). The microGA used a crossover rate of 0.9, an
external memory of 100 individuals, a number of iterations to achieve nominal
convergence of two, a population memory of 50 individuals, a percentage of non-
replaceable memory of 0.05, a population size (for the microGA itself) of four
individuals, and 25 subdivisions of the adaptive grid. The mutation rate was set
to 1/L (L = length of the chromosomic string). PAES was run using an adaptive
grid with a depth of five, a size of the archive of 100, and a mutation rate of 1/L,
where L refers to the length of the chromosomic string that encodes the decision
variables. MOPSO used a population of 100 particles, a repository size of 100
particles, a mutation rate of 0.5°, and 30 divisions for the adaptive grid. Our
implementation uses a real-numbers representation, but a binary representation
could be also adopted if needed. These parameters were kept in all the examples,
and we only changed the total number of fitness function evaluations® but the
same value was adopted for all the algorithms in each of the examples presented
next. The source code of the NSGA-II, PAES and the microGA is available
from the EMOO repository [4]. The source code of MOPSO may be obtained

by emailing to ccoello@cs.cinvestav.mx.

5This value was determined after performing an extensive set of experiments. Note, how-
ever, that the performance of MOPSO can improve in some of the test functions presented
if a higher mutation rate is adopted. This, however, also increases the computational cost of

the approach.
6The total number of fitness function evaluations was empirically determined based on the

complexity of the test function adopted. However, at the end of the paper some guidelines are

provided regarding how to determine the parameters of the MOPSO for an arbitrary problem.

19

In all the following examples, we report the results obtained from performing
30 independent runs of each algorithm compared. In all cases, the best average

results obtained with respect to each metric are shown in boldface.

5.1 Test Function 1

For our first example, we used the following problem proposed by Kita [20]:
Maximize F = (f1(z,y), f2(z,y)), where

1
hmy) = -2 +y, floy)=go+y+1

subject to:

1 13 15
0> -z+y— m+y—?, 0>d5z+y—30

—, 0>
6 2’0—

1
2

and: z,y > 0. The range adopted in our caseis 0 < z,y < 7.

In this example, the total number of fitness function evaluations was set to
5000.

Figures 7 and 8 show the graphical results produced by our MOPSO, the
microGA, the NSGA-II, and PAES in the first test function chosen. The true
Pareto front of the problem is shown as a continuous line. The solutions dis-
played correspond to the median result with respect to the generational distance
metric. Tables 1, 2, 3 and 4 show the comparison of results among the four al-
gorithms considering the metrics previously described. It can be seen that the
average performance of MOPSO is the best with respect to the error ratio (by
far), and to the generational distance. With respect to spacing it places slightly
below the NSGA-II, but with a lower standard deviation. By looking at the
Pareto fronts of this test function, it is easy to notice that except for MOPSO,

none of the algorithms was able to cover the full Pareto front.” This is then

"When using our original implementation of MOPSO [5], we ran into the same problem.

Such a behavior motivated the development of the mutation operator reported in this paper.

20

an example in which a metric may be misleading, since the fact that the spac-
ing metric provides a good value if the nondominated vectors produced by the
algorithm are not part of the true Pareto front of the problem [32]. Also, it
is important to notice the very high speed of MOPSO, which requires almost
half of the time than the microGA. This is remarkable if we consider that the
NSGA-IT and the microGA are algorithms that are normally considered “very

fast” approaches.

6 Test Function 2

Our second test function was proposed by Kursawe [22]:

n—1

Minimize f,(Z) =) (—10 exp (-0.2, [z2 + m?+1)> (14)
i=1
n
Minimize fo(F) = Z (|z;]°® + 5sin(z;)?) (15)
i=1
where:
—5<11,22,23 <5 (16)

In this example, the total number of fitness function evaluations was set to
12000.

Figures 9 and 10 show the graphical results produced by our MOPSO, the
microGA, the NSGA-II, and PAES in the second test function chosen. The
true Pareto front of the problem is shown as a continuous line. Tables 5, 6, 7
and 8 show the comparison of results among the four algorithms considering
the metrics previously described. It can be seen that the average performance
of MOPSO is the best with respect to the error ratio, and it is slightly below
the microGA with respect to the generational distance. With respect to spacing
it does considerably worse than the NSGA-II, but the graphical solutions show
that the NSGA-II is not able to cover the entire Pareto front of the problem,

whereas the MOPSO does it. This makes the value of this metric irrelevant,

21

since some of the solutions produced by the NSGA-II are not part of the true
Pareto front of the problem. Also, note that MOPSO is 15 times faster than
the NSGA-II in this test function.

7 Test Function 3

Our third test function was proposed by Deb [8]:

Minimize fi(z1,x2) = x1 (17)
Minimize fa(z1,22) = g(x1,22) - h(x1,22) (18)

where:
g(z1,22) = 114 25 — 10 - cos(27x2) (19)

1—\/M if fi(z1,22) < glz1,x
h(z1, @s) = 921,72 fi(z1,22) < g1, 72) (20)

0 otherwise

and 0 <z; <1, -30 < zg < 30.

In this example, the total number of fitness function evaluations was set to
4000.

Figures 11 and 12 show the graphical results produced by our MOPSO, the
microGA, the NSGA-II, and PAES in the third test function chosen. The true
Pareto front of the problem is shown as a continuous line. Tables 9, 10, 11 and
12 show the comparison of results among the four algorithms considering the
metrics previously described. It can be seen that the average performance of
MOPSO plays second with respect to the error ratio, but it is the best with
respect to the generational distance. With respect to spacing it does consider-
ably worse than the NSGA-II. However, graphical results again indicate that
the NSGA-II does not cover the full Pareto front (it only covers about half of it).

Since the nondomianted vectors found by the NSGA-IT are clustered together,

22

the spacing metric provides very good results. MOPSO, on the other hand,
covers the entire Pareto front and is 10 times faster than the NSGA-II in this

test function.
8 Test Function 4
Our fourth test function was also proposed by Deb [8]:
Minimize fi(z1,22) = 21 (21)

9(z2)

I

g(z2) = 2.0 —exp {_ (%0(12)2}
0.8€Xp{ (@0%40'6>2} "

and 0.1 <z7 <1.0,0.1 <z <1.0.

Minimize fo(21,22) =

In this example, the total number of fitness function evaluations was set to
10000.

Figures 13 and 14 show the graphical results produced by the PAES, the
NSGA-II, the microGA and our MOPSQ in the fourth test function chosen. The
true Pareto front of the problem is shown as a continuous line. Tables 13, 14, 15
and 16 show the comparison of results among the four algorithms considering
the metrics previously described. It can be seen that the average performance of
MOPSO is the best with respect to the generational distance, and it is slightly
below the microGA with respect to the error ratio. With respect to spacing it
does considerably worse than the NSGA-II, but the NSGA-II is again unable
to cover the full Pareto front of the problem (i.e., the spacing metric becomes

misleading in this case). Note that this is the only example (from those presented

23

in this paper) in which the microGA is faster than MOPSO (it requires about
half the CPU time of MOPSO).

9 Test Function 5

Our fifth test function is to optimize the four-bar plane truss shown in Figure 15.

The problem is the following [2]:

Minimize
f1(x) = L(2z1 + V222 + /T3 + 74) (24)
_FL (2 22 2/(2) 2
fz(X)_F<m_2+x—2_?+:1:—4> (25)
such that

(F/o) < 21 <3 x (Ffo)
V2(F/o) < x5 <3 x (F/o)
V2(F[o) < 23 <3 x (F/o)
(F/o) < 24 < 3 x (F/0)

where:

F = 10kN, E = 2 x 10°%kN/em?, L = 200cm o = 10kN/cm?®. Using
these values, the ranges adopted for the decision variables are the following:
0.05 < z; < 0.15, 0.070710678 < x5 < 0.15, 0.070710678 < z3 < 0.15, 0.05 <
z4 < 0.15.

In this example, the total number of fitness function evaluations was set to
8000.

Figures 16 and 17 show the graphical results produced by the PAES, the
NSGA-II, the microGA and our MOPSO in the fifth test function chosen. The
true Pareto front of the problem is shown as a continuous line. Tables 17, 18,
19 and 20 show the comparison of results among the four algorithms consider-
ing the metrics previously described. In this case, MOPSO is the second best

with respect to the three metrics, but only marginally. Note however, that only

24

MOPSO covers the entire Pareto front of the problem. Furthermore, in terms
of CPU time, MOPSO is about 14 times faster than the NSGA-II and its re-
markable speed is only comparable to the microGA which, however, has a much

poorer performance with respect to the three metrics adopted.

10 Sensitivity Analysis

We performed an extensive analysis of the impact of the parameters of our
MOPSO on its performance. In this study, we used the five test functions
previously described as well as the three metrics adopted before. We performed

four experiments:

1. Experiment 1: We compared MOPSO with mutation versus MOPSO
without mutation using the original set of parameters (those adopted in

Section 5).

2. Experiment 2: We varied the number of divisions of the adaptive grid
used in the secondary population. We performed runs using 5, 10, 20, 30,

40, and 50 divisions.

3. Experiment 3: We modified the number of particles of the swarm, and
the number of iterations in order to perform the same number of evalu-
ations of the objective functions as in the original experiments. We per-
formed runs using 5, 25, 75 and 100 particles. All the other parameters

were left as defined in Section 5.

4. Experiment 4: We modified the size of the particle repository (the sec-
ondary population of our algorithm). We performed runs using 100, 150,
200 and 250 particles. All the other parameters were left as defined in

Section 5.

The results obtained from each experiment are discussed in the following

subsections.

25

10.1 Experiment 1

This experiment was designed to determine if the mutation operator adopted
really played an important role in our MOPSQO. We compared MOPSO without
mutation versus MOPSO with mutation using the same test functions and met-

rics described in Section 5. The following is a summary of the results obtained:

1. Test Function 1: In this case, the use of the mutation operator clearly

improved the results of all the metrics adopted (see Table 21).

2. Test Function 2: Again, the use of mutation produced a significant
improvement for our MOPSO with respect to all the metrics adopted (see

Table 22).

3. Test Function 3: This is an interesting example, because the version
without mutation produced a slightly better average result for the error
ratio metric (0.31 vs. 0.3335). However, as can be seen in Table 23, the use
of mutation produces improvements (although such improvements tend to
be marginal as well) for the two other metrics. We attribute this behavior
to the fact that this test function has a search space considerably easier to
explore (i.e., less accidented) than the others adopted in this paper. That
is why we believe that mutation does not produce an important difference

in this case.

4. Test Function 4: Again, the use of mutation produced a significant
improvement for our MOPSO with respect to the three metrics adopted

(see Table 24).

5. Test Function 5: Once more, the use of mutation produced a significant
improvement for our MOPSO with respect to the three metrics adopted
(see Table 25). In fact, this is the example where the improvements pro-

duced by the mutation operator are more evident.

26

10.1.1 Conclusions from Experiment 1

Based on the analysis performed in this experiment, we conclude that the use of
mutation turns out to be beneficial in most cases, and only marginally harmful
when the problem is very simple to solve. Note however, that since the difference
is almost negligible, we recommend to use mutation with our MOPSO in all

cases.

10.2 Experiment 2

As indicated before, in this experiment we varied the number of divisions of the
adaptive grid used in the secondary population. We performed runs using 5, 10,
20, 30, 40, and 50 divisions to see the effect of this parameter in the performance

of our MOPSO. The following is a summary of the results obtained:

1. Test Function 1: In this case, we found that the results improved as
we increase the number of divisions, but after reaching 40 divisions, the
results started degrading again. In Table 26, we can see that in this test
function the best average results were obtained with 40 divisions for both
the error ratio and the generational distance metrics and with 30 divisions
for the spacing metric. However, in all cases, the difference between the

average results obtained with 30 and 40 divisions is marginal.

2. Test Function 2: In this case, the difference in the results is only
marginal in most cases regardless of the number of divisions adopted.
In Table 27, we can see that 50 divisions produced the best average result
with respect to error ratio, 10 divisions produced the best average result
with respect to generational distance and 30 divisions produced the best

average result with respect to spacing.

3. Test Function 3: In this case, a number of divisions greater or equal
than 30 provided the best results with respect to all the metrics adopted.
In Table 28, we can see that 40 divisions provided the best average result

with respect to error ratio, 30 divisions produced the best average result

27

with respect to generational distance and 40 divisions produced the best

average result with respect to spacing.

4. Test Function 4: This was an atypical function in which a number of
divisions of 10 provided the best average results with respect to all the
metrics adopted (see Table 29). However, a number of divisions of 30 was

the second best in all cases.

5. Test Function 5: In this case, 30 divisions provided the best average re-
sults with respect to both generational distance and spacing (see Table 30).
With respect to error ratio, 20 divisions provided a better average result,

but the difference with respect to 30 divisions is very small.

10.2.1 Conclusions from Experiment 2

From the results obtained from this experiment, we can see that in most cases
a value greater or equal than 30 divisions provided good results. We noted that
even in those cases in which a lower number of divisions was better (e.g., 10
divisions), 30 divisions remained as a competitive value, we concluded that the

value of 30 was the most suitable for this parameter of our MOPSO.

10.3 Experiment 3

As indicated before, in this experiment we varied the number of particles of
the swarm (or primary population) of our MOPSO. We also had to vary the
number of iterations as to maintain the same (total) number of fitness function
evaluations of the original experiments. We performed runs using 5, 25, 75 and

100 particles. The following is a summary of the results obtained:

1. Test Function 1: In this case, we obtained mixed results. With respect
to error ratio, the use of 100 particles provided the best average result.
However, with respect to both generational distance and spacing, the use

of only 5 particles provided the best average results. However, it is worth

28

noting in Table 31 that the differences obtained when increasing the num-
ber of particles are not too big. The explanation for these results has to do
with the characteristics of this problem. In this case, a swarm of smaller
size is better because it uses a larger number of cycles and, therefore, has a
better chance of converging to the true Pareto front of this problem (which
is difficult to reach by most algorithms). With fewer particles, may be also

easier to obtain a better (i.e., more uniform) distribution of solutions.

. Test Function 2: Table 32 shows that, in this case, the use of 100
particles provides the best average results with respect to both error ratio
and generational distance. With respect to spacing, the use of 25 particles
provided a better average result, but the difference with respect to the use

of 100 particles is negligible.

. Test Function 3: This is another case with mixed results. We can see in
Table 33 that the use of 25 particles provided the best average result with
respect to error ratio, the use of 50 particles provided the best average
result with respect to generational distance and the use of 5 particles
provided the best average result with respect to spacing. Note however
that in the case of both generational distance and spacing, the use of 100

particles provided very competitive results.

. Test Function 4: We can see in Table 34 that in this case, 100 particles
provided the best average results with respect to both error ratio and
generational distance. With respect to spacing, the use of 75 particles
provided the best average result, although the results obtained with 100

particles are not too different.

. Test Function 5: In this problem we have again mixed results. We can
see in Table 35 that the use of 50 particles provided the best average result
with respect to error ratio, the use of 100 particles provided the best aver-
age result with respect to generational distance and the use of 5 particles

provided the best average result with respect to spacing. However, once

29

again, the average results obtained with 100 particles remain competitive

in terms of both error ratio and spacing.

10.3.1 Conclusions from Experiment 3

Although the results obtained from this experiment seem inconclusive, we argue
that the use of 100 particles is a reasonable choice if nothing is known about
the problem to be solved (we obtained competitive results in most cases when

adopting this value).

10.4 Experiment 4

As indicated before, in this final experiment, we modified the size of the par-
ticle repository (the secondary population of our algorithm). This parameter
refers to the expected number of points (i.e., nondominated vectors) that our
algorithm will find. We performed runs using 100, 150, 200 and 250 particles.

The following is a summary of the results obtained:

1. Test Function 1: As we can see in Table 36, in this case, a value of
100 for the size of the repository provided the best average results with
respect to both error ratio and spacing. A value of 150 provided a better

average result with respect to generational distance.

2. Test Function 2: As we can see in Table 37, a value of 250 for the size of
the repository provided in this case the best average results with respect
to both error ratio and spacing. A value of 200 provided the best average

result with respect to generational distance.

3. Test Function 3: As we can see in Table 38, a value of 250 for the size of
the repository provided in this case the best average results with respect

to all the metrics considered.

4. Test Function 4: In Table 39, we can see that again, a value of 250 for
the size of the repository provided in this case the best average results

with respect to all the metrics considered.

30

5. Test Function 5: In Table 40, we can see that again, a value of 250 for
the size of the repository provided in this case the best average results

with respect to all the metrics considered.

10.4.1 Conclusions from Experiment 4

We can see that in this case, a value of 250 for the size of the repository provided
the best average results in most problems. Note however that as we increase the
size of the external repository, the search effort required to converge to a good
(and well-distributed) approximation of the true Pareto front tends to increase
as well. This fact is, however, evident mainly in problems in which reaching
the true Pareto front is particularly difficult (e.g., the first test function from
Section 5). That is one of the main reasons why we decided to adopt a value
of 100 for this parameter. Additionally, in the specialized literature, a size of
100 for the external population has been a common practice [7]. Nevertheless,
as we saw in this analysis, our MOPSO can improve its results when using a

larger repository (although, in some cases, the improvement is only marginal).

10.5 Parameters Recommended

Based on the experimental study conducted, we found that the following values

for the parameters of our MOPSO provide the most competitive results:

e Number of particles: This is equivalent to the population size of a
genetic algorithm. Obviously, a larger number of particles involves a higher

computational cost. We recommend to use 100 particles.

e Number of cycles: This parameter is related to the number of particles.
The relationship tends to be inversely proportional (i.e., to larger number
of particles, smaller number of cycles and viceversa). We recommend to
use between 80 and 120. The number of cycles is related to the complexity
of the problem (i.e., more difficult problems may require more cycles).

However, it is important to keep in mind that for a constant number of

31

particles, as we increase the number of cycles, the computational cost of
the method also increases. If nothing is known about the problem, we

suggest to use 100 cycles (adopting 100 particles for the swarm).

e Number of divisions: It allows us to determine the number of hyper-
cubes that will be generated in objective function space. We recommend
to use 30 divisions, since this value provided good results in most cases

(see Section 10).

e Size of the repository: This parameter is used to delimit the maximum
number of nondominated vectors that can be stored in the repository.
The value of this parameter will determine the quality of the Pareto front
produced. We recommend to use 250 particles (see Section 10). However,
since it is normally common practice that multi-objective evolutionary
algorithms that use an external memory similar to our own use only a size
of 100, this value may be an alternative to facilitate (indirect) comparisons
that other authors wish to perform. That is the reason why we adopted

such value in the study presented in this paper.

11 Conclusions and Future Work

We have presented a proposal to extend particle swarm optimization to handle
multiobjective problems. The proposed algorithm is relatively easy to imple-
ment and it improves the exploratory capabilities of PSO by introducing a muta-
tion operator whose range of action varies over time. This also makes unnecesary
to perform a fine tuning on the inertia weights used by the expression adopted to
compute the velocity of each particle (in our experiments, we found that our ap-
proach was highly sensitive to the values of such inertia weights). The proposed
approach was validated using the standard methodology currently adopted in
the evolutionary multiobjective optimization community. The results indicate
that our approach is a viable alternative since it has an average performance

highly competitive with respect to some of the best multiobjective evolutionary

32

algorithms known to date. In fact, MOPSO was the only algorithm from those
adopted in our study that was able to cover the full Pareto front of all the func-
tions used. Additionally, the exceptionally low computational times required
by our approach make it a very promising approach in problems in which the
computational cost is a vital issue (e.g., engineering optimization).

One aspect that we would like to explore in the future is the use of a crowd-
ing operator to improve the distribution of nondominated solutions along the
Pareto front [11]. This would improve the capabilities of the algorithm to dis-
tribute uniformly the nondominated vectors found. We are also considering the
possibility of extending this algorithm so that it can deal with dynamic functions
[1]. Finally, it is desirable to study in more detail the parameters fine-tuning

required by the algorithm, as to provide a more solid basis to define them.

Acknowledgments —The authors thank the anonymous reviewers for their
valuable comments that greatly helped us to improve the contents of this pa-
per. The first author gratefully acknowledges support from CONACyT through
project 34201-A. The second author acknowledges support from CONACyT
through a scholarship to pursue graduate studies at the Computer Science Sec-
tion of the Electrical Engineering Department at CINVESTAV-IPN, in México.
The third author acknowledges support from CONACyT through a scholarship
to pursue graduate studies at the School of Computer Science of the University

of Birmingham, in the UK.

33

References

[1]

[2]

3]

[4]

Jiirgen Branke. FEwolutionary Optimization in Dynamic Environments.

Kluwer Academic Publishers, Boston/Dordecht/London, 2002.

F.Y. Cheng and X.S. Li. Generalized Center Method for Multiobjective
Engineering Optimization. Engineering Optimization, 31:641-661, 1999.

Carlos A. Coello Coello and Gregorio Toscano. A Micro-Genetic Algorithm
for Multiobjective Optimization. In Eckart Zitzler, Kalyanmoy Deb, Lothar
Thiele, Carlos A. Coello Coello, and David Corne, editors, First Inter-
national Conference on Evolutionary Multi-Criterion Optimization, pages
126-140. Springer-Verlag. Lecture Notes in Computer Science No. 1993,
2001.

Carlos A. Coello Coello. http://delta.cs.cinvestav.mx/"ccoello/EMOO/.
EMOO Repository, Last time visited: August 2003.

Carlos A. Coello Coello and Maximino Salazar Lechuga. MOPSO: A Pro-
posal for Multiple Objective Particle Swarm Optimization. In Congress on
Evolutionary Computation (CEC’2002), volume 1, pages 1051-1056, Pis-
cataway, New Jersey, May 2002. IEEE Service Center.

Carlos A. Coello Coello and Gregorio Toscano Pulido. Multiobjective Opti-
mization using a Micro-Genetic Algorithm. In Lee Spector, Erik D. Good-
man, Annie Wu, W.B. Langdon, Hans-Michael Voigt, Mitsuo Gen, Sandip
Sen, Marco Dorigo, Shahram Pezeshk, Max H. Garzon, and Edmund Burke,
editors, Proceedings of the Genetic and FEvolutionary Computation Con-
ference (GECCO’2001), pages 274-282, San Francisco, California, 2001.

Morgan Kaufmann Publishers.

Carlos A. Coello Coello, David A. Van Veldhuizen, and Gary B. Lam-
ont. Evolutionary Algorithms for Solving Multi-Objective Problems. Kluwer
Academic Publishers, Boston, 2002. ISBN 0-3064-6762-3.

34

(8]

[10]

[11]

[12]

[13]

[14]

Kalyanmoy Deb. Multi-Objective Genetic Algorithms: Problem Difficulties
and Construction of Test Problems. Evolutionary Computation, 7(3):205—
230, Fall 1999.

Kalyanmoy Deb, Samir Agrawal, Amrit Pratab, and T. Meyarivan. A
Fast Elitist Non-Dominated Sorting Genetic Algorithm for Multi-Objective
Optimization: NSGA-II. In Proceedings of the Parallel Problem Solving
from Nature VI Conference, pages 849-858. Springer, 2000.

Kalyanmoy Deb and David E. Goldberg. An Investigation of Niche and
Species Formation in Genetic Function Optimization. In J. David Schaf-
fer, editor, Proceedings of the Third International Conference on Genetic
Algorithms, pages 42-50, San Mateo, California, June 1989. George Mason

University, Morgan Kaufmann Publishers.

Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and T. Meyarivan. A
Fast and Elitist Multiobjective Genetic Algorithm: NSGA-IIL. IEEFE Trans-
actions on Evolutionary Computation, 6(2):182-197, April 2002.

Richard M. Everson, Jonathan E. Fieldsend, and Sameer Singh. Full Elite
Sets for Multi-Objective Optimisation. In I.C. Parmee, editor, Proceedings
of the Fifth International Conference on Adaptive Computing Design and
Manufacture (ACDM 2002), volume 5, pages 343-354, University of Exeter,
Devon, UK, April 2002. Springer-Verlag.

Jonathan E. Fieldsend and Sameer Singh. A Multi-Objective Algorithm
based upon Particle Swarm Optimisation, an Efficient Data Structure and
Turbulence. In Proceedings of the 2002 U.K. Workshop on Computational
Intelligence, pages 37-44, Birmingham, UK, September 2002.

David E. Goldberg. Genetic Algorithms in Search, Optimization and
Machine Learning. Addison-Wesley Publishing Company, Reading, Mas-
sachusetts, 1989.

35

[15]

[16]

[17]

[18]

[19]

[20]

Jeffrey Horn. Multicriterion Decision making. In Thomas Béck, David
Fogel, and Zbigniew Michalewicz, editors, Handbook of Evolutionary Com-
putation, volume 1, pages F1.9:1-F1.9:15. IOP Publishing Ltd. and Oxford
University Press, 1997.

Xiaohui Hu and Russell Eberhart. Multiobjective Optimization Using Dy-
namic Neighborhood Particle Swarm Optimization. In Congress on Evolu-
tionary Computation (CEC’2002), volume 2, pages 1677-1681, Piscataway,
New Jersey, May 2002. IEEE Service Center.

Xiaohui Hui, Russell C. Eberhart, and Yuhui Shi. Particle Swarm with
Extended Memory for Multiobjective Optimization. In 2008 IEEE Swarm
Intelligence Symposium Proceedings, pages 193-197, Indianapolis, Indiana,

USA, April 2003. IEEE Service Center.

Yaochu Jin, Tatsuya Okabe, and Bernhard Sendhoff. Dynamic Weighted
Aggregation for Evolutionary Multi-Objective Optimization: Why Does It
Work and How? In Lee Spector, Erik D. Goodman, Annie Wu, W.B. Lang-
don, Hans-Michael Voigt, Mitsuo Gen, Sandip Sen, Marco Dorigo, Shahram
Pezeshk, Max H. Garzon, and Edmund Burke, editors, Proceedings of the
Genetic and Evolutionary Computation Conference (GECCO’2001), pages
1042-1049, San Francisco, California, 2001. Morgan Kaufmann Publishers.

James Kennedy and Russell C. Eberhart. Swarm Intelligence. Morgan

Kaufmann Publishers, San Francisco, California, 2001.

Hajime Kita, Yasuyuki Yabumoto, Naoki Mori, and Yoshikazu Nishikawa.
Multi-Objective Optimization by Means of the Thermodynamical Genetic
Algorithm. In Hans-Michael Voigt, Werner Ebeling, Ingo Rechenberg, and
Hans-Paul Schwefel, editors, Parallel Problem Solving from Nature—PPSN
1V, Lecture Notes in Computer Science, pages 504-512. Springer-Verlag,
Berlin, Germany, September 1996.

36

[21]

[22]

[23]

[24]

[25]

[26]

[27]

Joshua D. Knowles and David W. Corne. Approximating the Nondomi-
nated Front Using the Pareto Archived Evolution Strategy. Evolutionary
Computation, 8(2):149-172, 2000.

Frank Kursawe. A Variant of Evolution Strategies for Vector Optimization.
In H. P. Schwefel and R. Manner, editors, Parallel Problem Solving from
Nature. 1st Workshop, PPSN I, volume 496 of Lecture Notes in Computer
Science, pages 193-197, Berlin, Germany, oct 1991. Springer-Verlag.

Xiaodong Li. A Non-dominated Sorting Particle Swarm Optimizer for Mul-
tiobjective Optimization. In Erick Canti-Paz et al., editor, Genetic and
Evolutionary Computation—GECCO 2003. Proceedings, Part I, pages 37—
48. Springer. Lecture Notes in Computer Science Vol. 2723, July 2003.

Jacqueline Moore and Richard Chapman. Application of Particle Swarm to
Multiobjective Optimization. Department of Computer Science and Soft-

ware Engineering, Auburn University, 1999.

Sanaz Mostaghim and Jiirgen Teich. Strategies for Finding Good Local
Guides in Multi-objective Particle Swarm Optimization (MOPSO). In 2003
IEEE Swarm Intelligence Symposium Proceedings, pages 26-33, Indianapo-
lis, Indiana, USA, April 2003. IEEE Service Center.

K.E. Parsopoulos and M.N. Vrahatis. Particle Swarm Optimization Method
in Multiobjective Problems. In Proceedings of the 2002 ACM Symposium
on Applied Computing (SAC’2002), pages 603—607, Madrid, Spain, 2002.
ACM Press.

Tapabrata Ray, Tai Kang, and Seow Kian Chye. An Evolutionary Algo-
rithm for Constrained Optimization. In Darrell Whitley, David Goldberg,
Erick Canti-Paz, Lee Spector, Ian Parmee, and Hans-Georg Beyer, edi-
tors, Proceedings of the Genetic and FEvolutionary Computation Conference
(GECCO’2000), pages 771-777, San Francisco, California, 2000. Morgan

Kaufmann.

37

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

Tapabrata Ray and K.M. Liew. A Swarm Metaphor for Multiobjective De-
sign Optimization. Engineering Optimization, 34(2):141-153, March 2002.

J. R. Schott. Fault Tolerant Design Using Single and Multicriteria Ge-
netic Algorithm Optimization. Master’s thesis, Department of Aeronautics
and Astronautics, Massachusetts Institute of Technology, Cambridge, Mas-

sachusetts, May 1995.

N. Srinivas and Kalyanmoy Deb. Multiobjective Optimization Using Non-
dominated Sorting in Genetic Algorithms. FEwvolutionary Computation,

2(3):221-248, fall 1994.

Frans van den Bergh. An Analysis of Particle Swarm Optimization. PhD
thesis, Faculty of Natural and Agricultural Science, University of Petoria,

Pretoria, South Africa, November 2002.

David A. Van Veldhuizen. Multiobjective Evolutionary Algorithms: Clas-
sifications, Analyses, and New Innovations. PhD thesis, Department of
Electrical and Computer Engineering. Graduate School of Engineering. Air

Force Institute of Technology, Wright-Patterson AFB, Ohio, May 1999.

David A. Van Veldhuizen and Gary B. Lamont. Multiobjective Evolu-
tionary Algorithm Research: A History and Analysis. Technical Report
TR-98-03, Department of Electrical and Computer Engineering, Graduate
School of Engineering, Air Force Institute of Technology, Wright-Patterson
AFB, Ohio, 1998.

Eckart Zitzler. Fwvolutionary Algorithms for Multiobjective Optimization:
Methods and Applications. PhD thesis, Swiss Federal Institute of Technol-
ogy (ETH), Zurich, Switzerland, November 1999.

Eckart Zitzler, Kalyanmoy Deb, and Lothar Thiele. Comparison of Multi-
objective Evolutionary Algorithms: Empirical Results. Fvolutionary Com-

putation, 8(2):173-195, Summer 2000.

38

[36] Eckart Zitzler, Marco Laumanns, and Lothar Thiele. SPEA2: Improving
the Strength Pareto Evolutionary Algorithm. In K. Giannakoglou, D. Tsa-
halis, J. Periaux, P. Papailou, and T. Fogarty, editors, EUROGEN 2001.
Evolutionary Methods for Design, Optimization and Control with Applica-
tions to Industrial Problems, Athens, Greece, September 2001.

[37] Eckart Zitzler and Lothar Thiele. Multiobjective Evolutionary Algorithms:
A Comparative Case Study and the Strength Pareto Approach. IEEE
Transactions on Evolutionary Computation, 3(4):257-271, November 1999.

39

Figure Captions

Figure 1: Possible cases for the archive controller.

Figure 2: Graphical representation of the insertion of a new element in the

adaptive grid when the individual lies within the current boundaries of the grid.

Figure 3: Graphical representation of the insertion of a new element in the

adaptive grid when this lies outside the previous boundaries of the grid.

Figure 4: Behavior of our mutation operator. In the x-axis, we show the number
of iterations performed by our MOPSO, expressed as a percentage and in the y-
axis, we show the percentage of the population that is affected by the mutation

operator.

Figure 5: Pseudocode of our mutation operator. The variation of our mutation

operator is graphically shown in Figure 4.

Figure 6: Diagram that illustrates the way in which the microGA for multiob-

jective optimization works.

Figure 7: Pareto fronts produced by our MOPSO (left) and the microGA (right)

for the first test function. The true Pareto front is shown as a continuous line.

Figure 8: Pareto fronts produced by the NSGA-II (left) and PAES (right) for

the first test function.

Figure 9: Pareto fronts produced by our MOPSO (left) and the microGA (right)
for the second test function. The true Pareto front is shown as a continuous

line.

Figure 10: Pareto fronts produced by the NSGA-II (left) and PAES (right) for

the second test function.

40

Figure 11: Pareto fronts produced by our MOPSO (left) and the microGA
(right) for the third test function. The true Pareto front is shown as a continuous

line.

Figure 12: Pareto fronts produced by the NSGA-II (left) and PAES (right) for
the third test function.

Figure 13: Pareto fronts produced by our MOPSO (left) and the microGA
(right) for the fourth test function. The true Pareto front is shown as a contin-

uous line.

Figure 14: Pareto fronts produced by the NSGA-II (left) and PAES (right) for

the fourth test function.

Figure 15: Plane truss used for the fifth test function. The structural volume

and the joint displacement (A) are to be optimized.

Figure 16: Pareto fronts produced by our MOPSO (left) and the microGA
(right) for the fifth test function. The true Pareto front is shown as a continuous

line.

Figure 17: Pareto fronts produced by the NSGA-II (left) and PAES (right) for
the fifth test function.

41

Figures on Individual Pages

42

Ns = New solution

Ns

Ns<

2RBR

>

Empty
archive

Casel

Case4

Ns

Ns
S1

v

43

S1

Case2

NS ~~

S1

PRBBLEY

Ns<

Ns

S1 S1
Case 3

S5
A
S3
2
S1
Ns

Caseb

Ns=[4.6,1.2]

Ns = New solution

B®

[3

A
. /
B®
e
&b
(3
.F
®c
@H
8
&,
@«
.L
.M
0 1 2 3 5 6

44

Ns = New solution

Ns =[7.3,0.2]

A
. /
B®
e
&0
(3
.F
®c
H
@
B
O«
.L
.M
0 1 2 3 5 6

45

1.1 22 33 34 5.5 6.6 7.7
A
e
B®
@c
e
) F
G
O+
L
9,
S Kk
el
S
M @
T & N5
I
1 2 3 5 6

5.9

49

3.8

2.8

17

0.7

-0.3

abejusaiad uonendod

0.8

0.6

Iterations

46

% particle = particle to be mutated
% dims = number of dimensions (i.e., decision variables)
% currentgen = current iteration
% totgen = total number of iterations
% mutrate = mutation rate
function Mutation-Operator(particle,dims, currentgen,totgen,mutrate)
begin
if flip((1 — currentgen/totgen)3/™uirate) then
begin
wichdim=random(0,dims-1)
mutrange=(upperbound[wichdim]-lowerbound[wichdim])*(1 — currentgen /totgen)3/™utrate
ub=particle[wichdim]+mutrange
Ib=particle[wichdim]-mutrange
if Ib < lowerbound[wichdim] then Ib=lowerbound[wichdim)]
if ub > upperbound[wichdim] then ub=upperbound[wichdim)]
particle[wichdim]=RealRandom(Ib,ub)
end if

end function

47

Random
Population

Fill in

both parts
of the

population
memory

micro—GA
cycle

Population Memory

Replaceable Non-Replaceable

Initial
Population

!

Selection

!

Crossover

!

Mutation 3

!

Elitism

!

New
Population

{

Nominal
Convergence?

Filter

!

External
Memory

48

8.6

T T T T MIOPSO N
Pareto Front -------
++H “
*++\
e
| % R
EENE
T
He
Fe
ﬂ%#*‘*
8.2 ih:k\#
N
oy,
s,
E 8 +#k¥ _
*\
ﬂ+
e,
78 | t\# _
N
*,
+\
ty
76 | \‘\
*
v
7.4 , | I I I
-4 -2 . 2 4 | |
F1
86 I | | I T R T
Micro-GA N
Pareto Front -------
++ \\;\\
+ ‘\\\\
8.4 N
+ - ‘\\\\\
+ \\\\\\\
+ .
82 Py |
+ \\\\\
+ -
N ﬁ |
[T 8 | \\\\ _
+ \\\
7.8 +
X
7.6 A\
+
+
7.4 I | I : 1 -
-6 -4 > 0 2 | |
F1

49

8.6

T T T I | | | I
NSGA-l +
e Pareto Front ————-—-
8.4 - \ |
e
Mﬂ%
82 | #ﬁl\x\ |
++#+\\ \
e
. .
oy N
8| ! ‘
" ~.
*, -
o +++ \\\
e -
+ N
7.8 t | |
i :
++++ \\\
+ .
76 | iﬁ; \“\ -
+<tf> \\
+ t
-
%
7.4 | |
+
T
+
) | I I : 1 1 1 1 1
-3 -2 -1 0 1 2 3 - : 6 |
F1
86 | | I I T T T T
PAES n
e Pareto Front ———---
' ;;\\;\\ -
8.4 | o |
—
8.2 | B |
+\ S
e \‘x\\\\
8 | \ |
o -
*,
N 7 | # | |
[8 t
s .
+ \\
76 | | \\ |
+ y
+ ‘\
s
7.4 & |
*
%
! + -
7 1 1 I 1 1 | | | | |
-4 -3 -2 -1 0 1 2 3 . : 6 |
F1

50

F2

F2

MOPSO

+
Pareto Front -------
0 -i,,,,,_,,,,,_ftjmr 7
SH
*
*®
%
2+ + T
%
%,
Tty
4+ TE e 7]
#‘3@,
t
6 | %ﬁﬁﬁ 4
*
R
ﬂh
Ty
-8 ﬁ\% T
*
Fe
-10 {ﬁ@hﬂ 1
BN
B
12 . L ! : :
-20 -19 -18 -17 -16 -15 -14
F1
2 T T T T T
Micro-GA +
Pareto Front -------
ok \]
SR
+
%
",
2 | e .
2 K
++\JK
#*‘Ar.k ,,,,,,,,,,,,,,,
-4 d&% 7
*ﬁ\
Y
Y
ol ﬁ}% i
N
%,
5
- ¥,
-8 I RS]
X
%
ol b 4
ﬁh%
“+
AN +
12 . L ! : :
-20 -19 -18 -17 -16 -15 -14
F1

51

F2

F2

4+

-6 |

-8 |

NSGA-II
Pareto Front

4+

-6 |

-8 |

-10 +

PAES
Pareto Front

52

F1

-13

F2

F2

0.8

0.6

0.4

0.2

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

' ' ' 'MoPsO +
It Pareto Front -------
i
i
+
5
RS
\
AN
e
+
e
\#\
%,
ﬁﬁﬁ.\
k.
m‘wf
L ***\
’hk*
.
#\
+‘*+#
**\#
B e
H:,H
‘ﬁ*\
e
#*ﬂ\
1 1 1 1 =
0 0.2 0.4 0.6 0.8
F1
[T T T T T T T T T
§ Micro-GA +
I Pareto Front -------
B
%
L %
t&
R
r *®
**k*
B R
+,
ey
TRy
L ﬁ**
Sy -
i e,
e
+**
o
-
- Mg
H
He
oy
L R
. *#**\
I I I I I I I I I e
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
F1

53

F2

F2

11

0.9

0.8

0.7 |

0.6

0.5

0.4

0.3

0.2

0.1

0.8

0.6

0.4

0.2

"NSGAIl +
Pareto Front -------

PAES +
Pareto Front -------

.
1 1
0.4 05
F1
T T
1 1
0.4 05
F1

54

F2

F2

T T T T T T MOPSb .
Pareto Front -------
T E
|
‘ }% -
&
skt]
%
¥
4 *x
*
ﬁk\
3 Sy R
b
*‘ﬁ\#
2t T .
#\,ﬁﬂ*
—
i,
1L #H—;HF#"‘ﬂ—H—H‘ |
B e T —— |
0 1 1 1 1 1 1 1 1
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
F1
14 T T T T T T N T
Micro-GA +
Pareto Front -------
12 + .
10 E
8]
h
%
6]
%
X
%
o
s
4 “+ -
4%&\
*ﬁ#
S
+
2 F H\#*#.jk R
#N,#;%##
HW#H”*’W*HL—M;
e e
o 1 1 1 1 1 1 1 1
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F1

95

F2

F2

NSGA-II

+
Pareto Front -------
7 E _
i
6 -% _
5
5 % _
%g
5
ﬁ‘*
4r % _
%
kS
3 ﬁk‘ _
4@)&
*‘*ﬁ
+\+\\+
2| T _
+»#\$»
+**4\—+\
1 ’**‘“ﬁ‘“—f—jkf——«r 1
e e TR Rt R
0 | I I) | 1 1 1
01 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
F1
12 I : . T T T T
PAES +
Pareto Front -------
10 _
|]
%
3
6 -t _
Y
*
b
- * |
4 LY
h%*w\
T
2 b T _
s S
“+~+ﬂ+7+++—~»—4++~
B s e A ST
O I I I) | 1 1 1
01 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

F1

56

57

F2

F2

0.035

4 ' ' ' ' MOPSO +
% Pareto Front -------
N
0.03 | & i
X
%
:?
0.025 |- *:ﬁ} .
ﬁ*ﬁ
Y
0.02 + 4 B
ﬁ*\
%
‘%\
\#‘4&
0.015 X, —
ﬁk{*
S
\ﬂ;\f
0.01 | I, e
fk++*
-,
ey,
Fe
0.005 | . i
+*F‘*+4#
SN
0 1 1 1 1 1 1
1100 1200 1300 1400 1500 1600 1700 1800
F1
0.035 T T T T T — T
Ny Micro-GA +
\ " Pareto Front -------
+
%
0.03 | W i
#
\\\i
0.025 | hen 4
%
0.02 V%%
. tt‘;\
0.015 |- %, -
*ﬁtd#
&+
,
0.01 | He, 7
= .
v
"y,
0.005 |- L 4
Tt |
0 1 1 1 1 1 1
1100 1200 1300 1400 1500 1600 1700 1800
F1

58

F2

F2

0.035 T T T T T T
\ NSGA-II +
\ Pareto Front -------

0.03 N 4

0.025 X —

0.015 - % -

0.005

1100 1200 1300 1400 1500 1600 1700 1800
F1

\ PAES +
% Pareto Front -------
*

0.025 t% E

0.015 e E
0.01 | has g

0.005 T]

0 1 1 1 1 1 1
1100 1200 1300 1400 1500 1600 1700 1800

F1

59

Table Captions

Table 1: Results of the Error Ratio metric for the first test function.
Table 2: Results of the Generational Distance metric for the first test function.
Table 3: Results of the Spacing metric for the first test function.

Table 4: Computational time (in seconds) required by each algorithm for the

first test function.
Table 5: Results of the Error Ratio metric for the second test function.

Table 6: Results of the Generational Distance metric for the second test func-

tion.
Table 7: Results of the Spacing metric for the second test function.

Table 8: Computational time (in seconds) required by each algorithm for the

second test function.

Table 9: Results of the Error Ratio metric for the third test function.

Table 10: Results of the Generational Distance metric for the third test function.
Table 11: Results of the Spacing metric for the third test function.

Table 12: Computational time (in seconds) required by each algorithm for the

third test function.
Table 13: Results of the Error Ratio metric for the fourth test function.

Table 14: Results of the Generational Distance metric for the fourth test func-

tion.

Table 15: Results of the Spacing metric for the fourth test function.

60

Table 16: Computational time (in seconds) required by each algorithm for the

fourth test function.

Table 17: Results of the Error Ratio metric for the fifth test function.

Table 18: Results of the Generational Distance metric for the fifth test function.
Table 19: Results of the Spacing metric for the fifth test function.

Table 20: Computational time (in seconds) required by each algorithm for the

fifth test function.

Table 21: Results of experiment 1 for the first test function. MOPSO (no)
refers to the version of our approach without mutation and MOPSO (yes)
refers to the version with mutation. ER = Error Ratio, GD = Generational

Distance, SP = Spacing.

Table 22: Results of experiment 1 for the second test function. MOPSO (no)
refers to the version of our approach without mutation and MOPSO (yes)
refers to the version with mutation. ER = Error Ratio, GD = Generational

Distance, SP = Spacing.

Table 23: Results of experiment 1 for the third test function. MOPSO (no)
refers to the version of our approach without mutation and MOPSO (yes)
refers to the version with mutation. ER = Error Ratio, GD = Generational

Distance, SP = Spacing.

Table 24: Results of experiment 1 for the fourth test function. MOPSO (no)
refers to the version of our approach without mutation and MOPSO (yes)
refers to the version with mutation. ER = Error Ratio, GD = Generational

Distance, SP = Spacing.

61

Table 25: Results of experiment 1 for the fifth test function. MOPSO (no)
refers to the version of our approach without mutation and MOPSO (yes)
refers to the version with mutation. ER = Error Ratio, GD = Generational

Distance, SP = Spacing.

Table 26: Results of experiment 2 for the first test function. We analyze the
effect of the number of divisions on the three metrics adopted in our study (i.e.,

Error Ratio, Generational Distance and Spacing).

Table 27: Results of experiment 2 for the second test function. We analyze the
effect of the number of divisions on the three metrics adopted in our study (i.e.,

Error Ratio, Generational Distance and Spacing).

Table 28: Results of experiment 2 for the third test function. We analyze the
effect of the number of divisions on the three metrics adopted in our study (i.e.,

Error Ratio, Generational Distance and Spacing).

Table 29: Results of experiment 2 for the fourth test function. We analyze the
effect of the number of divisions on the three metrics adopted in our study (i.e.,

Error Ratio, Generational Distance and Spacing).

Table 30: Results of experiment 2 for the fifth test function. We analyze the
effect of the number of divisions on the three metrics adopted in our study (i.e.,

Error Ratio, Generational Distance and Spacing).

Table 31: Results of experiment 3 for the first test function. We analyze the
effect of the number of particles of the swarm on the three metrics adopted in

our study (i.e., Error Ratio, Generational Distance and Spacing).

Table 32: Results of experiment 3 for the second test function. We analyze the
effect of the number of particles of the swarm on the three metrics adopted in

our study (i.e., Error Ratio, Generational Distance and Spacing).

62

Table 33: Results of experiment 3 for the third test function. We analyze the
effect of the number of particles of the swarm on the three metrics adopted in

our study (i.e., Error Ratio, Generational Distance and Spacing).

Table 34: Results of experiment 3 for the fourth test function. We analyze the
effect of the number of particles of the swarm on the three metrics adopted in

our study (i.e., Error Ratio, Generational Distance and Spacing).

Table 35: Results of experiment 3 for the fifth test function. We analyze the
effect of the number of particles of the swarm on the three metrics adopted in

our study (i.e., Error Ratio, Generational Distance and Spacing).

Table 36: Results of experiment 4 for the first test function. We analyze the
effect of the size of the external repository (i.e., the secondary population of
our MOPSO) on the three metrics adopted in our study (i.e., Error Ratio,

Generational Distance and Spacing).

Table 37: Results of experiment 4 for the second function. We analyze the
effect of the size of the external repository (i.e., the secondary population of
our MOPSO) on the three metrics adopted in our study (i.e., Error Ratio,

Generational Distance and Spacing).

Table 38: Results of experiment 4 for the third test function. We analyze
the effect of the size of the external repository (i.e., the secondary population
of our MOPSO) on the three metrics adopted in our study (i.e., Error Ratio,

Generational Distance and Spacing).

Table 39: Results of experiment 4 for the fourth test function. We analyze
the effect of the size of the external repository (i.e., the secondary population
of our MOPSO) on the three metrics adopted in our study (i.e., Error Ratio,

Generational Distance and Spacing).

63

Table 40: Results of experiment 4 for the fifth test function. We analyze the
effect of the size of the external repository (i.e., the secondary population of
our MOPSO) on the three metrics adopted in our study (i.e., Error Ratio,

Generational Distance and Spacing).

64

Tables on Individual Pages

65

ER MOPSO | NSGA-II | microGA | PAES
Best 0.08 0.75 0.734694 0.93
Worst 0.27 0.99 1.01639 1.01
Average | 0.132532 0.8965 0.927706 0.993
Median 0.14 0.92 0.936365 1.01
Std. Dev. | 0.045007 0.067143 0.068739 | 0.025361

66

GD MOPSO | NSGA-II | microGA | PAES
Best 0.002425 0.003885 0.00513 0.011321
Worst 0.476815 0.678449 0.912065 | 0.919167
Average | 0.036535 | 0.084239 0.150763 | 0.193173
Median 0.007853 0.011187 0.089753 | 0.033289
Std. Dev. | 0.104589 0.165244 0.216558 | 0.249653

67

SP MOPSO | NSGA-IT | microGA | PAES
Best 0.043982 | 0.001032 0.06561 0.006669
Worst 0.538102 1.48868 1.64386 0.432865
Average | 0.109452 | 0.098486 0.31502 0.110103
Median 0.06748 0.027173 0.129744 | 0.081999
Std. Dev. | 0.110051 0.32738 0.421742 | 0.099598

68

time MOPSO | NSGA-II | microGA | PAES
Best 0.007 0.989 0.362 7.369
Worst 0.272 1.135 0.513 8.331
Average 0.2512 1.08815 0.41895 7.77665
Median 0.264 1.1085 0.418 7.805
Std. Dev. | 0.0575569 | 0.043216 0.036957 | 0.288103

69

ER MOPSO | NSGA-IT | microGA | PAES
Best 0.18 0.06 0.18 0.10
Worst 0.37 1.01 0.36 0.68
Average 0.2535 0.56 0.27 0.27
Median 0.255 0.495 0.245 0.245

Std. Dev. | 0.04082 0.384516 0.053947 | 0.10489

70

GD MOPSO | NSGA-II | microGA | PAES
Best 0.00745 0.006905 0.006803 0.01467
Worst 0.00960 0.103095 0.010344 | 0.157191
Average | 0.008450 | 0.029255 0.008456 0.54914
Median 0.00845 0.017357 0.008489 | 0.049358
Std. Dev. | 0.00051 0.02717 0.000987 | 0.030744

71

SP MOPSO | NSGA-IT | microGA | PAES
Best 0.06187 0.018418 0.071686 | 0.064114
Worst 0.118445 | 0.065712 0.203127 | 0.340955
Average 0.09747 | 0.036136 | 0.128895 | 0.197532
Median 0.10396 0.036085 0.126655 | 0.186632
Std. Dev. | 0.01675 0.010977 0.029932 | 0.064114

72

time MOPSO | NSGA-II | microGA | PAES
Best 0.155 2.181 0.295 0.938
Worst 0.168 2.693 0.345 1.39
Average | 0.162158 | 2.426789 0.32695 1.12615
Median 0.161 2.461 0.3325 1.121
Std. Dev. | 0.003468 0.171008 0.014813 | 0.105224

73

ER MOPSO | NSGA-IT | microGA | PAES
Best 0.19 0.0 0.02 0.06
Worst 0.55 1.01 1.04545 1.01
Average 0.3335 0.35 0.2568 0.4485
Median 0.3 0.20 0.19 0.24
Std. Dev. | 0.09388 0.396153 0.256456 | 0.381993

74

GD MOPSO | NSGA-II | microGA | PAES
Best 8.61x 107° | 0.000133 | 8.74 x 1075 | 0.000114
Worst 0.000191 0.163146 | 0.811403 | 1.99851
Average | 0.000118 | 0.023046 | 0.047049 | 0.163484
Median 0.000111 0.000418 | 0.000236 | 0.058896
Std. Dev. | 2.55 x 1075 | 0.045429 | 0.181155 | 0.441303

75

SP MOPSO | NSGA-IT | microGA | PAES
Best 0.00727 0.000205 0.007596 | 0.009164
Worst 0.018676 | 0.010234 5.56727 19.8864

Average | 0.010392 0.00369 0.341659 | 1.114617
Median 0.009542 | 0.002094 0.2995 0.018755
Std. Dev. | 0.002782 | 0.003372 1.247561 | 4.434594

76

time MOPSO | NSGA-IT | microGA | PAES
Best 0.054 0.624 0.282 0.311
Worst 0.085 0.725 0.345 1.089

Average 0.0721 0.69355 0.30115 0.71525
Median 0.0725 0.6975 0.2995 0.73

Std. Dev. | 0.00784 0.020028 0.016255 | 0.29049

7

ER MOPSO | NSGA-IT | microGA | PAES
Best 0.0 0.02 0.08 0.02
Worst 1.01 1.01 1.01 1.01
Average 0.25658 0.41450 0.25200 | 0.48900
Median 0.045 0.115 0.16 0.28
Std. Dev. | 0.400658 | 0.459387 0.231576 | 0.438117

78

GD MOPSO | NSGA-IT | microGA | PAES
Best 0.00043 0.0007 0.000465 | 0.000453
Worst 0.18531 0.208467 0.183501 | 0.221671
Average | 0.03273 0.044236 0.043466 | 0.194767
Median 0.00051 0.000856 0.050042 | 0.070365
Std. Dev. | 0.06062 0.07368 0.048212 | 0.204687

79

SP MOPSO | NSGA-IT | microGA | PAES
Best 0.04007 0.026086 0.030267 | 0.047844
Worst 0.58185 0.061422 0.817642 | 0.664676

Average 0.08358 | 0.037447 | 0.213584 | 0.194767
Median 0.05494 0.035529 0.06301 0.070365
Std. Dev. | 0.11821 0.009238 0.250586 | 0.204687

80

time MOPSO | NSGA-IT | microGA | PAES
Best 0.214 1.426 0.136 0.777
Worst 0.379 1.653 0.158 1.236
Average 0.27675 1.5871 0.1437 1.0544
Median 0.2535 1.633 0.142 1.0605
Std. Dev. | 0.054883 | 0.073463 0.005667 | 0.094123

81

ER MOPSO | NSGA-IT | microGA | PAES
Best 0.07 0.11 0.53 0.09
Worst 0.35 0.96 1.01351 0.39
Average 0.22550 0.35200 0.89836 0.21600
Median 0.235 0.23 0.989689 0.22
Std. Dev. | 0.063534 0.26365 0.163529 | 0.078967

82

GD MOPSO | NSGA-IT | microGA | PAES
Best 0.306646 0.250678 0.263584 | 0.149926
Worst 0.462209 0.462011 7.11616 6.04106
Average | 0.374129 | 0.360182 0.91025 0.973388
Median 0.3679 0.368241 0.383652 | 0.232008
Std. Dev. | 0.042228 0.047016 1.705316 | 1.821166

83

SP MOPSO | NSGA-IT | microGA | PAES
Best 2.13706 1.80346 2.20101 5.95558
Worst 2.97969 2.7608 70.1234 28.4336

Average | 2.530339 | 2.363556 | 8.274281 | 3.231429
Median 2.501015 2.40616 3.11687 1.812675
Std. Dev. | 0.227512 0.255117 16.83111 5.95558

84

time MOPSO | NSGA-IT | microGA | PAES
Best 0.133 1.814 0.151 2.259
Worst 0.152 2.083 0.178 2.562
Average 0.1443 1.9317 0.1657 2.38285
Median 0.144 1.9055 0.168 2.376
Std. Dev. | 0.05823 0.090874 0.008221 | 0.074412

85

ER GD SP
MOPSO | MOPSO | MOPSO MOPSO | MOPSO | MOPSO
(no) | (yes) (no) (ves) (no) | (ves)

Best 0.49 0.08 0.00349891 | 0.00242521 0.04247 0.04398
Worst 1.11111 0.27 1.82596 0.476815 3.01586 0.53810
Average 0.85441 0.13253 0.45625 0.03653 0.72153 0.10945
Median 0.89483 0.14 0.08953 0.00785 0.2008595 | 0.0674799
Std. Dev. 0.23121 0.04501 0.60545 0.10459 0.88902 0.11005

86

ER GD SP
MOPSO | MOPSO | MOPSO | MOPSO | MOPSO | MOPSO
(no) | (ves) | (mo) | (ves) | (no) | (yes)

Best 0.863636 0.18 0.04077 0.00745 0.01395 0.06187
Worst 1.2 0.37 0.22021 0.00960 3.09499 0.118445
Average 1.01719 0.2535 0.08285 0.00845 0.35047 0.09747

Median 1.01 0.255 0.06083 0.00845 0.18558 0.10396

Std. Dev. 0.05959 0.04082 0.05241 0.00051 0.67227 0.01675

87

ER GD SP
MOPSO | MOPSO | MOPSO | MOPSO | MOPSO | MOPSO
(no) | (yes) | (no) (ves) | (no) | (ves)
Best 0.15 0.19 8.27x1075 | 8.61x107° 0.00579 0.00727
Worst 0.59 0.55 0.00809 0.00019 0.08049 0.01867
Average 0.31 0.3335 0.00059 0.00012 0.01309 0.01039
Median 0.295 0.3 0.00013 0.00011 0.00905 0.00954
Std. Dev. 0.10458 0.09388 0.00178 2.55%107° 0.01603 0.00279

88

ER GD SP
MOPSO | MOPSO | MOPSO | MOPSO | MOPSO | MOPSO
(no) | (ves) | (mo) | (ves) | (no) | (yes)
Best 0.01 0.0 0.00044 0.00043 0.03889 0.04007
Worst 1.01 1.01 0.21435 0.18531 0.42262 0.58185
Average 0.76298 0.25658 0.08694 0.03273 0.14773 0.08358
Median 1.01 0.045 0.09038 0.00051 0.11322 0.05494
Std. Dev. 0.43352 0.40066 0.06455 0.06062 0.10974 0.11821

89

ER GD SP
MOPSO | MOPSO | MOPSO | MOPSO | MOPSO | MOPSO
(no) | (ves) | (mo) | (ves) | (no) | (yes)
Best 0.04 0.07 0.41863 0.30665 0.42447 2.13706
Worst 1.07143 0.35 80.1206 0.46221 162.678 2.97969
Average 0.57479 0.2255 18.22747 0.37413 29.67843 2.53034
Median 0.58852 0.235 5.65958 0.3679 11.00947 2.50102
Std. Dev. 0.49477 0.06353 23.19053 0.04223 41.83782 0.22751

90

ERROR RATIO

Cell divisions 5 10 20 30 40 50
Best 0.28 0.54 0.39 0.08 0.05 0.06
Worst 1.01 1 0.980769 0.27 0.18 0.18

Average 0.45415 | 0.72810 | 0.75574 | 0.13253 | 0.11729 | 0.1198
Median 0.40707 0.72 0.79545 0.14 0.125 0.12
Std. Dev. 0.18113 | 0.11255 | 0.13408 | 0.04501 | 0.04026 | 0.03559

GENERATIONAL DISTANCE

Cell divisions 5 10 20 30 40 50
Best 0.00356 | 0.00512 | 0.00563 | 0.00242 | 0.00235 | 0.00243
Worst 1.77886 | 0.22063 | 0.21974 | 0.47682 | 0.07275 | 0.15988

Average 0.10774 | 0.05913 | 0.05340 | 0.03653 | 0.01609 | 0.02372

Median 0.00509 | 0.02902 | 0.02986 | 0.00785 | 0.00668 | 0.01322

Std. Dev. 0.39607 | 0.06338 | 0.05917 | 0.10459 | 0.01812 | 0.03579
SPACING

Cell divisions 5 10 20 30 40 50
Best 0.05675 | 0.05905 | 0.05817 | 0.04398 | 0.04239 | 0.04835
Worst 0.21458 | 1.0411 1.1096 0.53810 | 0.72031 | 0.66442

Average 0.09535 | 0.29755 | 0.31191 | 0.10945 | 0.12982 | 0.17126
Median 0.08607 | 0.17277 | 0.19864 | 0.06748 | 0.06147 | 0.10217
Std. Dev. 0.04063 | 0.30204 | 0.30952 | 0.11005 | 0.16127 | 0.18638

91

ERROR RATIO

Cell divisions 5 10 20 30 40 50
Best 0.2 0.19 0.18 0.18 0.18 0.14
Worst 0.42 0.35 0.37 0.33 0.29 0.23

Average 0.30318 0.285 0.2535 | 0.24762 0.22 0.20510
Median 0.3 0.295 0.255 0.24 0.22 0.21
Std. Dev. 0.06381 | 0.04261 | 0.04082 | 0.03638 | 0.02956 | 0.02437

GENERATIONAL DISTANCE

Cell divisions 5 10 20 30 40 50
Best 0.00697 | 0.00768 | 0.00745 | 0.00780 | 0.00769 | 0.00801
Worst 0.01075 | 0.00934 | 0.00960 | 0.01309 | 0.00931 | 0.00956

Average 0.00849 | 0.00828 | 0.00845 | 0.00889 | 0.00857 | 0.00865

Median 0.00862 | 0.00819 | 0.00845 | 0.00851 | 0.00841 | 0.00868

Std. Dev. 0.00093 | 0.00042 | 0.00051 | 0.00122 | 0.00046 | 0.00040
SPACING

Cell divisions 5 10 20 30 40 50
Best 0.07320 | 0.06548 | 0.06187 | 0.06295 | 0.08090 | 0.07978
Worst 0.14142 | 0.12332 | 0.11845 | 0.13972 | 0.13736 | 0.14486

Average 0.10787 | 0.09961 | 0.09747 | 0.08995 | 0.11222 | 0.11151
Median 0.11129 | 0.10683 | 0.10396 | 0.09610 | 0.11287 | 0.10892
Std. Dev. 0.02134 | 0.01827 | 0.01675 | 0.02116 | 0.01319 | 0.015523

92

ERROR RATIO

Cell divisions 5 10 20 30 40 50

Best 0.21 0.27 0.2 0.19 0.09 0.17

Worst 0.68 0.72 0.57 0.55 0.42 0.46
Average 0.38909 0.47718 0.36158 0.33350 0.29263 0.30316

Median 0.34 0.5 0.35 0.3 0.31 0.31
Std. Dev. 0.14866 0.14029 0.08668 0.09388 0.08054 0.06351

GENERATIONAL DISTANCE
Cell divisions 5 10 20 30 40 50
Best 7.98 x 1075 | 8.69 x 107° | 8.60 x 107° | 8.61 x 10~ | 8.46 x 107 | 7.46 x 105
Worst 0.00177 0.02428 0.01489 0.00019 0.00022 0.00023
Average 0.00033 0.00242 0.00091 0.00012 0.00013 0.00013
Median 0.00016 0.00022 0.00012 0.00011 0.00013 0.00010
Std. Dev. 0.00045 0.00618 0.00339 2.55x 1075 | 4.41 x 107° | 5.53 x 1075
SPACING

Cell divisions 5 10 20 30 40 50
Best 0.00805 0.00712 0.00505 0.00727 0.00739 0.00520
Worst 0.01868 0.15427 0.14811 0.01868 0.01613 0.01731
Average 0.01203 0.01871 0.01724 0.01039 0.01013 0.01174
Median 0.01132 0.01059 0.01044 0.00954 0.00932 0.01116
Std. Dev. 0.00267 0.03210 0.03176 0.00279 0.00249 0.00349

93

ERROR RATIO

Cell divisions 5 10 20 30 40 50

Best 0.01 0.0 0.0 0.0 0.0 0.03

Worst 1.01 1.01 1.01 1.01 1.01 1.01
Average 0.58631 | 0.18100 | 0.34600 | 0.25658 | 0.66142 | 0.85493

Median 0.93299 0.04 0.06 0.045 0.98958 1.01
Std. Dev. 0.48109 | 0.35683 | 0.45142 | 0.40066 | 0.44671 | 0.34145

GENERATIONAL DISTANCE

Cell divisions 5 10 20 30 40 50
Best 0.00049 | 0.00040 | 0.00039 | 0.00043 | 0.00044 | 0.00045
Worst 0.591756 | 0.164373 | 0.156151 | 0.185306 | 0.303403 | 0.390608
Average 0.11665 | 0.02338 | 0.04609 | 0.03273 | 0.10639 | 0.15231
Median 0.13933 | 0.00054 | 0.00051 | 0.00051 | 0.12305 | 0.14304
Std. Dev. 0.13692 | 0.05597 | 0.06643 | 0.06062 | 0.09447 | 0.09062

SPACING

Cell divisions 5 10 20 30 40 50
Best 0.04078 | 0.04012 | 0.03507 | 0.04007 | 0.04370 | 0.05807
Worst 0.56897 | 0.10237 | 0.57664 | 0.58185 | 0.16255 | 0.19214
Average 0.10366 | 0.06207 | 0.08479 | 0.08358 | 0.08959 | 0.09852
Median 0.08074 | 0.05985 | 0.06026 | 0.05494 | 0.09173 | 0.08426
Std. Dev. 0.11193 | 0.01436 | 0.11626 | 0.11821 | 0.03121 | 0.03650

94

ERROR RATIO

Cell divisions 5 10 20 30 40 50
Best 0.1 0.13 0.11 0.07 0.17 0.15
Worst 0.45 0.61 0.31 0.35 0.32 0.38
Average 0.2325 | 0.2515 | 0.216 0.2255 0.242 0.2245
Median 0.22 0.24 0.21 0.235 0.24 0.205

Std. Dev. 0.08303 | 0.11301 | 0.04946 | 0.06353 | 0.03736 | 0.06320

GENERATIONAL DISTANCE

Cell divisions 5 10 20 30 40 50
Best 0.23876 | 0.31383 | 0.30815 | 0.30665 | 0.31681 | 0.31458
Worst 0.85455 | 1.71286 | 0.60339 | 0.46221 | 2.45391 | 2.09210
Average 0.42063 | 0.47934 | 0.41192 | 0.37413 | 0.60619 | 0.47138
Median 0.40279 | 0.38630 | 0.38164 | 0.36790 | 0.40450 | 0.37482
Std. Dev. 0.12363 | 0.32707 | 0.08635 | 0.04223 | 0.50437 | 0.38414

SPACING

Cell divisions 5 10 20 30 40 50
Best 2.31593 | 2.65061 | 2.15975 | 2.13706 | 1.98569 | 1.93643
Worst 6.625 | 7.84865 | 3.61638 | 2.97969 | 8.98066 | 18.6239
Average 3.47514 | 3.42916 | 2.75623 | 2.53034 | 3.12892 | 3.20783
Median 3.31644 | 3.15755 | 2.69052 | 2.50102 | 2.24099 | 2.46743

Std. Dev. 0.88237 | 1.09678 | 0.41661 | 0.22751 | 2.23027 | 3.63706

95

ERROR RATIO

Particles 5 25 50 75 100
Best 0.24 0.42424 0.37 0.47 0.08
Worst 0.6 0.82759 | 0.77778 0.73 0.27

Average 0.5075 | 0.54346 | 0.57114 | 0.57197 | 0.13253
Median 0.53 0.535 0.595 | 0.57288 0.14
Std. Dev. | 0.08540 | 0.08065 | 0.09173 | 0.06391 | 0.04501
GENERATIONAL DISTANCE

Particles 5 25 50 75 100
Best 0.00126 | 0.00259 | 0.00287 | 0.00259 | 0.00243
Worst 0.03149 | 0.01526 | 0.05831 | 0.07369 | 0.47682

Average | 0.00634 | 0.00712 | 0.02057 | 0.00978 | 0.03653

Median 0.00432 | 0.00563 | 0.01294 | 0.00503 | 0.00785

Std. Dev. | 0.00747 | 0.00387 | 0.01834 | 0.01596 | 0.10459
SPACING

Particles 5 25 50 75 100
Best 0.02307 | 0.04656 | 0.04960 | 0.04983 | 0.04398
Worst 0.22192 | 0.18141 | 0.52492 | 0.71090 | 0.53810

Average | 0.06898 | 0.07565 | 0.18725 | 0.10842 | 0.10945
Median 0.05786 | 0.06587 | 0.13833 | 0.06655 | 0.06748
Std. Dev. | 0.03924 | 0.03112 | 0.15247 | 0.14883 | 0.11005

96

ERROR RATIO

Particles 5 25 50 75 100
Best 0.15 0.17 0.21 0.18 0.18
Worst 0.31 0.34 0.34 0.3 0.2476212

Average | 0.24313 | 0.2485 0.259 0.2465 0.2400

Median 0.235 0.25 0.26 0.25 0.03637

Std. Dev. | 0.04228 | 0.05153 | 0.03878 | 0.03645 0.33
GENERATIONAL DISTANCE

Particles 5 25 50 75 100
Best 0.00787 | 0.00796 | 0.00782 | 0.00809 | 0.00780
Worst 0.01177 | 0.01369 | 0.01019 | 0.01061 | 0.00888

Average | 0.00894 | 0.00938 | 0.00871 | 0.00891 | 0.00850

Median | 0.00863 | 0.00864 | 0.00860 | 0.00888 | 0.00121

Std. Dev. | 0.00088 | 0.00156 | 0.00070 | 0.00062 | 0.01308
SPACING

Particles 5 25 50 75 100
Best 0.06121 | 0.05637 | 0.06087 | 0.05174 | 0.06295
Worst 0.11862 | 0.11761 | 0.11587 | 0.11817 | 0.08995

Average | 0.09271 | 0.08284 | 0.08601 | 0.08617 | 0.09609
Median | 0.09778 | 0.08467 | 0.09026 | 0.08768 | 0.02115
Std. Dev. | 0.01657 | 0.02083 | 0.01847 | 0.01960 | 0.13971

97

ERROR RATIO

Particles 5 25 50 75 100
Best 0 0.02 0.08 0.09 0.19
Worst 1.01 0.21 0.24 0.36 0.55

Average | 0.16600 | 0.09800 | 0.16500 | 0.20750 | 0.33350

Median 0.115 0.095 0.17 0.19 0.3

Std. Dev. | 0.21117 | 0.05258 | 0.04583 | 0.07326 | 0.09388

GENERATIONAL DISTANCE

Particles 5 25 50 75 100
Best 0.00007 | 0.00007 | 0.00008 | 0.00009 | 0.00009
Worst 0.05353 | 0.00071 | 0.00018 | 0.00021 | 0.00019

Average | 0.00279 | 0.00014 | 0.00011 | 0.00013 | 0.00012

Median 0.00011 | 0.00010 | 0.00011 | 0.00011 | 0.00011

Std. Dev. | 0.01194 | 0.00014 | 0.00003 | 0.00004 | 0.00003

SPACING

Particles 5 25 50 75 100
Best 0.00002 | 0.00532 | 0.00667 | 0.00708 | 0.00727
Worst 0.01354 | 0.04091 | 0.01238 | 0.01290 | 0.01868

Average | 0.00904 | 0.01111 | 0.00960 | 0.00919 | 0.01039

Median 0.00952 | 0.00970 | 0.00956 | 0.00914 | 0.00954

Std. Dev. | 0.00300 | 0.00718 | 0.00129 | 0.00125 | 0.00279

98

ERROR RATIO

Particles 5 25 50 75 100
Best 0.01 0 0 0 0
Worst 1.01 1.01 1.01 1.01 1.01

Average | 0.86500 | 0.71200 | 0.39766 | 0.49818 | 0.25658
Median 1.01 1.01 0.1 0.341804 0.045
Std. Dev. | 0.35432 | 0.46706 | 0.45827 | 0.48586 | 0.40066
GENERATIONAL DISTANCE

Particles 5 25 50 75 100
Best 0.00048 | 0.00046 | 0.00045 | 0.00045 | 0.00043
Worst 0.14645 | 0.14212 | 0.37819 | 0.16711 | 0.18531

Average | 0.10816 | 0.09075 | 0.05838 | 0.06060 | 0.03273

Median | 0.12709 | 0.12435 | 0.00059 | 0.00127 | 0.00051

Std. Dev. | 0.04866 | 0.06091 | 0.09647 | 0.06872 | 0.06062
SPACING

Particles 5 25 50 75 100
Best 0.04904 | 0.03780 | 0.03579 | 0.02803 | 0.04007
Worst 0.11174 | 0.09069 | 0.36344 | 0.17196 | 0.58185

Average | 0.07935 | 0.06785 | 0.07502 | 0.06702 | 0.08358
Median | 0.08319 | 0.07096 | 0.05443 | 0.06242 | 0.05494
Std. Dev. | 0.01712 | 0.01521 | 0.07090 | 0.02956 | 0.11821

99

ERROR RATIO

Particles 5 25 50 75 100
Best 0.12 0.08 0.14 0.15 0.07
Worst 1.01 0.35 0.41 0.31 0.35

Average 0.31950 | 0.22700 | 0.21250 | 0.22200 | 0.22550
Median 0.26 0.24 0.205 0.215 0.235
Std. Dev. | 0.23887 | 0.07292 | 0.05999 | 0.04948 | 0.06353
GENERATIONAL DISTANCE

Particles 5 25 50 75 100
Best 0.31270 | 0.29963 | 0.33139 | 0.29349 | 0.30665
Worst 0.50351 | 1.34638 | 0.60252 | 4.62551 | 0.46221

Average | 0.37668 | 0.40763 | 0.39296 | 0.56956 | 0.37413

Median 0.35866 | 0.35980 | 0.36643 | 0.35580 | 0.36790

Std. Dev. | 0.05112 | 0.22259 | 0.06636 | 0.95523 | 0.04223
SPACING

Particles 5 25 50 75 100
Best 1.80515 | 1.75635 | 1.87571 | 2.10319 | 2.13706
Worst 2.91673 | 3.30144 | 3.17307 | 28.43200 | 2.97969

Average | 2.38988 | 2.59673 | 2.52440 | 3.80488 | 2.53034
Median 2.35045 | 2.62423 | 2.54916 | 2.53711 | 2.50102
Std. Dev. | 0.29995 | 0.34920 | 0.29610 | 5.79950 | 0.22751

100

ERROR RATIO

Expected points 100 150 200 250
Best 0.08 0.488722 | 0.49629 0.45323
Worst 0.27 0.66 0.78461 0.70270
Average 0.13253 | 0.58440 0.57143 0.56506
Median 0.14 0.584846 | 0.5509705 | 0.553914
Std. Dev. 0.04501 | 0.04158 0.07332 0.06467

GENERATIONAL DISTANCE

Expected points 100 150 200 250
Best 0.00243 | 0.00201 0.00207 0.00212
Worst 0.47682 | 0.09917 0.11489 0.09834
Average 0.03653 | 0.01485 | 0.02021 0.01976
Median 0.00785 | 0.00456 0.00457 0.01088
Std. Dev. 0.10459 | 0.02482 0.02983 0.02552

SPACING

Expected points 100 150 200 250
Best 0.04398 | 0.03174 0.02928 0.03643
Worst 0.53810 | 1.03857 1.23382 0.81578
Average 0.10945 | 0.13679 0.17168 0.18083
Median 0.06748 | 0.04995 0.05892 0.07891
Std. Dev. 0.11005 | 0.24057 0.27305 0.20594

101

ERROR RATIO

Expected points 100 150 200 250
Best 0.18 0.106667 0.16 0.16
Worst 0.37 0.273333 0.265 0.295
Average 0.25350 | 0.22567 | 0.21644 | 0.21601
Median 0.255 | 0.233333 | 0.2175 0.21
Std. Dev. 0.04082 | 0.03543 | 0.02666 | 0.03609
GENERATIONAL DISTANCE
Expected points 100 150 200 250
Best 0.00745 | 0.00635 | 0.00500 | 0.00520
Worst 0.00960 | 0.00868 | 0.00606 | 0.00643
Average 0.00845 | 0.00695 | 0.00562 | 0.00577
Median 0.00845 | 0.00686 | 0.00562 | 0.00581
Std. Dev. 0.00051 | 0.00049 | 0.00023 | 0.00033
SPACING
Expected points 100 150 200 250
Best 0.06187 | 0.04532 | 0.03444 | 0.03382
Worst 0.11845 | 0.08894 | 0.08050 | 0.08372
Average 0.09747 | 0.06817 | 0.06134 | 0.06098
Median 0.10396 | 0.07113 | 0.06701 | 0.06824
Std. Dev. 0.01675 | 0.01655 | 0.01512 | 0.01632

102

ERROR RATIO

Expected points 100 150 200 250
Best 0.19 0.233333 0.245 0.216
Worst 0.55 0.44 0.415 0.44
Average 0.33350 | 0.34133 | 0.32400 | 0.32169
Median 0.3 0.3566665 | 0.325 0.316
Std. Dev. 0.09388 | 0.06301 | 0.03932 | 0.05781
GENERATIONAL DISTANCE
Expected points 100 150 200 250
Best 0.00009 | 0.00007 | 0.00007 | 0.00005
Worst 0.00019 | 0.00026 | 0.00056 | 0.00015
Average 0.00012 | 0.00012 | 0.00012 | 0.00008
Median 0.00011 | 0.00011 | 0.00008 | 0.00007
Std. Dev. 0.00003 | 0.00005 | 0.00013 | 0.00003
SPACING
Expected points 100 150 200 250
Best 0.00727 | 0.00577 | 0.00436 | 0.00342
Worst 0.01868 | 0.00765 | 0.00905 | 0.00447
Average 0.01039 | 0.00641 | 0.00513 | 0.00400
Median 0.00954 | 0.00638 | 0.00469 | 0.00406
Std. Dev. 0.00279 | 0.00051 | 0.00113 | 0.00033

103

ERROR RATIO

Expected points 100 150 200 250
Best 0 0 0.005 0.008
Worst 1.01 1.00667 | 1.00505 1.004
Average 0.25658 | 0.46418 | 0.36650 | 0.22180
Median 0.045 | 0.2433335 0.03 0.028
Std. Dev. 0.40066 | 0.47132 | 0.48078 | 0.40142
GENERATIONAL DISTANCE
Expected points 100 150 200 250
Best 0.00043 | 0.00035 | 0.00033 | 0.00031
Worst 0.18531 | 0.11823 | 0.11565 | 0.08754
Average 0.03273 | 0.04547 | 0.03478 | 0.01751
Median 0.00051 | 0.00051 | 0.00039 | 0.00034
Std. Dev. 0.06062 | 0.05263 | 0.04832 | 0.03523
SPACING
Expected points 100 150 200 250
Best 0.04007 | 0.02697 | 0.02113 | 0.01599
Worst 0.58185 | 0.59909 | 0.05147 | 0.03218
Average 0.08358 | 0.06911 | 0.02944 | 0.02232
Median 0.05494 | 0.03955 | 0.02798 | 0.02167
Std. Dev. 0.11821 | 0.12519 | 0.00774 | 0.00476

104

ERROR RATIO

Expected points 100 150 200 250

Best 0.07 0.153333 | 0.105 0.124

Worst 0.35 0.313333 | 0.395 0.3
Average 0.22550 | 0.21767 | 0.22775 | 0.20685

Median 0.235 0.22 0.205 0.208
Std. Dev. 0.06353 | 0.04544 | 0.07819 | 0.05028

GENERATIONAL DISTANCE

Expected points 100 150 200 250
Best 0.30665 | 0.23684 | 0.20810 | 0.18967
Worst 0.46221 | 1.57960 | 0.35337 | 0.24430
Average 0.37413 | 0.37884 | 0.26050 | 0.21672
Median 0.36790 | 0.29926 | 0.25143 | 0.21570
Std. Dev. 0.04223 | 0.29656 | 0.03392 | 0.01455

SPACING

Expected points 100 150 200 250
Best 2.13706 | 1.53664 | 1.25815 | 1.04094
Worst 2.97969 | 8.68894 | 1.93296 | 1.25219
Average 2.53034 | 2.18673 | 1.47291 | 1.12607
Median 2.50102 | 1.83570 | 1.39545 | 1.10992
Std. Dev. 0.22751 | 1.54941 | 0.19517 | 0.06414

105

Author Biographies

=" cCarlos A. Coello Coello received the B.Sc. degree in civil
engineering from the Universidad Auténoma de Chiapas, México, and the M.Sc.
and the PhD degrees in computer science from Tulane University, USA, in 1991,

1993, and 1996, respectively.

He is currently an associate professor (CINVESTAV-3B Researcher) at the elec-
trical engineering department of CINVESTAV-IPN, in Mexico City, México. Dr.
Coello has authored and co-authored over 100 technical papers and several book
chapters. He has also co-authored the book Ewvolutionary Algorithms for Solu-
ing Multi-Objective Problems (Kluwer Academic Publishers, 2002). Addition-
ally, Dr. Coello has served in the program committees of over 30 international
conferences and has been technical reviewer for over 30 international journals in-
cluding the IEEE Transactions on Evolutionary Computation in which he also
serves as Associate Editor. He also chairs the Task Force on Multi-Objective
Evolutionary Algorithms of the IEEE Neural Networks Society. He is a member
of the IEEE, the ACM and the Mexican Academy of Sciences.

His major research interests are: evolutionary multi-objective optimization,
constraint-handling techniques for evolutionary algorithms, and evolvable hard-

ware.

106

Gregorio Toscano Pulido received the B.Sc. in computer
science from the Instituto Tecnoldgico de Mérida, in Mérida, Yucatan, México
and an M.Sc. in artificial intelligence from the Universidad Veracruzana, in

Xalapa, Veracruz, México, in 1999 and 2002, respectively.

He is currently working towards the Ph.D. degree in the Department of Elec-
trical Engineering at the Centro de Investigacién y de Estudios Avanzados del

Instituto Politécnico Nacional (CINVESTAV-IPN), in México.

His current research interests include: evolutionary computation and multiob-

jective optimization.

107

Maximino Salazar Lechuga received the B.Sc. in computer
science and an M.Sc. in artificial intelligence from the Universidad Veracruzana,

in Xalapa, Veracruz, México, in 2000 and 2002, respectively.

He is currently recipient of a scholarship from the mexican Consejo Nacional de
Ciencia y Tecnologia (CONACyT) to pursue Ph.D. studies in computer science
at the University of Birmingham, in the UK.

His main research interests are: evolutionary computation, artificial life, emer-

gent behaviors and neural networks.

108

