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Abstract. This paper provides a brief introduction to the so-called
multi-objective evolutionary algorithms, which are bio-inspired meta-
heuristics designed to deal with problems having two or more (normally
conflicting) objectives. First, we provide some basic concepts related to
multi-objective optimization and a brief review of approaches available
in the specialized literature. Then, we provide a short review of applica-
tions of multi-objective evolutionary algorithms in pattern recognition.
In the final part of the paper, we provide some possible paths for future
research in this area, which are promising, from the author’s perspective.

1 Introduction

In the real world, there are many problems in which it is desirable to optimize
two or more objective functions at the same time. These are known as multi-

objective optimization problems (MOPs), and their solution involves finding not
one, but a set of solutions that represent the best possible trade-offs among
the objective functions being optimized. Such trade-offs constitute the so-called
Pareto optimal set, and their corresponding objective function values form the
so-called Pareto front.

A number of mathematical programming techniques have been developed to
solve MOPs [1]. However, they have several limitations, from which the most
important are that they tend to be very susceptible to the specific features of
the MOP being solved (e.g., the shape or continuity of the Pareto front), and
that they normally generate a single solution per run. Such limitations have mo-
tivated the development of alternative approaches from which metaheuristics1

have been, with no doubt, the most popular and effective choice available so far
(see for example [3]). From the many metaheuristics in current use, Evolutionary

1 A metaheuristic is a high level strategy for exploring search spaces by using dif-
ferent methods [2]. Metaheuristics have both a diversification (i.e., exploration of
the search space) and an intensification (i.e., exploitation of the accumulated search
experience) procedure.



Algorithms (EAs) are, clearly, the most popular in today’s specialized literature.
EAs are inspired on the “survival of the fittest” principle from Darwin’s evolu-
tionary theory [4], and simulate the evolutionary process in a computer, as a way
to solve problems. EAs have become very popular as multi-objective optimizers
because of their ease of use (and implementation) and generality (e.g., EAs are
less sensitive than mathematical programming techniques to the initial points
used for the search and to the specific features of a MOP). EAs have also an
additional advantage: since they are population-based techniques, it is possible
for them to manage a set of solutions at a time, instead of only one, as normally
done by traditional mathematical programming techniques. This allows EAs to
generate several elements from the Pareto optimal set in a single run.

The first Multi-Objective Evolutionary Algorithm (MOEA) was proposed in
the mid-1980s by David Schaffer [5]. However, it was until the mid-1990s that
MOEAs started to attract serious attention from researchers. Nowadays, it is
possible to find applications of MOEAs in practically all domains.2

The rest of this paper is organized as follows. In Section 2, we provide some
basic multi-objective optimization concepts required to make this paper self-
contained. An introduction to evolutionary algorithms is provided in Section 3.
Section 4 contains a brief description of the main MOEAs in current use. In Sec-
tion 5, a short review of some applications of MOEAs in three pattern recognition
tasks (image segmentation, feature selection and classification) is provided. Sec-
tion 6 indicates some potential paths for future research in this area. Finally,
the main conclusions of this paper are provided in Section 7.

2 Basic Concepts

We are interested in solving problems of the type3:

minimize f(x) := [f1(x), f2(x), . . . , fk(x)] (1)

subject to:

gi(x) ≤ 0 i = 1, 2, . . . , m (2)

hi(x) = 0 i = 1, 2, . . . , p (3)

where x = [x1, x2, . . . , xn]
T

is the vector of decision variables, fi : IRn → IR,
i = 1, ..., k are the objective functions and gi, hj : IRn → IR, i = 1, ..., m,
j = 1, ..., p are the constraint functions of the problem.

To describe the concept of optimality in which we are interested, we will
introduce next a few definitions.

2 The author maintains the EMOO repository, which currently contains over 5800
bibliographic references related to evolutionary multi-objective optimization. The
EMOO repository is located at: http://delta.cs.cinvestav.mx/~ccoello/EMOO/.

3 Without loss of generality, we will assume only minimization problems.



Definition 1. Given two vectors x, y ∈ IRk, we say that x ≤ y if xi ≤ yi for
i = 1, ..., k, and that x dominates y (denoted by x ≺ y) if x ≤ y and x 6= y.

Definition 2. We say that a vector of decision variables x ∈ X ⊂ IRn is non-
dominated with respect to X , if there does not exist another x′ ∈ X such that
f(x′) ≺ f(x).

Definition 3. We say that a vector of decision variables x∗ ∈ F ⊂ IRn (F is
the feasible region) is Pareto-optimal if it is nondominated with respect to F .

Definition 4. The Pareto Optimal Set P∗ is defined by:

P∗ = {x ∈ F|x is Pareto-optimal}

Definition 5. The Pareto Front PF∗ is defined by:

PF∗ = {f(x) ∈ IRk|x ∈ P∗}

We thus wish to determine the Pareto optimal set from the set F of all the
decision variable vectors that satisfy (2) and (3). Note however that in practice,
not all the Pareto optimal set is normally desirable (e.g., it may not be desirable
to have different solutions that map to the same values in objective function
space) or achievable.

3 A Short Introduction to Evolutionary Algorithms

Although the origins of evolutionary algorithms (EAs) can be traced back to
the early 1930s [6], it was until the 1960s that the three main types of EAs
were developed: genetic algorithms [7], evolution strategies [8] and evolutionary
programming [9].

EAs are very suitable for solving multi-objective optimization problems be-
cause they operate on a set of solutions (called population), which allows them to
generate several elements of the Pareto optimal set in a single run (contrasting
with mathematical programming techniques, which normally generate a single
nondominated solution per execution). Additionally, EAs are less susceptible to
the discontinuity and the shape of the Pareto front, which is another important
advantage over traditional mathematical programming methods [3].

Multi-objective Evolutionary Algorithms (MOEAs) extend traditional EAs
in two main aspects:

– Selection Mechanism: In MOEAs, the aim is to select nondominated so-
lutions and not the solutions with the highest fitness. Additionally, and ac-
cording to the definition of Pareto optimality, all the nondominated solutions
in a population are normally considered as equally good.

– Diversity Maintenance: MOEAs require a mechanism that preserves di-
versity and avoids convergence to a single solution (this will eventually hap-
pen because of stochastic noise, if an EA is run for a sufficiently long time).



Regarding selection, several approaches have been adopted over the years, go-
ing from simple linear aggregating functions [10] and population-based schemes
[5] to ranking approaches based on Pareto optimality [4, 11, 12] and schemes
based on performance measures [13].

Diversity has also been a popular research topic, and a wide variety of meth-
ods are currently available to maintain diversity in the population of an EA,
including fitness sharing and niching [14, 15], clustering [16, 17], geographically-
based schemes [18], and the use of entropy [19, 20], among others.

A third component of modern MOEAs is elitism, which normally consists of
using an external archive (called a “secondary population”) that can interact
(or not) in different ways with the main (or “primary”) population of a MOEA.
Although the main goal of this archive is to store the nondominated solutions
generated throughout the search, it has also been used to maintain diversity
[21]. The approximation of the Pareto optimal set produced by a MOEA can
be found in the final contents of this external archive and this is normally the
result reported as the outcome of a MOEA’s execution.

4 Multi-Objective Evolutionary Algorithms

Although there is a wide variety of MOEAs available in the specialized literature,
only a handful of them are in wide use. The following are, in the view of the
author, the most representative MOEAs in current use:

1. Strength Pareto Evolutionary Algorithm (SPEA): It was conceived as
an elegant merge of several MOEAs that were developed during the mid-
1990s [17]. Its main features are an external archive (called the external
nondominated set), which stores the nondominated solutions generated dur-
ing the search. The union of both the external nondominated set and the
main population participate in the selection process, during which a strength

value is computed for each individual. This strength is proportional to the
number of solutions that a certain individual dominates. Then, the fitness
of each member of the current population is computed according to the
strengths of all the external nondominated solutions that dominate it. The
external nondominated set can significantly grow in size, consequently re-
ducing the selection pressure, and slowing down the search. Since this is
undesirable, a clustering technique is adopted to prune the contents of the
external nondominated set so that its size remains bounded within a certain
(user-defined) threshold.

2. Pareto Archived Evolution Strategy (PAES): This approach was in-
troduced in 2000 [21] and is probably the most simple MOEA than can be
conceived. It consists of a (1+1) evolution strategy (i.e., a single parent that
generates a single offspring) in combination with an external archive that
stores the nondominated solutions found so far. This archive is used as a ref-
erence set against which each mutated individual is being compared. Such an



(external) archive adopts a procedure that divides objective function space in
a recursive manner. Then, each solution is placed in a certain grid location
based on the values of its objectives (which are used as its “geographical
location”). A map of such a grid is maintained, indicating the number of
solutions that reside in each grid location. When a new nondominated so-
lution is ready to be stored in the archive, but there is no room for it (this
is because the size of the external archive is bounded), a check is made on
the grid location to which the solution would belong. If this grid location is
less densely populated than the most densely populated grid location, then a
solution (randomly chosen) from the most populated grid location is deleted
in order to allow the storage of the new solution. This aims to redistribute
solutions, favoring the less densely populated regions of the Pareto front.

3. Strength Pareto Evolutionary Algorithm 2 (SPEA2): This is a revised
version of SPEA, which has three main differences with respect to it [22]:
(1) it incorporates a fine-grained fitness assignment strategy which takes
into account, for each individual, the number of individuals that dominate
it and the number of individuals by which it is dominated; (2) it uses a
nearest neighbor density estimation technique which guides the search more
efficiently, and (3) it has an enhanced archive truncation method that guar-
antees the preservation of boundary solutions.

4. Nondominated Sorting Genetic Algorithm II (NSGA-II): This ap-
proach is a revised version of one of the earliest MOEAs, called the Non-
dominated Sorting Genetic Algorithm (NSGA), which was originally intro-
duced in the mid 1990s [11]. The NSGA-II adopts a more efficient ranking
procedure than its predecessor. Additionally, it estimates the density of so-
lutions surrounding a particular individual in the population by computing
the average distance of two points on either side of this point along each
of the objectives of the problem. This value is the so-called crowding dis-

tance. During selection, the NSGA-II uses a crowded-comparison operator
which takes into consideration both the nondomination rank of an individ-
ual in the population and its crowding distance (i.e., nondominated solutions
are preferred over dominated solutions, but between two solutions with the
same nondomination rank, the one that resides in the less crowded region
is preferred). The NSGA-II does not use an external archive as most of the
modern MOEAs in current use. Instead, the elitist mechanism of the NSGA-
II consists of combining the best parents with the best offspring obtained
(i.e., a (µ+λ)-selection). Due to its clever mechanisms, the NSGA-II is much
more efficient (computationally speaking) than its predecessor, and its per-
formance is so good that it has become very popular in the last few years,
triggering a significant number of applications, and becoming some sort of
landmark against which new MOEAs have to be compared in order to merit
publication.



5. Multiobjective Evolutionary Algorithm Based on Decomposition
(MOEA/D): This approach was introduced in 2007 [23]. It decomposes a
problem into a number of scalar optimization sub-problems which are simul-
taneously optimized. When optimizing each subproblem, only information
from its neighboring sub-problems is adopted. This allows this approach to
be both very efficient and very effective. MOEA/D is a good example of a
MOEA that was able to successfully incorporate concepts from mathemati-
cal programming (scalarization functions in this case) into a metaheuristic.
Although not as popular as the NSGA-II, MOEA/D has attracted a lot of
interest over the years, mainly because of its reputation as a hard-to-defeat
MOEA.

Many other MOEAs are currently available (see for example [24, 25]), but
none of them is widely used in the literature. This, however, has not discouraged
algorithm developers who are have now focused their efforts on aspects such as
computational efficiency [26] and scalability [13].

5 Some Applications in Pattern Recognition

Once can find today a wide variety of applications of MOEAs in pattern recog-
nition. For illustrative purposes only, three types of common applications will
be briefly described next:

1. Image Segmentation: We call “segmentation” to the clustering of the
pixels of an image based on certain criteria. The output of a segmentation
process is usually another image with raw pixel data, which constitutes either
the boundary of a region or all the points in the region itself. Segmentation
is known to be, in general, a very difficult task. Treated as a multi-objective
optimization problem, image segmentation can involve a number of objec-
tives [27]. For example, Bhanu and Lee [28] considered five objectives when
applying a genetic algorithm with a linear aggregating function to an image
segmentation problem: (1) edge-border coincidence, (2) boundary consis-
tency, (3) pixel classification, (4) object overlap, and (5) object contrast.
Shirakawa and Nagao [29], however, considered the minimization of only
two objectives (they adopted SPEA2 [22] in this case): (1) overall deviation
between the data items and their corresponding cluster center (minimizing
this objective increases the number of clusters) and (2) edge value, which
evaluates the overall summed distances on boundaries between the regions.
However, regardless of the objectives adopted, a good motivation for using
MOEAs in image segmentation is that they allow the generation of several
output images, representing the different trade-offs among the objectives.
This gives the user more options to choose from, instead of the single im-
age that is traditionally obtained when using single-objective optimization
techniques.

2. Feature Selection: Feature selection refers to the extraction of features for
differentiating one class of objects from another. The output of this process



is a vector of values of the measured features. In this case, when feature
selection is treated as a multi-objective problem, the two most common
objectives are: (1) the minimization of the number of features and (2) the
minimization of the error associated with the solution obtained. For example,
Hamdani et al. [30] considered as their second objective the classification
error of a nearest neighbor (1-NN) classifier [31] in an application in which
the NSGA-II [32] was used as their search engine. Similarly, Morita et al.
[33] adopted as their second objective a validity index that measures the
quality of the clusters formed. In this case, the authors were dealing with a
handwritten word recognition task in which the original NSGA [11] was used
as their search engine. It is also possible to introduce additional objectives
related, for example, to cost [34] or some problem-specific characteristics
[35]. This illustrates the flexibility that MOEAs provide when applied to
pattern recognition tasks.

3. Classification: This is a process in which each input value is placed into
a class (from several available) based on the information provided by its
descriptors. When treated as a multi-objective problem, classification nor-
mally involves objectives such as minimizing the complexity of the classifier
(e.g., its number of rules) while maximizing its accuracy (i.e., the error of
the classifier). However, other objectives such as the generality of the rules,
their understandability or their complexity can also be adopted. For exam-
ple, Iglesia et al. [36, 37] maximized confidence and coverage of the rules in a
partial classification problem (the so-called nugget discovery task), in which
the NSGA-II [32] was adopted as the search engine. In contrast, Bandy-
opadhyay et al. [38] considered three objectives: minimize (1) the number of
misclassified training points and (2) the number of hyperplanes, and maxi-
mize (3) the product classwise correct recognition rates. The search engine
adopted in this case, was as an approach introduced by the authors, and
called the constrained elitist multiobjective genetic algorithm based classi-
fier (CEMOGA-Classifier). One of the advantages of the use of MOEAs in
classification is that they can overcome problems commonly associated to
traditional (i.e., single-objective) classifiers, such as overfitting/overlearning
and ignoring smaller classes.

6 Potential Areas for Further Research

As we have seen, MOEAs have been applied to several problems in pattern
recognition. However, there are other possible paths for future research that
may be worth exploring. For example:

– Integration: The development of fully automated pattern recognition sys-
tems should be a long-term goal related to the use of MOEAs in this area.
Such systems should be applicable to different databases with minimum (or
no) human intervention. The development of such systems could require the
hybridization of MOEAs with other techniques (e.g., fuzzy logic and/or ma-
chine learning techniques) as well as the design of new architectures that



allow an efficient and effective integration of different types of approaches
throughout the different stages involved in a pattern recognition process (see
for example [39], in which an automatic image pattern recognition system
based on genetic programming [40] is proposed for the classification of med-
ical images). However, MOEAs are an excellent choice for this sort of task
because of their capability to deal with conflicting objectives.

– Efficiency: MOEAs are certainly powerful optimization tools, but they nor-
mally have a relatively high computational cost because of the number of
objective function evaluations that they require in order to produce rea-
sonably good results. This is particularly important in tasks such as image
segmentation in which each objective function evaluation will be normally
costly. In order to deal with this problem, it is possible to adopt approaches
such as fitness approximation [41], parallelization [42], or surrogate methods
[43]. It is worth mentioning, however, that the incorporation of such tech-
niques in pattern recognition tasks, although promising, is still scarce.

– Use of other Metaheuristics: A number of other bio-inspired metaheuris-
tics have become increasingly popular in the last few years [44], and most of
them have been applied to pattern recognition tasks, although their use has
been fairly limited until now. The following are representative examples of
these new metaheuristics:

• Particle Swarm Optimization (PSO): It was proposed in the mid-
1990s [45] and simulates the movements of a flock of birds which seek
food. In PSO, the behavior of each individual (or particle) is affected
by either the best local (i.e., within a certain neighborhood) or the best
global (i.e., with respect to the entire population or swarm) individual.
Although this approach also adopts a population and a fitness measure,
unlike EAs, it allows individuals to benefit from their past experiences.
PSO has been used in some pattern recognition tasks (see for example
[46]), but not much in a multi-objective form.

• Artificial Immune Systems (AIS): From a computational point of
view, our immune system can be seen as a highly parallel intelligent
system that is able to learn and retrieve previous knowledge (in other
words, it has “memory”), while solving highly complex recognition and
classification tasks. These interesting features motivated the develop-
ment of the so-called artificial immune systems in the early 1990s [47,
48]. This sort of approach has been used in a wide variety of tasks, in-
cluding classification and pattern recognition in general (see for example
[49]). However, as in the previous case, the use of AISs as multi-objective
solvers of pattern recognition problems is still rare.

• Ant Colony Optimization (ACO): It is inspired on the behavior
shown by colonies of real ants which deposit a chemical substance on the



ground called pheromone [50]. The pheromone influences the behavior of
the ants: they tend to take those paths in which there is a larger amount
of pheromone. Therefore, pheromone trails can be seen as an indirect
communication mechanism used by the ants. This system also presents
several interesting features from a computational point of view, and has
triggered a significant amount of research. The first metaheuristic in-
spired on this notion was called ant system and was originally proposed
for the traveling salesman problem. Over the years, this approach (and
its several variations, which are now collectively denominated ant colony

optimization or ACO algorithms) has been applied to a wide variety of
combinatorial optimization problems, including some pattern recogni-
tion tasks (see for example [51]). Nevertheless, its use in multi-objective
pattern recognition tasks is very scarce.

7 Conclusions

This paper has provided a general overview of multi-objective evolutionary al-
gorithms and some of their possible applications in pattern recognition. In order
to make the paper self-contained, a short introduction to evolutionary algo-
rithms has also been provided. After that, the main components that distin-
guish MOEAs from EAs were discussed, and the main MOEAs in current use
were briefly described. In the final part of the paper, some possible paths for
future research in this area were discussed. The main aim of this paper is to mo-
tivate the development of more research on the use of MOEAs (or any other type
of multi-objective metaheuristic) for the solution pattern recognition problems.
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2005, Guanajuato, México, Springer. Lecture Notes in Computer Science Vol. 3410
(March 2005) 826–840

37. de la Iglesia, B., Richards, G., Philpott, M., Rayward-Smith, V.: The application
and effectiveness of a multi-objective metaheuristic algorithm for partial classifi-
cation. European Journal of Operational Research 169 (2006) 898–917

38. Bandyopadhyay, S., Pal, S.K., Aruna, B.: Multiobjective GAs, Quantitative In-
dices, and Pattern Classification. IEEE Transactions on Systems, Man, and
Cybernetics—Part B: Cybernetics 34(5) (October 2004) 2088–2099

39. Guo, P.F., Bhattacharya, P., Kharma, N.: An Efficient Image Pattern Recognition
System Using an Evolutionary Search Strategy. In: Proceedings of the 2009 IEEE
International Conference on Systems, Man, and Cybernetics, San Antonio, Texas,
USA, IEEE Press (October 2009)

40. Koza, J.R.: Genetic Programming. On the Programming of Computers by Means
of Natural Selection. The MIT Press, Cambridge, Massachusetts (1992)

41. Jin, Y.: A comprehensive survey of fitness approximation in evolutionary compu-
tation. Soft Computing 9(1) (2005) 3–12
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