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This paper presents a very short introduction to multiobjective evolutionary al-
gorithms, including their basic concepts and their main components. The dis-
cussion focuses on algorthmic design and, therefore, the issues discussed include
selection mechanisms, diversity maintenance mechanisms, and elitism in a multi-
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INTRODUCTION

I n the real world, many problems have two or more
(conflicting) objectives which we would like to op-

timize at the same time. The solution of these multiob-
jective optimization problems (MOPs) has raised a lot
of interest within operations research during the last
35 years.1 However, and in spite of the relatively large
number of mathematical programming approaches
currently available for solving MOPs, their limita-
tions (related, e.g., to the specific features of the prob-
lem being solved) have motivated the development
of alternative techniques such as the metaheuristicsa

from which evolutionary algorithms (EAs) are, with
no doubt, the most popular.3

The first implementation of a multiobjective
evolutionary algorithm (MOEA) dates back to 1985.4

However, this area, which is now called ‘evolution-
ary multiobjective optimization’, or EMO, has expe-
rienced a very important growth, mainly in the last
15 years.3b

BASIC CONCEPTS

MOPs are problems of the typec:

minimize �f (�x) := [ f1(�x), f2(�x), . . . , fk(�x)]T (1)

subject to

gi (�x) ≤ 0 i = 1, 2, . . . , m, (2)

hi (�x) = 0 i = 1, 2, . . . , p, (3)
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where �x = [x1, x2, . . . , xn]T is the vector of decision
variables, fi : IRn → IR, i = 1, 2, . . . , k are the objec-
tive functions and gi , hj : IRn → IR, i = 1, . . . , m, j =
1, 2, . . . , p are the constraint functions of the prob-
lem.

Definition 1. Given two vectors �x, �y ∈ IRk, we
say that �x ≤ �y if xi ≤ yi for i = 1, . . . , k, and that
�x dominates �y (denoted by �x ≺ �y) if �x ≤ �y and �x 	= �y.

Definition 2. We say that a vector of decision
variables �x ∈ X ⊂ IRn is nondominated with respect
to X , if there does not exist another �x′ ∈ X such that
�f (�x′) ≺ �f (�x).

Definition 3. We say that a vector of decision vari-
ables �x∗ ∈ F ⊂ IRn (F is the feasible region) is Pareto
optimal if it is nondominated with respect to F .

Definition 4. The Pareto Optimal Set P∗ is defined by

P∗ = {�x ∈ F |�x is Pareto optimal}.

Definition 5. The Pareto Front PF∗ is defined by

PF∗ = { �f (�x) ∈ IRk|�x ∈ P∗}.
The aim is thus to determine the Pareto optimal set
from the set F of all the decision variable vectors that
satisfy (2) and (3). Note, however, that in practice,
not all the Pareto optimal set is normally desirable or
achievable.

MULTIOBJECTIVE EVOLUTIONARY
ALGORITHMS

EAs offer two main advantages with respect to math-
ematical programming techniques, when dealing with
MOPs: (1) since they rely on the use of a set of
solutions at each iteration, they can find several

444 Volume 1, September /October 2011c© 2011 John Wi ley & Sons , Inc .



WIREs Data Mining and Knowledge Discovery Evolutionary multiobjective optimization

elements of the Pareto optimal set in a single run,
instead of only one at a time; and (2) EAs tend are
normally less susceptible to the shape or continuity
of the Pareto front than mathematical programming
techniques.

MOEAs extend a traditional EA in two main
aspects:

1 Selection mechanism: In MOEAs, the aim is
to select nondominated solutions and not the
solutions with the highest fitness. In addition,
and according to the definition of Pareto
optimality, all the nondominated solutions
in a population are normally considered as
equally good.

2 Diversity maintenance: MOEAs require a
mechanism that preserves diversity and
avoids convergence to a single solution (this
will eventually happen because of stochastic
noise, if an EA is run for a sufficiently long
time).

Regarding selection, there are several possible
mechanisms that can be used to solve MOPs:

• Aggregating functions: In this case, the objec-
tives are normally combined in some form
(using either linear or nonlinear schemes),
such that a single (scalar) value is generated.
This scalar value is adopted as the fitness
value of the EA. These approaches were very
popular in the early days of MOEAs (par-
ticularly, linear aggregating functions).3 To-
day, the use of nonlinear aggregating func-
tions that provide a ranking of solutions has
become popular again because they seem to
work better than Pareto ranking in problems
having more than three objectives.5 An in-
teresting type of aggregating approach is the
so-called scalarization, in which a MOP is
transformed into several single-objective op-
timization problems. This sort of approach
has been adopted by several MOEAs (e.g.,
see Ref 6). However, the most popular of
these approaches is MOEA/D,7 in which the
optimization of the scalar subproblems gen-
erated by a decomposition approach is done
in a very efficient way.

• Pareto-based selection: The most popular
scheme within this group is called Pareto
ranking, and its main idea is to sort the popu-
lation of an EA based on Pareto dominance,
such that all nondominated individuals are
assigned the same rank (or importance).

The aim is that all nondominated individ-
uals get the same probability of being se-
lected, and that such probability is higher
than the one corresponding to individuals
which are dominated. Although conceptu-
ally simple, this sort of selection mecha-
nism allows for a wide variety of possible
implementations.3 That is the reason why
several MOEAs based on Pareto ranking
have been proposed (e.g., SPEA8 and NPGA
9). From them, the Nondominated Sorting
Genetic Algorithm-II (NSGA-II)10 remains as
the most popular in the current literature.

• Indicator-based selection: The idea in this
case is to adopt a performance measure
to select solutions. This concept attracted
attention when the Indicator-Based Evolu-
tionary Algorithm (IBEA) was proposed.11

Within a similar line of thought, but without
explicitly considering the incorporation of
user’s preferences (as in IBEA), the S Metric
Selection Evolutionary Multiobjective Opti-
mization Algorithm (SMS-EMOA)12 adopts
a selection operator based on the hypervol-
ume measure.13d The design of hypervolume-
based MOEAs has triggered an impor-
tant amount of research, because such
approaches scale better than Pareto ranking
when increasing the number of objectives.
However, computing the hypervolume is a
computationally expensive task, and this has
limited its use.

Regarding diversity maintenance, there have
been several proposals in the specialized literature.
The most popular approaches are fitness sharing
and niching,14 clustering,15 crowding,10 geographi-
cally based schemes,16 and the use of entropy.17 In all
of them, the main idea is to favor the exploration of re-
gions of search space in which there are less solutions.
The density of solutions can be measured either in
decision variable space or in objective function space
(or even in both). Additionally, some researchers have
proposed the use of mating restriction schemes as a
way of preserving diversity.8

A third component of modern MOEAs is
elitism, which normally consists of using an external
archive (called a ‘secondary population’) that can (or
cannot) interact in different ways with the main (or
‘primary’) population of the MOEA. The main pur-
pose of this archive is to store all the nondominated
solutions generated throughout the search process,
while removing those that become dominated later in
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the search (called local nondominated solutions). The
approximation of the Pareto optimal set produced by
a MOEA is thus the final contents of this archive. The
use of elitism is important, since this mechanism is
required to guarantee convergence of a MOEA, from
a theoretical perspective.3

The high number of publications on EMO cur-
rently available makes evident that this research area
is still very active. Current publications report not
only a wide variety of new applications (e.g., see
Ref 18), but also important algorithmic develop-
ments, as well as research on more specialized top-
ics (e.g., incorporation of user’s preferences, surro-
gate methods, theoretical foundations, approaches
for dealing with problems having many objectives,
new ranking methods, new constraint-handling tech-
niques, use of alternative metaheuristics, etc.).3 Nev-
ertheless, and in spite of the (somewhat intimidat-
ing) high number of existing publications, there is
still plenty of room for newcomers (either students
or researchers) as well as for more practitioners. In
fact, the main aim of this paper is precisely to attract

the interest of more people toward this research area,
which is not only exciting but also widely applicable.

NOTES
aA metaheuristic is a high level strategy for explor-
ing search spaces by using different methods.2 Meta-
heuristics have two main procedures: one for diver-
sification (i.e., exploration of the search space) and
one for intensification (i.e., exploitation of the accu-
mulated search experience).
bThe author maintains the EMOO repository, which
currently contains over 5800 bibliographic refer-
ences related to evolutionary multiobjective opti-
mization. The EMOO repository is available at:
http://delta.cs.cinvestav.mx/∼ccoello/EMOO/.
cWithout loss of generality, we will assume only min-
imization problems.
dThe hypervolume (also known as the S metric or the
Lebesgue measure) of a set of solutions measures the
size of the portion of objective space that is dominated
by those solutions collectively.
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