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Resumen

In this paper, we present an artificial immune system (AIS) based on the CLONALG algorithm for solving
constrained (numerical) optimization problems. We develop a new mutation operator which produces large
and small step sizes and which aims to provide better exploration capabilities. We validate our proposed
approach with 13 test functions taken from the specialized literature and we compare our results with
respect to Stochastic Ranking (which is an approach representative of the state-of-the-art in the area) and
with respect to an AIS previously proposed by one of the co-authors.
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1 Introduction

In many real-world problems, the decision vari-
ables are subject to a set of constraints (e.g., re-
lated to the geometric properties of an object),
and the search has to be bounded accordingly.
Constrained optimization problems are very com-
mon, for example, in engineering applications,
and therefore the importance of being able to deal
with them efficiently.

Many bio-inspired algorithms (particularly evo-

lutionary algorithms) have been very successful
in the solution of a wide variety of optimiza-
tion problems [14]. However, when they are
used to solve constrained optimization problems,
they require a suitable mechanism to incorporate
constraints into their fitness functions. Within
evolutionary algorithms (EAs), external penalty
functions have been the most popular mechanism
adopted to incorporate constraints into the fitness
function [12]. However, penalty functions require
the definition of accurate penalty factors (which
are normally fine-tuned by hand) and the perfor-
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mance of the EA is highly dependent on them.

Recently, several researchers have proposed
constraint-handling techniques for EAs which
avoid the use of a penalty function or do not
require any fine-tuning of the penalty factors
[2, 7, 11]. Such approaches have been found to
outperform traditional penalty functions and can
handle all types of constraints (linear, nonlinear,
equality, inequality).

The main motivation of the work presented in
this paper is to explore the capabilities of a new
mutation operator proposed on an AIS in the con-
text of constrained global optimization. The pro-
posed approach is based on two algorithms: (1)
the CLONALG algorithm proposed by Nunes de
Castro and Von Zuben [9, 10] and (2) the AIS-
based approach proposed in [4].

The remainder of the paper is organized as fol-
lows. In Section 2, we define the problem we
want to solve. Section 3 describes some previous
related work. In Section 4, we introduce the ap-
proach and the proposed mutation operator. In
Section 5, we present our experiments. In Sec-
tion 6, our results are presented and they are
discussed. Finally, in Section 7, we present our
conclusions and some possible paths for future
work.

2 Statement of the Problem

We are interested in solving the general nonlinear
programming problem which is defined as follows:

Find ~x = (x1, . . . , xn) which optimizes

f(x1, . . . , xn)

subject to:

hi(x1, . . . , xn) = 0 i = 1, . . . , l

gj(x1, . . . , xn) ≤ 0 j = 1, . . . , p

where (x1, . . . , xn) is the vector of solutions (or
decision variables) , l is the number of equality
constraints and p is the number of inequality con-
straints (in both cases, constraints could be linear
or nonlinear).

3 Previous Related Work

The use of artificial immune systems to solve
constrained (numerical) optimization problems is
scarce. The only previous related work that we
found in the specialized literature is the following:

Hajela and Yoo [13, 14] have proposed a hy-
brid between a Genetic Algorithm (GA) and an
AIS for solving constrained optimization prob-
lems. Here, the authors adopted two populations.
The first is composed by the antigens (which are
the best solutions), and the other by the antibod-
ies (which are the worst solutions). The idea is
to have a GA embedded into another GA. The
outer GA performs the optimization of the orig-
inal (constrained) problem. The second GA is
run for a few generations, and uses as its fitness
function a Hamming distance (binary encoding
was adopted for the GA) so that the antibod-
ies are evolved to become very similar (at the
genotypic level) to the antigens, without becom-
ing identical. One of the most interesting aspects
of this work was that the infeasible individuals
would normally become feasible as a consequence
of the evolutionary process performed (based on
similarity and not on constraint values). This ap-
proach was tested with some structural optimiza-
tion problems.

Kelsey and Timmis [6] proposed an immune in-
spired algorithm based on the clonal selection the-
ory to solve multimodal optimization problems.
Its highlight is the mutation operator called So-
matic Contiguous Hypermutation, where muta-
tion is applied on a subset of contiguous bits. The
length and beginning of this subset is determined
randomly.

Coello Coello and Cruz-Cortés [3] have proposed
an extension of Hajela and Yoo’s algorithm. In
this proposal, no penalty function is needed (as
required by the original approach of Hajela and
Yoo), and some extra mechanisms are defined to
allow the approach to work in cases in which there
are no feasible solutions in the initial population.
Additionally, the authors proposed a parallel ver-
sion of the algorithm and validated it using some
standard test functions reported in the special-
ized literature.

Balicki [1] made a proposal very similar to the
approach of Coello Coello and Cruz-Cortés. Its
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main difference is the way in which the antibod-
ies’ fitness is computed. In this case, Balicki in-
troduces a ranking procedure. This approach was
validated using a constrained three-objective op-
timization problem.

Luh and Chueh [5, 8] have proposed an algorithm
(called CMOIA, or Constrained Multi Objec-
tive Immune Algorithm) for solving constrained
multi-objective optimization problems. In this
case, the antibody’s population is composed by
the potential solutions to the problem, whereas
antigens are the objective functions. CMOIA
transforms the constrained problem into an un-
constrained one by associating an interleukine
(IL) value with all the constraints violated. IL is
a function of both the number of constraints vi-
olated and the total magnitude of this constraint
violation (note that this IL function is actually
a penalty function). Then, feasible individuals
are rewarded and infeasible individuals are penal-
ized. Other features of the approach were based
on the clonal selection theory and other immuno-
logical mechanisms. CMOIA was evaluated using
six test functions and two structural optimization
problems.

Coello Coello and Cruz-Cortés [4] have pro-
posed an algorithm based on the clonal selec-
tion theory for solving constrained optimization
problems. The authors experimented with both
binary and real-value representation, consider-
ing Gaussian-distributed and Cauchy-distributed
mutations. Furthermore, they proposed a con-
trolled and uniform mutation operator. This ap-
proach was tested with a set of 13 test functions
taken from the specialized literature on evolution-
ary constrained optimization.

4 Our Proposed Approach

This paper presents a bio-inspired approach
based on the CLONALG algorithm proposed by
Nunes de Castro and Von Zuben [9, 10]. In its
origins, CLONALG was used to solve pattern
recognition and multimodal optimization prob-
lems, and there are few extensions of this algo-
rithm for constrained optimization (remarkably,
the approach reported in [4]).

Our proposed approach (called AISconst) is an-
other extension of CLONALG for constrained op-
timization, and it is described next:

1. Randomly generate j antibodies.
2. Repeat a predetermined number of

times
2.1. Determine the affinity of each

antibody (Ab).
2.2. Sort antibodies.
2.3. Clone all antibodies. The anti-

bodies are cloned proportionally
to their affinities

2.4. Mutate all clones.
2.5. Determine the affinity of each clone.
2.6. Sort clones.
2.7. Select the best n individuals from

the antibodies’population and the
clones population.

2.8. Replace the lowest affinity anti-
bodies by new individuals generated
at random.

3. End repeat.

The most relevant aspects of the approach are the
following:

• All antibodies and clones are represented by
vectors of real values.

• Determine the affinity of each individual
(antibody or clone) implies to compute the
following:

– Feasible: an antibody is feasible if
it satisfies all the constraints of the
problem. All equality constraints are
converted into inequality constraints,
|h(~x)| − δ ≤ 0, using a tolerance δ =
0.0001, this tolerance was used by [11]
and it is the value commonly used in
constrained optimization.

– Objective Function Value: objective
function value for the antibody or
clone.

– Degree of constraint violation: if an
antibody or clone is feasible, then its
degree of constraint violation is zero.
Now, if it is infeasible then its de-
gree of constraint violation is a pos-
itive value determined by the add of
gi(x)+ for i = 1, . . . , p and |hk(x)| for
k = 1, . . . , l.

• Antibodies are sorted using the following
criterion: the feasible antibodies whose ob-
jective function are the best are placed first.
Then, we place the infeasible antibodies
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with the lowest degree of constraint viola-
tion. Clones are sorted using the same cri-
terion.

• In order to select the antibodies and clones
that will take part of the next iteration, we
consider first the feasible individuals (over
the infeasible ones) and then, those infeasi-
ble individuals that have the lowest degree
of constraint violation. Note however that
the best infeasible individual (from the an-
tibodies’ or clones population) will always
pass to the next generation, unless the en-
tire population is feasible. The best infea-
sible individual is an infeasible individual
with the lowest degree of constraint viola-
tion.

• The number of clones generated from the
selected antibodies is given by:

NC =
∑n

i=1(int)
(

β∗j
i

)

where NC is the number of clones, j is the
number of antibodies and β is a multiplier
factor (generally equal to 1). We used β = 1
in our experiments.

• Several mutation operators were tested,
however the simplest one was ehich had the
best performance and it is described next:

If a clone is feasible, then only a sin-
gle position of the string is changed for a
randomly chosen value (from the allowable
range for that specific decision variable).

If a clone is infeasible, then each de-
cision variable xi is mutated using equa-
tion (1) or (2) (with a 50% probability).

x
′

i = xi±rand(0, 1)∗
range(xi)

generation
∗NC (1)

x
′

i = xi±rand(0, 1)∗
range(xi)

generation ∗ NC
(2)

where rand(0, 1) refers to a random num-
ber with a uniform distribution between 0
and 1, range(xi) is a random number in
the allowable range of xi with a uniform
distribution, generation is the current gen-
eration number and NC is the number of
clones. Equation (1) generates step sizes
larger than equation (2).

4.1 Differences between AISconst

and the AIS proposed in [4]

There are several differences between our
AISconst and the AIS proposed in [4]. First,
AISconst makes one distinction, during the ap-
plication of the mutation operator, between fea-
sible and infeasible solutions, while the AIS pro-
posed in [4] does not. The mutation operators of
both approaches try to reduce the step sizes as the
search progresses. The AIS proposed in [4] takes
into account the difference between the lower and
upper bounds of each decision variable, the size of
the antibodies’ population and their affinity. In
contrast, our AISconst considers the range of each
decision variable, the current generation number
(as the generation number grows, the mutation
operator tries to reduce the step size) and the
number of clones, but it only tries to reduce the
step size on infeasible solutions. The main idea is
that, as the search progresses, since the selection
criterion is to choose individuals with the lowest
degree of constraint violation for the next pop-
ulation, infeasible individuals that belong to the
next population could be close to the boundary
between the feasible and the infeasible regions.

5 Experimental Setup

In order to validate our proposed approach we
tested it with a benchmark of 13 test functions
taken from the specialized literature [11]. The 13
test functions are described in the Appendix at
the end of this paper. The functions g02, g03,
g08 and g12 are maximization problems (for sim-
plicity, these problems were converted into mini-
mization problems using −f(x)) and the rest are
minimization problems.

Our results are compared with respect to Stochas-
tic Ranking [11], which is a constraint-handling
technique representative of the state-of-the-art
in the area, and with respect to the AIS ap-
proach reported in [4]. 30 independents runs were
performed for each problem, each consisting of
350,000 fitness function evaluations. We adopted
a 20% replacement for the antibodies’ population.
All the statistical measures reported are taken
only with respect to the runs in which a feasible
solution was reached at the end.
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6 Discussion of Results

Tables 1, 2 and 3 show the results obtained with
the AIS proposed in [4], Stochastic Ranking and
our AISconst, respectively. Figures 1 to 9 show
the best and mean found values for some of the
functions. The description of each figure is: each
column shows the best or mean value for an al-
gorithm. The first column shows the best value
found for our proposed. The second one shows the
best value found for Stochastic Ranking, next it
is the best value found for the AIS proposed in [4]
(AISformer). The three columns next show the
mean found value for our AISconst , Stochastic
Ranking and AISformer, respectively. The last
column shows the optimum value.

From Table 3, we can see that our AISconst

was able to reach the global optimum in 3 test
functions (g03, g08 and g12). Additionally, our
AISconst reached feasible solutions close to the
global optimum in 4 more test functions (g01,
g06, g09 and g11) and it found acceptable (i.e.,
not too far from the global optimum) feasible so-
lutions for the rest of the test functions.

Comparing AISconst with respect to Stochastic
Ranking (see Tables 2 and 3), our AISconst only
improved the worst and mean solutions for g06.
Additionally, both approaches found similar so-
lutions for g03, g08 and g11. In the rest of the
problems, Stochastic Ranking outperformed our
approach.

Comparing AISconst with the AIS proposed in
[4] (see Tables 1 and 3), our AISconst obtained
better results in 3 test functions (g01, g05 and
g10). However, for g05, our AISconst only con-
verged to a feasible solution in 75% of the runs
while the AIS from [4] converged to a feasible so-
lution in 90% of the runs. Both approaches found

similar solutions for g03, g08 and g11. Finally,
our AISconst was outperformed in the remaining
functions, with a difference (with respect to the
best found solutions) that ranged from 0.0001 to
0.42 units. With respect to the mean and worst
found solutions, our AISconst was outperformed
in most test functions, except for g01, g02, g08
and g12. For the last two functions both ap-
proaches found the global optimum in all runs.

Taking into account the GenMean (mean genera-
tion where the best solution was found), the fact
that in none of the test functions our proposed
approach got stuck in a local optimum, the small
number of antibodies adopted (only 5 individu-
als), and the limitations imposed on the num-
ber of objective function evaluations, we argue
that the mutation operator adopted by our ap-
proach is capable of performing an efficient lo-
cal search over each feasible clone, which allows
the algorithm to improve on the feasible solutions
found. In cases in which no feasible solutions
are found in the initial population, the mutation
applied is capable of reaching the feasible region
even when dealing with very small feasible search
spaces (e.g., in g05 and g13).

Although there is clearly room for improving our
proposed AISconst, we have empirically shown
that this approach is able of dealing with a va-
riety of constrained optimization problems (i.e.,
with both linear and nonlinear constraints and
objective function, and with both equality and
inequality constraints). The benchmark adopted
includes test functions with both small and large
feasible regions, as well as a disjoint feasible re-
gion. We also argue that our proposed approach
is very simple to implement and it does not re-
quire the fine-tuning of too many parameters, but
only the number of antibodies to use and the per-
centage of replacement.
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Function Optimum Best Mean Worst Std.Dev
g01 -15 -14.9874 -14.7264 -12.9171 0.6070
g02 -0.803619 -0.8017 -0.7434 -0.6268 0.0414
g03 -1.0 -1.0 -1.0 -1.0 0.0000
g04 -30665.539 -30665.5387 -30665.5386 -30665.5386 0.0000
g05∗ 5126.498 5126.9990 5436.1278 6111.1714 300.8854
g06 -6961.814 -6961.8105 -6961.8065 -6961.7981 0.0027
g07 24.306 24.5059 25.4167 26.4223 0.4637
g08 -0.095825 -0.095825 -0.095825 -0.095825 0.0000
g09 680.63 680.6309 680.6521 680.6965 0.0176
g10 7049.33 7127.9502 8453.7902 12155.1358 1231.3762
g11 0.75 0.75 0.75 0.75 0.0000
g12 -1.0 -1.0 -1.0 -1.0 0.0000
g13 0.05395 0.05466 0.45782 1.49449 0.3790

Table 1: Results obtained with AIS proposed in [4]. The asterisk (*) indicates a case in which
only 90% of the runs converged to a feasible solution

Function Optimum Best Mean Worst Std.Dev GenMean
g01 -15 -15.0 -15.0 -15.0 0.0E+00 741
g02 -0.803619 -0.803515 -0.781975 -0.726288 2.0E-02 1086
g03 -1.0 -1.0 -1.0 -1.0 1.9E-04 1146
g04 -30665.539 -30665.539 -30665.539 -30665.539 2.0E-05 441
g05 5126.498 5126.497 5128.881 5142.472 3.5E+00 258
g06 -6961.814 -6961.814 -6875.74 -6350.262 1.6E+02 590
g07 24.306 24.307 24.374 24.642 6.6E-02 715
g08 -0.095825 -0.095825 -0.095825 -0.095825 2.6E-17 381
g09 680.63 680.63 680.656 680.763 3.4E-02 557
g10 7049.33 7054.613 7559.192 8835.655 5.3E+02 642
g11 0.75 0.75 0.75 0.75 8.0E-05 57
g12 -1.0 -1.0 -1.0 -1.0 0.0E+00 82
g13 0.05395 0.053957 0.067543 0.216915 3.1E-02 349

Table 2: Results obtained with Stochastic Ranking [11]

Figure 1. Best and Mean Values for g01
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Function Optimum Best Worst Mean Std.Dev GenMean AE
g01 -15 -14.993 -14.982 -14.989 0.002982 34180 310414
g02 -0.803619 -0.7821 -0.7230 -0.7573 0.014765 32703 340224
g03 -1.0 -1.0 -0.9108 -0.9880 0.025057 35556 347944
g04 -30665.539 -30665.1117 -30533.7827 -30645.9122 31.929167 33009 316804
g05∗ 5126.498 5126.660 6112.072 5468.743 339.183 28098 334444
g06 -6961.814 -6961.7940 -6956.7421 -6960.3768 1.183813 26047 135194
g07 24.306 24.531708 27.056296 25.644893 0.667470 35051 345044
g08 -0.095825 -0.095825 -0.095825 -0.095825 0.0 27071 331094
g09 680.63 680.6519 681.1474 680.8343 0.134034 34137 229054
g10 7049.33 7058.45 15787.89 8344.69 1793.850342 30739 335444
g11 0.75 0.7499 0.7499 0.7499 0.000001 25497 283304
g12 -1.0 -1.0 -1.0 -1.0 0.0 26764 345634
g13 0.05395 0.05820 16.43139 1.37142 2.904695 35095 312004

Table 3: Results obtained with our proposed AISconst. The asterisk (*) indicates a case in
which only 75% of the runs converged to a feasible solution. AE indicates the number of
evaluations required to reach the best solution

Figure 2. Best and Mean Values for g02

Figure 3. Best and Mean Values for g04
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Figure 4. Best and Mean Values for g05

Figure 5. Best and Mean Values for g06

Figure 6. Best and Mean Values for g07
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Figure 7. Best and Mean Values for g09

Figure 8. Best and Mean Values for g10

Figure 9. Best and Mean Values for g13
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7 Conclusions and Future
Work

This paper presents an AIS for solving con-
strained optimization problems in which a novel
mutation operator is adopted. The approach was
found to be competitive in a well-known bench-
mark commonly adopted in the specialized liter-
ature on constrained evolutionary optimization.
The approach was also found to be robust and
able to converge to feasible solutions in most
cases.

Our analysis of the benchmark adopted made us
realize that some test functions require small step
sizes, while others require larger values. This was
the motivation for proposing a mutation scheme
that considers both situations.

Obviously, a lot of work remains to be done in or-
der to improve the quality of the solutions found,
so that the approach can be competitive with
respect to the algorithms representative of the
state-of-the-art in the area. For example, we plan
to analyze alternative mutation schemes, as well
as the use of boundary operators to improve the
performance of our approach in problems with
equality constraints. Nevertheless, it is impor-
tant to emphasize that there is very little work
regarding the use of artificial immune systems for
constrained numerical optimization, and in that
context, this approach provides a viable alterna-
tive.
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A Test Functions

1. g01:
Minimize: f(~x) = 5

P4
i=1 xi − 5

P4
i=1 x2

i
−

P13
i=5 xi

subject to:

g1(~x) = 2x1 + 2x2 + x10 + x11 − 10 ≤ 0

g2(~x) = 2x1 + 2x3 + x10 + x12 − 10 ≤ 0

g3(~x) = 2x2 + 2x3 + x11 + x12 − 10 ≤ 0

g4(~x) = −8x1 + x10 ≤ 0

g5(~x) = −8x2 + x11 ≤ 0

g6(~x) = −8x3 + x12 ≤ 0

g7(~x) = −2x4 − x5 + x10 ≤ 0

g8(~x) = −2x6 − x7 + x11 ≤ 0

g9(~x) = −2x8 − x9 + x12 ≤ 0

where the bounds are 0 ≤ xi ≤ 1 (i = 1, . . . , 9), 0 ≤
xi ≤ 100 (i = 10, 11, 12) and 0 ≤ x13 ≤ 1. The global
optimum is at x∗ = (1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 1)
where f(x∗) = −15. Constraints g1, g2, g3, g4, g5

and g6 are active.

2. g02:

Maximize: f(~x) =

˛

˛

˛

˛

˛

Pn

i=1 cos4(xi)−2
Qn

i=1 cos2(xi)
q

P

n
i=1

ix2
i

˛

˛

˛

˛

˛

sub-

ject to:

g1(~x) = 0.75 −
n

Y

i=1

xi ≤ 0

g2(~x) =

n
X

i=1

xi − 7.5n ≤ 0 (3)

where n = 20 and 0 ≤ xi ≤ 10 (i = 1, . . . , n). The
global maximum is unknown; the best reported solu-
tion is [11] f(x∗) = 0.803619. Constraint g1 is close to

being active (g1 = −10−8).

3. g03:
Maximize: f(~x) =

`√
n

´

n
Q

n

i=1 xi

subject to:

h(~x) =
P

n

i=1 x2
i
− 1 = 0

where n = 10 and 0 ≤ xi ≤ 1 (i = 1, . . . , n). The
global maximum is at x∗

i
= 1/

√
n (i = 1, . . . , n) where

f(x∗) = 1.

4. g04:
Minimize: f(~x) = 5.3578547x2

3 + 0.8356891x1x5 +
37.293239x1 − 40792.141
subject to:
g1(~x) = 85.334407 + 0.0056858x2x5 + 0.0006262x1x4

− 0.0022053x3x5 − 92 ≤ 0
g2(~x) = −85.334407−0.0056858x2x5−0.0006262x1x4

+ 0.0022053x3x5 ≤ 0
g3(~x) = 80.51249 + 0.0071317x2x5 + 0.0029955x1x2

+ 0.0021813x2
3 − 110 ≤ 0

g4(~x) = −80.51249 − 0.0071317x2x5 − 0.0029955x1x2

− 0.0021813x2
3 + 90 ≤ 0

g5(~x) = 9.300961 + 0.0047026x3x5 + 0.0012547x1x3

+ 0.0019085x3x4 − 25 ≤ 0
g6(~x) = −9.300961 − 0.0047026x3x5 − 0.0012547x1x3

− 0.0019085x3x4 + 20 ≤ 0

where: 78 ≤ x1 ≤ 102, 33 ≤ x2 ≤ 45, 27 ≤
xi ≤ 45 (i = 3, 4, 5). The optimum solution is
x∗ = (78, 33, 29.995256025682, 45,
36.775812905788) where f(x∗) = −30665.539. Con-
straints g1 and g6 are active.

5. g05

Minimize:f(~x) = 3x1 + 0.000001x3
1 + 2x2 +

(0.000002/3)x3
2

subject to:
g1(~x) = −x4 + x3 − 0.55 ≤ 0
g2(~x) = −x3 + x4 − 0.55 ≤ 0
h3(~x) = 1000 sin(−x3 − 0.25) +
1000 sin(−x4 − 0.25) + 894.8 − x1 = 0
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h4(~x) = 1000 sin(x3 − 0.25) +
1000 sin(x3 − x4 − 0.25) + 894.8 − x2 = 0
h5(~x) = 1000 sin(x4 − 0.25) +
1000 sin(x4 − x3 − 0.25) + 1294.8 = 0

where 0 ≤ x1 ≤ 1200, 0 ≤ x2 ≤ 1200, −0.55 ≤ x3 ≤
0.55, and −0.55 ≤ x4 ≤ 0.55. The best known solu-
tion is x∗ = (679.9453,
1026.067, 0.1188764, −0.3962336) where f(x∗) =
5126.4981.

6. g06

Minimize: f(~x) = (x1 − 10)3 + (x2 − 20)3

subject to:
g1(~x) = −(x1 − 5)2 − (x2 − 5)2 + 100 ≤ 0
g2(~x) = (x1 − 6)2 + (x2 − 5)2 − 82.81 ≤ 0

where 13 ≤ x1 ≤ 100 and 0 ≤ x2 ≤ 100. The
optimum solution is x∗ = (14.095, 0.84296) where
f(x∗) = −6961.81388. Both constraints are active.

7. g07

Minimize: f(~x) = x2
1 + x2

2 + x1x2 − 14x1 − 16x2 +

(x3 −10)2 +4(x4 −5)2 +(x5 −3)2 +2(x6 −1)2 +5x2
7 +

7(x8 − 11)2 + 2(x9 − 10)2 + (x10 − 7)2 + 45
subject to:
g1(~x) = −105 + 4x1 + 5x2 − 3x7 + 9x8 ≤ 0
g2(~x) = 10x1 − 8x2 − 17x7 + 2x8 ≤ 0
g3(~x) = −8x1 + 2x2 + 5x9 − 2x10 − 12 ≤ 0
g4(~x) = 3(x1 − 2)2 + 4(x2 − 3)2 + 2x2

3 − 7x4 − 120 ≤ 0

g5(~x) = 5x2
1 + 8x2 + (x3 − 6)2 − 2x4 − 40 ≤ 0

g6(~x) = x2
1 + 2(x2 − 2)2 − 2x1x2 + 14x5 − 6x6 ≤ 0

g7(~x) = 0.5(x1 − 8)2 + 2(x2 − 4)2 + 3x2
5 − x6 − 30 ≤ 0

g8(~x) = −3x1 + 6x2 + 12(x9 − 8)2 − 7x10 ≤ 0

where −10 ≤ xi ≤ 10 (i = 1, . . . , 10). The global
optimum is x∗ = (2.171996, 2.363683, 8.773926,
5.095984, 0.9906548, 1.430574, 1.321644, 9.828726,
8.280092, 8.375927) where f(x∗) = 24.3062091. Con-
straints g1, g2, g3, g4, g5 and g6 are active.

8. g08

Maximize: f(~x) =
sin3(2πx1) sin(2πx2)

x3
1
(x1+x2)

subject to:
g1(~x) = x2

1 − x2 + 1 ≤ 0

g2(~x) = 1 − x1 + (x2 − 4)2 ≤ 0

where 0 ≤ x1 ≤ 10 and 0 ≤ x2 ≤ 10. The optimum so-
lution is located at x∗ = (1.2279713, 4.2453733) where
f(x∗) = 0.095825.

9. g09

Minimize: f(~x) = (x1 − 10)2 + 5(x2 − 12)2 + x4
3 +

3(x4 − 11)2 + 10x6
5 + 7x2

6 + x4
7 − 4x6x7 − 10x6 − 8x7

subject to:

g1(~x) = −127 + 2x2
1 + 3x4

2 + x3 + 4x2
4 + 5x5 ≤ 0

g2(~x) = −282 + 7x1 + 3x2 + 10x2
3 + x4 − x5 ≤ 0

g3(~x) = −196 + 23x1 + x2
2 + 6x2

6 − 8x7 ≤ 0

g4(~x) = 4x2
1 + x2

2 − 3x1x2 + 2x2
3 + 5x6 − 11x7 ≤ 0

where −10 ≤ xi ≤ 10 (i = 1, . . . , 7). The global
optimum is x∗ = (2.330499, 1.951372,−0.4775414,
4.365726,−0.6244870, 1.038131, 1.594227) where
f(x∗) = 680.6300573. Two constraints are active
(g1 and g4).

10. g10

Minimize: f(~x) = x1 + x2 + x3

subject to: g1(~x) = −1 + 0.0025(x4 + x6) ≤ 0
g2(~x) = −1 + 0.0025(x5 + x7 − x4) ≤ 0
g3(~x) = −1 + 0.01(x8 − x5) ≤ 0
g4(~x) = −x1x6 +833.33252x4 +100x1−83333.333 ≤ 0
g5(~x) = −x2x7 + 1250x5 + x2x4 − 1250x4 ≤ 0
g6(~x) = −x3x8 + 1250000 + x3x5 − 2500x5 ≤ 0

where 100 ≤ x1 ≤ 10000, 1000 ≤ xi ≤ 10000,
(i = 2, 3), 10 ≤ xi ≤ 1000, (i = 4, . . . , 8). The global
optimum is: x∗ = (579.19,
1360.13, 5109.92, 182.0174, 295.5985, 217.9799, 286.40,
395.5979), where f(x∗) = 7049.248. g1, g2 and g3 are
active.

11. g11

Minimize: f(~x) = x2
1 + (x2 − 1)2

subject to:
h(~x) = x2 − x2

1 = 0

where: −1 ≤ x1 ≤ 1, −1 ≤ x2 ≤ 1. The optimum
solution is x∗ = (±1/

√
2, 1/2) where f(x∗) = 0.75.

12. g12

Maximize: f(~x) =
100−(x1−5)2−(x2−5)2−(x3−5)2

100
subject to:
g1(~x) = (x1 − p)2 + (x2 − q)2 +(x3 − r)2 − 0.0625 ≤ 0

where 0 ≤ xi ≤ 10 (i = 1, 2, 3) and p, q, r = 1, 2, . . . , 9.
The feasible region of the search space consists of 93

disjointed spheres. A point (x1, x2, x3) is feasible if
and only if there exist p, q, r such the above inequal-
ity (12) holds. The global optimum is located at
x∗ = (5, 5, 5) where f(x∗) = 1.

13. g13

Minimize: f(~x) = ex1x2x3x4x5

subject to:

h1(~x) = x2
1 + x2

2 + x2
3 + x2

4 + x2
5 − 10 = 0

h2(~x) = x2x3 − 5x4x5 = 0
h3(~x) = x3

1 + x3
2 + 1 = 0

where −2.3 ≤ xi ≤ 2.3 (i = 1, 2) and −3.2 ≤
xi ≤ 3.2 (i = 3, 4, 5). The optimum solution is
x∗ = (−1.717143, 1.595709, 1.827247,
− 0.7636413, −0.763645) where f(x∗) = 0.0539498.
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