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Abstract. This paper presents a particle swarm optimizer to solve con-
strained optimization problems. The proposed approach adopts a simple
method to handle constraints of any type (linear, nonlinear, equality and
inequality), and it also presents a novel mechanism to update the velocity
and position of each particle. The approach is validated using standard
test functions reported in the specialized literature and it’s compared
with respect to algorithms representative of the state-of-the-art in the
area. Our results indicate that the proposed scheme is a promising alter-
native to solve constrained optimization problems using particle swarm
optimization.

1 Introduction

Constraints are usually adopted in any sort of real-world optimization problems
(e.g., in engineering, in cutting and packing problems, in VLSI design, etc.).
The unconstrained nature of evolutionary algorithms (EA) makes it necessary
to design schemes to incorporate the constraints of a problem into the fitness
function [2]. Despite the popularity of penalty functions, they have certain limi-
tations from which the main one has to do with the difficulties to define accurate
penalty factors that allow an EA an efficient exploration of the search space (par-
ticularly when dealing with problems in which the global optimum lies on the
boundary between the feasible and the infeasible regions).

Constrained optimization problems have been extensively studied in Mathe-
matical Programming. However, despite the existence of a considerable number
of deterministic optimization algorithms, there is no single approach that can
guarantee convergence for the general nonlinear programming problem, which is
the one of interest to us [8].

In the last few years, several metaheuristics have been adopted for numerical
optimization. One of such metaheuristics which has become increasingly popular
is particle swarm optimization (PSO) [6]. PSO is based on the metaphor of
how some species share information and then use it for moving to those places
where the food is located. The population is a set of individuals named particles



which represent possible solutions within a multidimensional search space. The
particles are characterized by a position, a velocity of exploration and a record of
their past behavior. All of these are constantly updated in an iterative process.
In this paper, we adopt PSO for solving constrained optimization problems.

The remainder of the paper is organized as follows. Section 2 provides the
statement of the problem of our interest. In Section 3, we present a brief literature
review. Section 4 describes our proposed approach. The experimental setup and
the analysis of our results are presented in Section 5. Finally, our conclusions
and some possible paths for future research are presented in Section 6.

2 Statement of the Problem

The problem of interest to us is the general nonlinear programming problem
which is defined as the problem of finding @ which optimizes the objective func-
tion:

f(x) with = (z1,2,...,zp) € FCSCRP" . (1)

where f(x) is subject to:
gi(x) <0 i=1,2,....n . (2)

he(x)=0 e=1,2,...,m . (3)

zq € [lg,uq) with d € [1..D]. lg and uq are the lower and upper bounds imposed
on the decision variables. The g; and h, functions are defined on S (search space),
and correspond to the inequality and equality constraint functions, respectively.
A constraint delimits the search space splitting it into a feasible and an infeasible
region. S is a D-dimensional rectangle defined by the lower and upper bounds of
each variable z4. All x satisfying all inequality and equality constraint functions
determine the feasible solution space F.

3 Literature Review

Despite the popularity of PSO as a numerical optimizer, there is relatively little
work regarding its use in constrained optimization problems. Next, we will review
the most representative research within this area.

Zhang et al. [11] presented a PSO algorithm with a periodic mode of han-
dling constraints. This technique makes periodic copies of the search space when
the algorithm starts the run. In that way, it avoids the disorganization that
may arise when the mutation operator is applied to those particles lying on the
boundary between the feasible and infeasible regions. The authors tested their
algorithm with a low number of evaluations (28,000 and 140,000) in eight test
functions. They performed 100 runs for each test function and compared the per-
formance of their approach with respect to the results provided by conventional
constraint-handling methods (i.e., penalty functions). However, no comparisons
are provided with respect to state-of-the-art constraint-handling techniques.



Toscano Pulido and Coello Coello [10] added to a basic PSO a simple mecha-
nism for tackling constraints based on how close are the particles from the feasible
region. A turbulence operator was incorporated to improve the exploration of the
search space. This operator changes the flight of particles to different zones. The
algorithm was tested with a relatively large population size and a low number of
iterations as to perform 340,000 evaluations of the objective function. Thirteen
benchmark constrained functions from [9] were used to show the performance of
this PSO. The authors concluded that their results were highly competitive.

Parsopoulos et al. [7] proposed a Unified Particle Swarm Optimization ver-
sion and adapted it to handle constraints. They included a penalty function
technique which uses the number of constraints that are violated and the degree
of violation. The algorithm preserves the feasibility of the best solutions. They
tested their version with four constrained engineering optimization problems
with promising results.

4 Our Proposed Approach

In this section, we present our proposal of a Constrained Particle Swarm Opti-
mizer (called CPSO). In CPSO, each particle consists of a n-dimensional real
number vector (where n refers to the number of decision variables of the problem
to be solved). Each dimension of a particle corresponds to a decision variable
of the problem. The particles are evaluated using a fitness function which has
some constraints. There are a several constraint-handling approaches that tend
to add information about the distance from each individual to the feasible re-
gion into the fitness function in order to guide the search. One of the simplest
methods (which was implemented in our algorithm) prefers to choose a feasible
individual over an infeasible one. When the algorithm evaluates infeasible parti-
cles, it prefers the infeasible individuals that are closer to the feasible region. To
determine the infeasibility degree, CPSO saves the largest violation obtained for
each constraint. Then, when a particle is detected to be infeasible, the algorithm
adds the amount of violation that corresponds to that particle (normalized with
respect to the largest violation recorded so far). This approach was used in the
PSO strategy to choose the best values: gbest, Ibest and the best value reached
by each particle. Thus, the equations to update velocity and position use the
“best” feasible solution, or the infeasible solution which is closest to the feasible
region (if there are feasible particles in the swarm).

Most constraint-handling techniques used in evolutionary algorithms tend
to deal only with inequality constraints because equalities are very difficult to
handle. To transform an equality constraint into an inequality we use:

he(z)] —€ <0 . (4)

where € is the tolerance allowed. By adopting this transformation, our CPSO
only deals with inequality constraints.

As in the basic PSO, our algorithm records the best position found so far for
each particle (gbest approach) or in the neighborhood (lbest approach) if a neigh-
borhood topology is implemented. These values are used to update the velocity



and position of the particles. It is known that the gbest approach works well in
many problems, but tends to converge to a local optimum in some cases [1]. For
those cases, the lbest approach works better because it records the best value
reached by a smaller group of particles, instead of considering the entire swarm.

We empirically found that a combination of the two approaches worked well
in our CPSO. With gbest, the algorithm explores better and with lbest, we avoid
stagnation. Thus, we modified the equation for computing the velocity (used to
update the position of a particle) in the following way:

vig = W(vig + €171 (Pia — partiq) + cara(Pig — partiq) + cars(pga — partiq)) (5)

part;g = part;q + viq (6)

where v;q is the velocity of the particle ¢ at the dimension d, w is the inertia
factor [3] whose goal is to balance global exploration and local exploitation, ¢;
is the personal learning factor, and ca, c3 are the social learning factors, 1, ro
and 73 are three random numbers within the range [0..1], p;q is the best position
reached by the particle ¢, p;4 is the best position reached by any particle in the
neighborhood, pyq is the best position reached by any particle in the swarm and
part;q is the value of the particle 7 at the dimension d.

To compute the p;q value, we used a circle topology [4], in which each particle
is connected to k neighbors. The neighbors are determined by the position of
the particles in the structure. Figure 1 illustrates this concept.
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Fig. 1. Circle topology.

It is well known that it is important to maintain the population’s diversity
to avoid stagnation (i.e., convergence to a local optimum). In order to meet
this goal, we adopted a dynamic mutation operator, which was applied to each
particle with a probability pm. This probability uses the total number of cycles
and the current cycle number in the following equation:

mazr_pm — min_pm
maz_cycle

pm = mazx_pm — * current_cycle (7
where max_pm and min_pm are the maximum and minimum values that pm
can take, max_cycle is the number of cycles that the algorithm will iterate, and
the current_cycle is the current cycle in the iterative process.



We empirically found that for some difficult functions, our CPSO could not
find good values. The reason was its diversification of solutions which kept the
approach from converging. In order to overcome this problem, we changed the
common update equation (eq. (6)) of particles for the update equation presented
by Kennedy [5] in the so-called Gaussian Bare Bones PSO. In that algorithm,
the new position of each particle is randomly chosen from a Gaussian distribution
with the mean selected as the average between the best position recorded for
the particle and the best in its neighborhood. The standard deviation is the
difference between these two values. Then, the position was updated using the
following equation:

partizN(pZ;pl,lpi—pzl) (8)
where p; is the position of the particle to be updated, IV is the Gaussian random
generator, p; and p; are the best position reached by the particle part; and the
best position reached by any particle in the neighborhood of part;. CPSO used
this equation to update particles with a certain probability (a 50% probability
was adopted to select between equation (6) and equation (8)). We choose those
probabilities ({0.5,0.5)) because we determined it was the best combination to be
used to select between equations (6) and equation (8) for updating the particles.
We performed a series of previous experiments (which are shown in Table 1)
using the 3 functions in which CPSO had more difficulties to obtain good values:
functions 2, 6 and 13. The notation (r, s) means that we selected equations (6)
with a probability r and equation (8) with a probability s. Figure 2 shows the
pseudo-code of our CPSO.

Table 1. Best Values obtained with CPSO, performing 340,000 evaluations with dif-
ferent probabilities of selection for the updating equations.

|Function||Best Known Value](0.1,0.9) [{0.5,0.5) [ (0.9, 0.1) |

2 -0.803619 0.801825 |-0.801388|-0.757889
6 -6961.814 -6962.046|-6961.825|-6827.984
13 0.053950 0.157094 | 0.054237 | 0.316460

5 Parameter Settings and Analysis of Results

The CPSO algorithm was tested using the thirteen constrained test functions
adopted in [9]. We performed 30 independent runs for each function. Qur results
are compared with respect to the PSO-based approach which currently is the
most competitive reported in the specialized literature for constrained optimiza-
tion (i.e., the approach by Toscano Pulido and Coello Coello [10]). Additionally,
we also compared our results with respect to Stochastic Ranking [9], which is a
constraint-handling technique representative of the state-of-the-art in the area.
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CPSQ:
Swarm Initialization
FOR i=1 TO number of particles DO
FOR j=1 TO number of dimensions DO
Initialize part;;
Initialize wel;;
END
END
Evaluate fitness
Record pbest
Record gbest

. Swarm flights through the search space

DO
FOR i=1 TO number of particles DO
Search the best leader in the
neighborhood of part;
and record in lbest;
IF f1ip(0.5)
FOR j=1 TO number of dimensions DO
Update wvel;;
Update part;; using eq. (6)
END
ELSE
gaussian update using eq. (8)
END
END
Keeping particles
Update pm
Mutate every particle depending on pm
Evaluate fitness(part;)
Record pbest
Record gbest
WHILE (current_cycle < maz_cycle)

Fig. 2. Pseudo-code of our proposed CPSO




Stochastic Ranking was validated performing 350,000 objective function evalu-
ations per run. However, the approach from [10] performed 340,000 objective
function evaluations per run. Thus, in order to allow a fair comparison, we per-
formed experiments with only 340,000 objective function evaluations. The pa-
rameters of our approach are the following: swarm size = 10 particles, pm_min
= 0.1, pm_maz = 0.4, neighborhood size = 4, the inertia factor w was set ran-
domly with a value within the range [0.8,0.9], and learning factors ¢, ¢z, and c3
were randomly chosen within the range [1.8,1.9]. The parameter settings such as
the probability of mutation, neighborhood size, inertia and learning factors were
empirically derived after numerous experiments. As we stated in Section 3, we
transformed the equality constraints into inequality constrains, using e = 0.0001.
This tolerance causes that the algorithm identifies as feasible some constraints
which are being slightly violated. That is the reason why some results reported
in the present work are better than the reference solutions previously reported.

Table 2 displays the results obtained with 3 different algorithms: our version
of CPSO with 340,000 evaluations, the algorithm presented by Toscano Pulido
and Coello Coello [10] (PSOr,s) and Stochastic Ranking (SR) [9]. The best
result found for each function is marked with dtalics.

Table 2. Best results obtained by our CPSO, PSOr,s (with 340,000 objective function
evaluations), and SR (with 350,000 objective function evaluations).

|[Function|[Type|Best Known Value] CPSO [ PSOr.,s | SR |

1 Min -15.000 -15.000 | -15.000 -15.000
2 Max -0.803619 -0.801388 | -0.803432 | -0.803515
3 Max 1.000 1.000 1.004 1.000

4 Min -30665.539 -30665.659|-30665.500|-50665.559
5 Min 5126.498 5126.497 | 5126.640 | 5126.497
6 Min -6961.814 -6961.825 | -6961.810 | -6961.814
7 Min 24.306 24.400 24.351 24.507
8 Max 0.095825 0.095825 | 0.095825 | 0.095825
9 Min 680.630 680.636 | 680.638 | 680.630
10 Min 7049.3307 7052,8528 | 7057.5900 | 7054.316
11 Min 0.750 0.749 0.749 0.750
12 Max 1.000 1.000 1.000 1.000
13 Min 0.053950 0.054237 | 0.068665 | 0.053957

Comparing our best results with respect to PSO7,, (Table 2), our approach
was able to improve its best results in five test functions: 3, 5, 9, 10 and 13 (it
is worth remarking that functions 10 and 13 are among the most difficult from
the benchmark considered). PSOr,s outperforms CPSO in test functions 2 and
7. Additionally, in functions 4 and 6, our CPSO did not reach the optimum
values while PSOr,s obtained values lower than the best reported values due to
rounding errors on the constraints. Comparing our CPSO with respect to SR,



we can observe that CPSO obtained better values for function 10, equal values
for five test functions (1, 3, 5, 8, 12) and SR found slightly better results for the
rest of the problems (2, 4, 6, 7, 9, 11 y 13). However, it is important to note that
both PSO algorithms obtained their results with a lower computational cost
(measured in terms of the number of evaluations of the objective functions),
since they performed 340,000 objective function evaluations, whereas Stochastic
Ranking performed 350,000 objective function evaluations.

Table 3. Best, Mean and Worst Values Obtained with CPSQO, performing 340,000
objective function evaluations.

|Function||  Best Mean Worst
1 -15.000 -15.0001 -134.2191
2 -0.801388 0.7653 0.0917
3 1.000 1.0000 1.0000
4 -30665.659(-30665.6564|-25555.6267
5 5126.497 | 5327.9569 | 2300.5443
6 -6961.825 | -6859.0759 | 64827.5545
7 24.400 31.4854 4063.5252
8 0.095825 0.0958 -0.0006
9 680.636 682.3973 |18484.7591
10 7052,8523 | 8533.6999 |13123.4656
11 0.749 0.7505 0.4466
12 1.000 1.000 9386
13 0.054237 1.4139 0.9675

The mean and worst values obtained by PSOr,s and SR (Tables 4 and 5)
are both better that those of CPSO (Table 3). We believe that this fact is
due to the mechanism implemented to maintain the swarm’s diversity. However,
this mechanism provided a trade-off that we considered acceptable, since the
best values found remained competitive despite the larger variability of results
obtained. Note that in Table 3 some mean values (functions 2, 4, 5, 11 and 13)
do not fall within the best and the worst values. This is because the worst values
reached by CPSO are not feasible while the best values are feasible. We believe
the same occurs with PSO7,s; and SR (Tables 4 and 5) in some cases.

6 Conclusions and Future Work

We have introduced a new proposal to solve constrained optimization problems
using particle swarm optimization. Qur approach uses simple selection rules for
handling the constraints of a problem, and adopts both the local and the global
best models to update the particles of the swarm. Our best results are very
competitive in most cases, even with respect to Stochastic Ranking (which is
the best constraint-handling technique known to date) although they present



Table 4. Best, Mean and Worst Values Obtained with PSOr,s, performing 340,000

objective function evaluations.

Table 5. Best, Mean and Worst Values Obtained with SR, performing 350,000 evalu-

ations.

|Function|| Best | Mean | Worst |
1 -15.000 -15.0000 -15.0000
2 -0.803432 | 0.790406 0.750393
3 1.004 1.0038 1.0024
4 -30665.500(-30665.5000{-30665.5000
5 5126.640 | 5461.0813 | 6104.7500
6 -6961.810 | -6961.8100 | -6961.8100
7 24.351 25.35567 27.3168
8 0.095825 0.0958 0.0958
9 680.636 680.8523 680.5530
10 7057.5900 | 7560.0478 | 8104.3100
11 0.749 0.7501 0.7528
12 1.000 1.0000 1.0000
13 0.068665 1.7164 13.6695

|[Function|] Best [ Mean [ Worst |
1 -15.000 -15.0000 -15.0000
2 -0.803515 | 0.781975 0.726288
3 1.000 1.0000 1.0000
4 -30665.500(-30665.5000{-30665.5000
5 5126.539 | 5128.8810 | 5142.4720
6 -6961.814 | -6875.9400 | -6350.2620
7 24.307 24.3740 24.6420
8 0.095825 0.0958 0.0958
9 680.630 680.6560 680.7630
10 7054.3160 | 7559.1920 | 8835.6550
11 0.750 0.7500 0.7500
12 1.000 1.0000 1.0000
13 0.053957 0.0570 0.2169




a high variability in some cases. Additionally, in several cases our approach
outperformed a previous PSO-based constraint-handling scheme.

As part of our future work, we aim to study alternative schemes to maintain

diversity. Another goal is to improve the robustness of our approach, so that the
variability of results significantly decreases, without degrading the quality of the
best solutions currently found.
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