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Abstract

Maintenance of power plants is aimed at extending the life and reducing the risk of
sudden breakdown of power generating units. Traditionally, power generating units
have been scheduled for maintenance in periods to ensure that the demand of the
system is fully met and the reliability of the system is maximized. However, in a
deregulated power industry, the pressure of maintaining generating units is also
driven by the potential revenue received by participating in the electricity market.
Ideally, hydropower generating units are required to operate during periods when
electricity prices are high and to be able to be taken offline for maintenance when the
price is low. Therefore, determination of the optimum time periods for maintenance
of generating units in a power system has become an important task from both a
system reliability and an economic point of view. Due to the extremely large number
of potential maintenance schedules, a systematic approach is required to ensure that
optimal or near-optimal maintenance schedules are obtained within an acceptable

timeframe.

Metaheustics are high-level algorithmic frameworks that aim to solve combinatorial
optimisation problems with a large search space in a reasonable computational run
time. Inspired by the foraging behavior of ant colonies, Ant Colony Optimisation
(ACO) is a relatively new metaheuristic for combinatorial optimisation. The
application of ACO to a number of different applications has provided encouraging
results when applied to scheduling, including the job-shop, flow-shop, machine

tardiness and resource-constrained project scheduling problems.

In this thesis, a formulation is developed that enables ACO to be applied to the
generalized power plant maintenance scheduling optimisation (PPMSO) problem.
The formulation caters for all constraints generally encountered as part of real-world
PPMSO problems, including system demands and reliability levels, precedence rules
between maintenance tasks, public holidays and minimum outage durations in the
case of shortening of maintenance tasks. As part of the formulation, a new heuristic
and a new local search strategy have been developed. The new ACO-PPMSO
formulation has been tested extensively on two benchmark PPMSO problems from
the literature, including a 21-unit and a 22-unit problem. It was found that the ACO-
PPMSO formulation resulted in significant improvements in performance for both
case studies compared with the results obtained in previous studies. In addition, the
new heuristic formulation was found to be useful in finding maintenance schedules

that result in more evenly spread reserve capacity and resource allocations. When
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tested using a modified version of the 21-unit and the 22-unit problems, the new
local search strategy specifically designed for duration shortening was found to be
effective in searching locally for maintenance schedules that require minimal
shortening of outage duration. The ACO-PPMSO formulation was also successfully
able to cater for all constraints as specified in both original and the modified versions

of the two benchmark case studies.

In order to further test the ACO-PPMSO formulation developed, it was first applied
to a scaled-down version of the Hydro Tasmania hydropower system (five power
stations) and then to the full system (55 generating units). As part of the studies, the
ACO-PPMSO formulation was linked with the simulation model used by Hydro
Tasmania to assess the impact of various maintenance schedules on the total energy
in storage of the system at the end of the planning horizon, the total thermal
generation, the total number of days where the reliability level is not met, as well as
the total unserved energy throughout the planning horizon. A number of constraints
were considered, including the anticipated system demands, a 30% capacity
reliability level, the minimum and maximum durations between related maintenance
tasks, the precedence constraints and the minimum outage duration of each task in
the case of shortening of maintenance tasks. The maintenance schedule was
optimised for the maximum end-of-horizon total energy in storage, the minimum
thermal generation and the minimum total outage durations shortened and deferred,
under 77 different inflow conditions. The optimal maintenance schedule obtained
compared favourably with that obtained by Hydro Tasmania over many years based
on experience. Specifically, the ACO-PPMSO schedule results in higher end-of-
horizon total energy in storage and satisfies both hard and soft constraints, which
overall equates to over $0.5 million dollars of savings when compared to the
schedule obtained using the practitioners” experience and engineering judgment. The
ACO-PPMSO algorithm was also shown to be a useful decision-making tool for
scheduling maintenance under different circumstances when tested with four

scenarios commonly encountered in practical maintenance scheduling problems.

In conclusion, the ACO-PPMSO formulation developed, tested and applied as part of
this thesis research provides a powerful and flexible means of obtaining optimal or

near-optimal maintenance schedules for power plants.
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Chapter 1
Introduction

1.1

Research background

Under the pressure of rapid development around the globe, power
demand has increased drastically during the past decade. To meet this
demand, the development of power system technology has become
increasingly important in order to maintain a reliable and economic
electric power supply. One major concern of such development is the
optimisation of power plant maintenance scheduling. Maintenance is
aimed at extending the lifetime of power generating facilities, or at least
extending the mean time to the next failure for which repair costs may be
significant. In addition, an effective maintenance policy can reduce the
frequency of service interruptions and the consequences of these
interruptions. In other words, having an effective maintenance schedule is
very important for a power system to operate economically and with high

reliability.

Determination of an optimum maintenance schedule is not an easy
process. The difficulty lies in the high degree of interaction between
several subsystems, such as commitment of generating units, economical
planning and asset management. Often, an iterative negotiation is carried
out between asset managers, production managers and schedule planners
until a satisfactory maintenance schedule is obtained. In addition, power
plant maintenance scheduling is required to be optimized with regard to a
number of uncertainties, including power demand, forced outage of
generating units, hydrological considerations in the case of hydropower
systems and trading value forecasts in a deregulated electricity market.
Consequently, the number of potential maintenance schedules is
generally extremely large, requiring a systematic approach in order to
ensure that optimal or near-optimal maintenance schedules are obtained

within an acceptable timeframe.

Ant Colony Optimisation (ACO) is a relatively new metaheuristic for
combinatorial optimisation problems that is based on the foraging

behavior of ant colonies. Compared to other optimisation methods, such
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1.2

as genetic algorithms (GA), ACO has been found to produce better
solutions in terms of computational efficiency and quality when applied
to a number of benchmark combinatorial optimisation problems.
Recently, ACO has also been successfully applied to scheduling, including
the job-shop, flow-shop, machine tardiness and resource-constrained
project scheduling problems. ACO is highly suitable for scheduling
optimisation problems, especially in handling various constraints, such as
the precedence and sequential constraints, which can be attributed to the
decision-tree based structure adopted by the ACO metaheuristic. In
addition, multiple alternative schedules of similar quality can be
produced in an ACO run, which is extremely useful in real-world power
plant maintenance scheduling for negotiation with the asset manager, for
example. A major drawback when using metaheuristics is not being able
to incorporate non-quantifiable criteria, such as the operational or trading
protocols adopted by a power system organization, in the optimisation
process. This drawback can be overcome by having alternative
maintenance schedules of similar quality that can be critically assessed
using criteria not specified as part of the formal optimisation. In addition,
the ability of ACO to utilize heuristic information in the optimisation

process can effectively reduce the search space of a problem.

Research objectives

The major goal of this research is given as follows:

To develop, test and apply an ACO-based formulation to real

power plant maintenance scheduling optimisation problems.

In order to meet the goal, a number of objectives are addressed, including;:

Objective 1: To develop a generalized formulation for the power plant
maintenance scheduling problem. Various issues, such as objectives and
constraints commonly encountered in real-world power plant

maintenance scheduling problems, are examined.

Objective 2: To develop a framework for utilizing ACO for the
generalized PPMSO problem.
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1.3

Objective 3: To test the ACO-PPMSO formulation with two benchmark

case studies.

Objective 4: To apply the ACO-PPMSO formulation to real-world
maintenance scheduling problems, including a simplified version and a

full version of the Hydro Tasmania system.

Thesis layout

In Chapter 2, the research background related to power plant
maintenance scheduling optimisation is reviewed. The objectives and
constraints commonly used in past studies are discussed (Section 2.1).
Optimisation methods previously adopted for power plant maintenance
scheduling, namely heuristic approaches, mathematical programming,
expert systems and metaheuristics, are reviewed in terms of the strengths
and drawbacks of each method (Section 2.2). The motivation for

considering metaheuristics in solving the problem are discussed.

In Chapter 3, various aspects of the Ant Colony Optimisation
metaheuristic are presented, including the derivation of a metaheuristic
from the foraging behaviour of real ant colonies (Section 3.1), the general
framework for ACO to solve a combinatorial optimisation problem
(Section 3.2), the two major categories of ACO algorithms (Section 3.3)
and the previous applications of ACO to benchmark and real-world
scheduling problems (Section 3.4). The chapter is concluded by the
motivation for adopting the ACO metaheuristic for power plant

maintenance scheduling in this research.

The proposed approach developed in this research for power plant
maintenance scheduling problems is presented in detail in Chapter 4. A
generalized formulation for the power plant maintenance scheduling
problem is detailed (Section 4.1). The new ACO formulation proposed for
the maintenance scheduling problem, including a new heuristic
formulation and a proposed local search strategy, is introduced (Section
4.2). In Section 4.3, the mechanisms of the ACO algorithm implemented
utilizing the proposed ACO formulation are detailed. Lastly, the two
categories of constraints commonly encountered in power plant

maintenance scheduling problem, as well as the techniques proposed to
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address these constraints in the ACO formulation, are discussed in

Section 4.4.

In Chapter 5, an experiment is carried out to test the effectiveness of the
new heuristic formulation and the local search strategy, as well as the
overall performance of the proposed ACO formulation for power plant
maintenance scheduling problems using four benchmark case studies,
namely the 21-unit case study, the 22-unit case study and the modified
version of the two case studies (Sections 5.1 to 5.3). The results and

analysis derived from the experiment are detailed in Section 5.4.

In Chapter 6, the proposed ACO-PPMSO formulation is applied to real-
world maintenance scheduling problems, including a five-station
hydropower system (Section 6.2) and a full Hydro Tasmania system
(Section 6.3).
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Chapter 2
Literature Review

In this chapter, the background of the research work presented in this thesis is
reviewed. In particular, the definition of power plant maintenance scheduling
optimisation adopted in past studies and the methods previously applied to

this problem are discussed.

2.1 Power plant maintenance scheduling optimisation

Power plant maintenance scheduling optimisation (PPMSO) has been
described as a “multi-criterion constrained combinatorial optimisation problem,
with non-linear objective and constraint functions” (Aldridge et al., 1999). The
definition of a combinatorial optimisation problem P = (S, f) has been

given by Blum et al. (2003) as:
e asetof variables R = {ry, ..., 7};
e variable domains Dy, ..., D,;
* a set of constraints; and

* an objective function f to be minimized (for a minimization

problem).
The search space of a problem, S, can thus be defined as:
S={s={(r1, v1), ..., (tn, va)} | vi UD;, s satisfies all the constraints}

The aim of an optimisation problem is to find a set of globally optimum
solutions S*U S for (S, f) such that f{s*) < f(s) U s*LIS*, sLIS.

In relation to PPMSO, the aim has been specified as the determination of
the timing and sequence of the maintenance periods of each of the
generating machines (units) used for power generation, assuming

maintenance durations are fixed (Dopazo et al., 1975; Yamayee et al., 1983;
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Mukerji et al., 1991; Satoh et al., 1991; Kim et al., 1997; Aldridge et al., 1999;
Dahal et al., 1999; Dahal et al., 2000; El-Amin et al., 2000; Foong et al., 2005a;
Foong et al., 2005b). The set of variables X in a PPMSO problem is

therefore implicitly represented by the maintenance commencement time

for all generating units considered, with the optional commencement

times given by the variable domains D. The objectives and constraints of

PPMSO on the other hand, are less well defined and were a research area

of their own at earlier stages of PPMSO research. Generally, the objectives

and constraints being employed for maintenance scheduling in the past

have been quite different, depending on the concerns of individual power

utilities. In this section, different objectives and constraints being adopted

in previous studies are reviewed.

2.1.1 Objectives

The objectives commonly utilized for PPMSO are generally reliability or

cost based (Figure 2.1):
Objectives
Reliability Cost
| - minimize production
costs
| - minimize
Deterministic Probabilistic maintenance costs
- maximize - level out loss of load
minimum reserve probability (LOLP)
- level out reserve -level out incremental
- minimize  annual risk/ minimize LOLP

unserved energy

Hybrid approach
- Well-being analysis

Figure 2.1: Objectives of power plant maintenance scheduling optimisation

2.1.1.1

Reliability-based criteria

Apart from meeting demands, a power system needs to provide a reserve

generation capacity to secure the provision of electricity to customers in
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the event of a sudden breakdown of generating units or unexpectedly
high peak demands. Reliability-based criteria previously used can be
roughly divided into two categories: deterministic and probabilistic

approaches (Figure 2.1). In addition, hybrid approaches can also be used.

Deterministic approaches

Deterministic approaches usually utilize historical data for the assessment
of maintenance schedules. An example of such data are daily peak
demands averaged over the past 5 years. Some deterministic reliability-
based criteria aim to maximize the minimum reserve in the planning
horizon (Christiaanse et al., 1971; Mukerji et al., 1991; El-Amin et al., 2000),
level the reserve throughout the planning horizon (Escudero et al., 1980;
Kim et al., 1997; Moro et al., 1999; Dahal et al., 2000; El-Amin et al., 2000;
Wang et al., 2000) or minimise the annual expected unserved energy
(Ahmad et al., 2000).

Probabilistic approaches

Some elements of a power system are naturally stochastic, including
system demands, the forced outage rates of generating units and the
system inflows in the case of a power system with hydropower plants. If
one or more of these elements are modelled probabilistically during the
assessment of the reliability of a trial maintenance schedule, a
probabilistic reliability-based approach is employed. A number of surveys
revealed that from 1964 to 1987, all Canadian utilities changed their
reliability assessment approach from deterministic to probabilistic
(Billinton, 1991). By taking into account the uncertainties associated with
the forced outage of generating units by incorporating their effective load
carrying capabilities, Garver (1972) was able to achieve uniform loss of
load probability (LOLP) for all time periods in a year. The method was
extended by Stremel et al. (1981) to account for load forecast uncertainty.
In the proposed method, equivalent loads were calculated for the three
time periods where peak loads and their corresponding probabilities were
specified. Maintenance scheduling was then carried out such that the
overall LOLP was minimized, based on the calculated equivalent loads.
The maintenance schedules obtained in this way were claimed to be much
more representative of actual planning operations (Stremel ef al., 1981). In
another study, Garver (1972) method was modified by Chen et al. (1990) to
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level incremental risks, which is equivalent to the minimization of annual
LOLP.

Hybrid approach

Well-being analysis that combined deterministic and probabilistic
approaches in a single framework was developed by Billinton et al. (1996).
As part of the framework, the reserve capacity of a system is analysed
using a probabilistic formulation and compared with an accepted
deterministic criterion, such as the loss of the largest unit, in order to
measure overall system comfort (Billinton et al.,, 1996). A probability of
health (PH) index used as part of the well-being analysis, which
represents the probability that the available reserve is equal to or greater
than the required capacity reserve, was later used as a fitness function for
the genetic algorithm optimisation formulation proposed by Abdulwhab
et al. (2004).

Despite the existence of many different formulations for reliability-based
criteria, it has been shown that the final optimisation outcome (optimized
schedule(s)) obtained based on a reliability criterion is usually acceptable

in terms of other reliability-based criteria (Ziirn et al., 1977).

2.1.1.2 Cost-based criteria

For planned maintenance scheduling, the major costs involved are energy
production cost and maintenance cost. The latter is only important if
outage durations are allowed to vary within a given limit (Yamayee et al.,
1983). A survey carried out by Mukerji et al. (1991) on 25 major power
plants in the US found that 16 had chosen production cost minimisation
as the only objective in determining an optimum maintenance schedule.
The author addressed two major modelling problems in such an
approach, the first being production cost as a complex non-linear function
of the maintenance schedule; the second that the cost function is
dependent on load shapes and forced outage rates, which generally
required extensive simulations for the cost calculations. To overcome the
first problem, Egan et al. (1976) suggested that reasonable production cost
could be achieved by maximizing system reliability under uncertainties
(loads and random forced outages) and minimizing the capital plant

needed to achieve a given reliability in the future. With regard to the
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second problem, load uncertainty and probability of forced outage can be
modelled using a fuzzy logic approach that incorporates economic and
technical knowledge of the problem domain (Dahal et al., 1999).

A study by Chattopadhyay et al. (1995) that investigated the performance
of different objectives for maintenance scheduling optimisation of two
interconnected power utilities in India found that using annual operating
cost was an ineffective objective when used alone. In the study, two of the
three reliability-based objectives tested produced maintenance schedules
associated with reasonable annual operating costs, but the reliability
criterion was found to be unsatisfactory when cost was used as the only
objective function (Chattopadhyay et al., 1995). In contrast, a study
conducted by Ahmad et al. (2000) revealed that optimisation based on a
cost criterion can produce schedules that result in significant savings with
an associated reliability level that is almost as good as that produced
when only the reliability criterion is used. The contradictory conclusions
of the two studies might be attributed to the differences in the search

space characteristics exhibited by the two case study systems.

Potential problems with local minima in the search space have been
reported by Arzamascev et al. (1970), who also used only production cost
as the objective function in their optimisation algorithm. In such
situations, difficulties in finding near globally optimal solutions could be
overcome by using evolutionary algorithm optimisation methods, which
work with a set of solutions, and not on a single solution, thus reducing

the chance of convergence to local optima (Ekwue, 1999).

In other studies, production cost was found to be an insensitive objective,
i.e. production costs were almost constant in the vicinity of the optimum
region of the search space (Ziirn, 1975; Hoover et al., 1976; Yamayee et al.,
1983). However, during the discussion on the study carried out by
Yamayee et al. (1983), Stremel (1983) pointed out that an appropriate
objective function of PPMSO should comprise of production cost and the

value of unserved energy.

In previous studies, maintenance scheduling of power plants has been
treated at its lowest level of complexity, without consideration of a
number of complicating factors. For example, the cost of hydropower

plant maintenance is influenced by loss-of-revenue due to spill at
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storages, which is caused by machines being taken off-line for
maintenance. Since spill is the major cause of energy loss, it also affects
the reliability of power supply systems. In order to cater for such issues, a
simulation model is often utilized to assist in planning activities such as
generation dispatch and unit commitment, given a proposed maintenance
schedule. Consequently, there is a need to develop an optimisation model

capable of incorporating such simulation models.

2.1.1.3 Other criteria

Other objectives addressed in the literature include the earliest possible
schedule and the minimum change from an existing schedule (Dopazo et
al., 1975). In an earliest possible schedule, maintenance tasks are
scheduled to commence as early as possible within individual timeframe
windows without violating system constraints. A criterion can also be
specified such that a new maintenance schedule that minimizes
disruption to an existing schedule is desired. Assuming the event of a
sudden breakdown of a major generating unit, the existing optimum
maintenance schedule must be reviewed. A new optimum schedule is
determined such that the least disruption is introduced to the original
schedule (minimum change from existing schedule) while the machine

broken down unexpectedly could be taken offline.

2.1.1.4 Multiple criteria

Although maint