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Abstract

Quantum Computing appeared about 30 years ago motivated by the ideas of Richard
Feynman. He wondered whether it is possible to simulate a quantum system by means
of a universal quantum machine or quantum computer. Although, there is no yet a
practical implementation of a quantum computer, researches have done impressive
theoretical results in the design of quantum algorithms, an important quantum algo-
rithm is the Shor algorithm to factorize an integer number into its prime factors [76].
A quantum algorithm has as input an initial state, and then a series of unitary ma-
trices are applied over the initial state in order to produce a final state, the output of
the algorithm is obtained by performing a quantum measurement over the final state.
This kind of quantum algorithms belong to the Quantum Circuit Model (QCM) [61].

Recently, it was proposed the Adiabatic Quantum Computation (AQC) [37, 35]
that is based on the Adiabatic Theorem [58, 42] to approximate solutions of the
Schrödinger equation. The design of an AQC algorithm involves the construction of
a Hamiltonian that describes the behavior of the quantum system, this Hamiltonian
is expressed as a linear interpolation of an initial Hamiltonian whose ground state
is easy to compute, and a final Hamiltonian whose ground state corresponds to the
solution of a given optimization problem. The Adiabatic Theorem asserts that if the
time evolution of a quantum system described by a Hamiltonian is large enough, then
the system remains close to its ground state. Thus, given an optimization problem, an
AQC algorithm uses the Adiabatic Theorem to approximate the ground state of the
final Hamiltonian that corresponds to the solution of the given optimization problem.
The time complexity of an AQC algorithm is the minimum time that satisfies the
Adiabatic Theorem.

AQC has been used to solve optimization problems, in [35] the authors claim that
the optimization problem MAX-SAT can be solved in polynomial time complexity
by an AQC algorithm. In [2] it was proved that QCM is equivalent to AQC. From
the computational point of view it is important to compute the spectrum of the
Hamiltonian in an AQC algorithm along the integration time in order to estimate its
time complexity. In general, it is a hard problem to know the time complexity of an
AQC algorithm.

We investigate the computational simulation of AQC algorithms for the MAX-
SAT optimization problem, we propose a symbolic analysis of the AQC solution in
order to understand the involved computational complexity of the AQC algorithms.
This approach can be extended to others combinatorial optimization problems. The
computational simulation of an AQC algorithm requires the construction of a matrix
of dimension 2n×2n where n is the dimension of the quantum system, that in general
corresponds to a sparse matrix, this matrix is constructed using matrix tensor prod-
ucts. We propose an efficient construction of the Hamiltonian for AQC algorithms
that avoid the matrix tensor products.

The design of AQC algorithms has important consequences in its time complexity
and also for its possible physical implementation. In Quantum Mechanics it is con-



venient to describe a Hamiltonian as an addition of local Hamiltonians i.e., Hamil-
tonians that only act on a subset of states in the quantum system. On the other
hand, the pseudo-Boolean optimization model has been used to model combinatorial
optimization problems into pseudo-Boolean maps. We propose a general scheme to
design AQC algorithms based on pseudo-Boolean maps for combinatorial optimiza-
tion problems, and we show that for a given optimization problem expressed in the
pseudo-Boolean optimization model, then it is possible to construct an AQC algo-
rithm with local Hamiltonians.

In [47] it was proved that NP-problems can be expressed in Second Order Logic
(SOL). In [27] it was shown that all instances of graph problems expressed in Monadic
Second Order Logic (MSOL) with bounded treewidth can be solved in polynomial
time complexity. The algorithmic solution proposed in [27] is based on a Dynamic
Programming approach over tree-decompositions of graphs [13, 18]. We show that
every MSOL expression has associated pseudo-Boolean maps that can be obtained
by expanding the given MSOL expression, and also can be reduced to quadratic
forms. The equivalence between MSOL expressions and quadratic pseudo-Boolean
maps can be considered as a general scheme to design AQC algorithms, since every
quadratic pseudo-Boolean map can be optimized by an AQC algorithm. We also show
a composition scheme for local Hamiltonians based on the dynamic programming
approach over tree-decompositions of graphs.



Resumen

La Computación Cuántica apareció hace cerca de 30 años motivada por la ideas de
Richard Feyman, quien se preguntaba si era posible simular un sistema cuántico por
medio de una máquina cuántica universal o computadora cuántica. Aunque todavía no
existe una implementación física de una computadora cuántica, se han hecho grandes
progresos teóricos en el diseño de algoritmos cuánticos, por ejemplo el algoritmo cuán-
tico de Shor para factorizar números enteros en sus factores primos [76]. Un algoritmo
cuántico recibe como entrada un estado inicial, sobre el cual se aplican sucesivamente
matrices unitarias, obteniendo así un estado final, la salida del algoritmo se obtiene
llevando a cabo una medición cuántica sobre el estado final. Este tipo de algoritmos
cuánticos pertenecen al Modelo de Circuitos Cuánticos (MCC) [61].

Recientemente, se propuso la Computación Cuántica Adiabática (CCA) [37, 35]
que se basa en el Teorema Adiabático [58, 42] para aproximar soluciones de la ecuación
de Schrödinger. El diseño de un algoritmo en CCA involucra la construcción de un
hamiltoniano que describe el comportamiento del sistema cuántico, este hamiltoniano
se expresa como una interpolación lineal de un hamiltoniano inicial cuyo estado firme
sea fácil de calcular, y un hamiltoniano final cuyo estado firme corresponde a la
solución de un problema de optimización dado. El Teorema Adiabático establece que
si el tiempo de evolución de un sistema cuántico, descrito por un hamiltoniano, es
lo suficientemente grande, entonces el sistema se mantiene cerca de su estado firme.
Así, dado un problema de optimización, un algoritmo en CCA emplea el Teorema
Adiabático para aproximar el estado firme del hamiltoniano final, que corresponde a
la solución del problema de optimización. Se considera a la complejidad en tiempo
de un algoritmo en CCA como al mínimo tiempo tal que se satisfaga el Teorema
Adiabático.

La CCA se ha empleado para resolver problemas de optimización, en [35] los
autores creen que el problema MAX-SAT puede ser resuelto en complejidad de tiempo
polinomial por un algoritmo en CCA. En [2] se probó que el MCC es equivalente a
la CCA. Desde el punto de vista computacional, es importante calcular el espectro
del hamiltoniano a lo largo del tiempo de evolución de un algoritmo en CCA, esto
ayudaría a conocer su complejidad en tiempo. En general, conocer la complejidad en
tiempo de un algoritmo en CCA es un problema difícil [37].

Investigamos la simulación computacional de los algoritmos en CCA para el prob-
lema de optimización MAX-SAT, proponemos un análisis simbólico de la solución en
CCA con el fin de entender la complejidad computacional de los algoritmos en CCA.
Este enfoque se puede extender a otros problemas de optimización combinatorios. En
la practica, la simulación computacional de un algoritmo en CCA requiere la con-
strucción de una matriz de dimensión 2n × 2n donde n es la dimensión del sistema
cuántico, en general esta matriz corresponde a una matriz dispersa, y se construye
usando el producto tensorial de matrices. Proponemos una construcción eficiente de
los hamiltonianos en CCA para el problema MAX-SAT que evita el uso de productos
tensoriales.



El diseño de algoritmos en CCA tiene consecuencias en su complejidad en tiempo y
también en su posible implementación física. En la Mecánica Cuántica es conveniente
describir un hamiltoniano como una suma de hamiltonianos locales i.e., hamiltoni-
anos que actúan sobre un subconjunto de estados en el sistema cuántico. Por otro
lado, el modelo de optimización de funciones pseudo-booleanas ha sido usado para
modelar problemas de optimización combinatorios por medio de funciones pseudo-
booleanas. Proponemos un esquema general para el diseño de algoritmos en CCA por
medio de funciones pseudo-booleanas para problemas de optimización combinatorios.
Probamos que para cada problema de optimización que se exprese en el modelo de
optimización de funciones pseudo-booleanas, se puede diseñar un algoritmo en CCA
con hamiltonianos locales.

En Complejidad Descriptiva la clase de problemas NP se puede describir como
expresiones en la Lógica de Segundo Orden (LSO) [47]. En [27] se demuestra que to-
das las instancias de problemas sobre gráficas que se expresan en la Lógica Monádica
de Segundo Orden (LMSO) con ancho de árbol acotado, se pueden resolver en com-
plejidad de tiempo polinomial. La solución algorítmica propuesta en [27] se basa
en un esquema de programación dinámica sobre descomposiciones en árbol de grá-
ficas [13, 18]. Demostramos que cada expresión en LMSO tiene asociada funciones
pseudo-booleanas que se obtienen expandiendo la expresión en LMSO, y que se pueden
reducir a formas cuadráticas. Esta equivalencia entre expresiones en LMSO y fun-
ciones cuadráticas pseudo-booleanas se puede considerar como un esquema general
para diseñar algoritmos en CCA, ya que cada función cuadrática pseudo-booleana
puede ser optimizada por un algoritmo en CCA. Mostramos también un esquema
de composición de hamiltonianos locales que se basa en el enfoque de programación
dinámica sobre descomposiciones en árbol de gráficas.
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Chapter 1

Introduction

The first idea to perform computations using a quantum computer was proposed by
Richard Feynman in 1982. He wondered whether it is possible to simulate a quantum
system by means of a universal quantum simulator [38]. The Feynman’s proposal
was the initial motivation for many future experimental and theoretical results in the
field of Quantum Computation (QC).

The first important theoretical result was given in [76], it is proposed a polynomial
time quantum algorithm to the problem of factoring an integer number into its prime
factors, that is believed to be a hard problem.

Since then, many quantum algorithms were proposed, for instance in [43] a sub-
linear time quantum algorithm is given to solve the problem of finding an element in
a non-structured database.

Quantum algorithms (QA) are based on the application of unitary operators that
act in a finite dimensional Hilbert space. Thus, a QA consists of consecutive ap-
plications of unitary operators over an initial quantum state, and the output of the
algorithm is obtained by performing a quantum measurement over the final state.
This approach is known as the quantum circuit model (QCM) (see [61]).

On other hand, Adiabatic Quantum Computation (AQC) was introduced in [37]
and it has been applied to solve optimization problems. It is based in the construc-
tion of a time-dependent Hamiltonian which codify the optimal solution of the given
optimization problem into its ground state (see chapter 3). AQC makes use of the
Adiabatic Theorem (see [58, 42]) to approximate solutions of the Schrödinger equation
in which a slow evolution occurs.

Although, AQC approach is defined by the solutions of the continuous Schrödinger
equation, it has been proved that AQC is equivalent to QCM (see [2]), and therefore
AQC is a universal model of computation.

A very active area in AQC deals with the problem to determine a time lower-
bound that an AQC algorithm requires in order to obtain an optimal solution. In [37]
an AQC algorithm was proposed for the 3-SAT problem (see chapter 4), and it is
claimed by means of simulations that the time required for the AQC algorithm scale
polynomially with the input size.

The Hamiltonian operators used in AQC should be local for convenience. Local
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2 CHAPTER 1. INTRODUCTION

Hamiltonian operators are expressed as a polynomial sum i.e. the addition of a poly-
nomial number of Hamiltonians each acting over a reduced number of states. With
the use of local Hamiltonians, it is possible to perform computations in a local way,
affecting only a neighborhood of states in the quantum system. A related impor-
tant problem is the Local Hamiltonian Problem (LHP) that consists in deciding if a
given Hamiltonian acting in a Hilbert space of dimension n has an eigenvalue below
a, or if all its eigenvalues are at less b, where a and b are real numbers such that
b− a ≥ n−O(1).

The LHP is known to be QMA-complete (see [52, 51, 50, 22]) where QMA is the
class of problems that can be solved in polynomial time by QA’s. From the point of
view of complexity theory, the LHP can be seen as the quantum analog of the SAT
problem for the class of problems NP and restricted versions of the LHP coincide
with NP-complete problems [83].

In [1] a general technique was proposed to decompose a Hamiltonian into a polyno-
mial sum of local Hamiltonians, it is based on the assumption that the given Hamilto-
nian is d-sparse and row-computable. The Hamiltonian decomposition it is important
to the Hamiltonian simulation which consists in computing the matrix exponentiation
of a given Hermitian matrix that results into a unitary matrix (see [23, 12, 65]).

Formally, the Adiabatic Theorem guaranties that the final ground state of a given
Hamiltonian can be approximated with arbitrary uncertainty, and assuming that
QC cannot solve NP-complete problems it follows that AQC is a means to obtain
an approximation to the ground state and the ground state energy. The ratio of
this approximation and its dependence on the hardness of the problem are not well
understood yet. On the other hand, classical algorithms have been proposed, for
instance, in [9] it was shown a classical approximation algorithm for evaluating the
ground-state energy of the classical Ising Hamiltonian with linear terms on an arbi-
trary planar graph. Also, a classical approximation algorithm is proposed to the LHP
(also see [62]).

The current construction of local Hamiltonians does not use the structure of the
given problem. For instance, in [35] an adiabatic quantum algorithm is given for
the MAX-SAT problem. It is based on a natural equivalence between clauses and
Hamiltonians defined for every literal in the given instance. A similar construction is
given in [66] for the protein folding problem, it is based on the Ising model to describe
the local interactions in a lattice.

The design and construction of Hamiltonians have important consequences in
the running time and convergence for AQC algorithms (see [36, 79, 3, 25]). In this
thesis we deal with the problem of local Hamiltonian construction for combinatorial
optimization problems. Also, we investigate the classical simulation of the AQC for
the MAX-SAT problem. An important challenge in AQC is to propose new techniques
to codify a given problem into the Hamiltonian approach, for instance, the Dynamic
Programming approach is a well known technique to solve NP-hard problems and
has been the basis for many polynomial time algorithms applied to graph problems
(see [19, 13, 18]).
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The main contributions of this thesis are the following:

• The first contribution is a complete analysis of the AQC applied to the 3-
SAT problem, we analyze the syntactical construction of the initial and final
Hamiltonians involved in the AQC algorithm, such as analysis is useful in order
to perform numerical simulations of the AQC algorithm i.e. to avoid a direct
construction of the Hamiltonians by means of tensor products. Also, we provide
a precise description of the computational complexity of the AQC algorithm.

• The second contribution is a general model in terms of pseudo-Boolean functions
to solve optimization problems. The main idea is to model any combinatorial
optimization as a quadratic pseudo-Boolean function [21], then a Hamiltonian
operator is constructed such that its ground state correspond to the point that
minimizes the quadratic pseudo-Boolean function. We also, show that any
problem expressed in monadic second-order logic has an associated pseudo-
Boolean function with a bounded number of variables.

• The last contribution of this thesis is a Dynamic Programming approach to solve
NP-hard problems. It is based on the Tree Decompositions of graphs introduced
in [69, 70, 71, 68] and a dynamic programming technique in which a graph
problem can be decomposed into smallest subproblems and then composed in
order to construct a global solution of the problem (see [13, 18]). Based on
this decomposition, we propose the Hamiltonian construction for AQC on each
subproblem of the tree decomposition and composed in a global Hamiltonian
whose ground state is the point at with the pseudo-Boolean function has its
minimum.

The organization of this thesis is as follows: In chapter 2 a succinct introduc-
tion to computational complexity is given, the basic definitions of complexity classes
and optimization problems are introduced. In chapter 3 we give an introduction to
adiabatic quantum computing. It is intended to be self-contained. In chapter 4 we
explore the classical simulation of the AQC for the MAX-SAT problem, we propose
a symbolic analysis of the construction of Hamiltonias for AQC. In chapter 5 we give
a general Hamiltonian construction for the pseudo-Boolean optimization problem. In
chapter 6 we show an alternative construction of local Hamiltonians based on a study
of graph decompositions and a dynamic programming approach. Finally, in chapter
7 we have the conclusions and further research.
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Chapter 2

Approximability of NP-hard problems

The purpose of this chapter is to give a succinct introduction to computational com-
plexity and its principal problems, the scope of this review ranges from complexity
classes to approximating optimization problems. In the background, the knowledge
of Turing machines (TM) is assumed (see [8, 40, 6]).

We emphasize the relationship between decision and optimization problems. In
order to do this, we recall the class P in terms of Deterministic Turing Machines
(DTM) and the class NP in terms of DTM’s that test membership in languages.

The class NP has a probabilistic characterization in terms of Probabilistic Turing
Machines (PTM), captured in the PCP theorem. The PCP theorem has impor-
tant applications in approximating solutions to NP-hard problems using a standard
methodology.

We also introduce the randomized complexity classes and their connections with
optimization problems. Randomized computation is related to quantum computation
by its probabilistic nature, that is, the quantum complexity class BQP contains the
classical complexity class BPP. Here we make a survey of these notions.

2.1 Basic definitions
Let L be a language. There exists a DTM M that recognizes L whenever L is
decidable. Given a DTM M , let LM be the language recognized by M . M is said
to be polynomial-time, if for each input string x, with |x| = n, M performs at most
O(nk) computing steps for a fixed non-negative exponent k, where |x| denote the
length of the string x.

Definition 1. The class P consists of all languages recognized by polynomial time
DTM’s.

Let L be a language, a verification procedure for L is a DTM V that satisfies the
following conditions:

1. Completeness: For each x ∈ L there exists a string y such that V (x, y) = 1.
(V accepts y as a valid proof for the membership of x in L)

5
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2. Soundness: For each x /∈ L and every string y it holds that V (x, y) = 0.
(V rejects y as proof for the membership of x in L)

A language L has an efficiently verifiable proof system if there exists a polynomial p
and a polynomial time verification procedure V such that, for each x ∈ L : (∃y : |y| ≤
p(|x|)∧V (x, y) = 1) and for every x /∈ L and every y, the equation V (x, y) = 0 holds.

Definition 2. The class NP consists of all languages that have efficient verifiable
proof systems.

Hence, P ⊆ NP.
Although the definition of the classes P and NP have been expressed in terms of

decision problems, there exist equivalent definitions for search problems.
A search problem is a relation R ⊆ {0, 1}∗ × {0, 1}∗. For an instance x of R,

let R(x) := {y : (x, y) ∈ R} be the set of solutions of x. A function f : {0, 1}∗ →
{0, 1}∗ ∪ {⊥} solves the search problem R if for every x, whenever R(x) 6= ∅ we have
f(x) ∈ R(x), otherwise f(x) = ⊥.

Let L1, L2 be two languages, L1 is reducible to L2 if there exists a function Φ :
L1 → L2 such that, x ∈ L1 if and only if Φ(x) ∈ L2. The language L1 is said to be
polynomially reducible to L2 if the reduction map Φ can be computed in polynomial
time. In this case, it is written L1 ≤p L2.

A language L ∈ NP is NP-complete if for each L′ ∈ NP, L′ ≤p L. The NP-
complete problems are thus the most difficult problems in the class NP.

2.2 Probabilistic proof systems

A verification procedure given by a DTM M can be extended by changing M with
a PTM that uses a source of random bits for its computation. From now on, a
verification procedure will be called a verifier for short.

Definition 3. A verifier V is a PTM having an input tape, a work tape, a source of
random bits and a read-only tape called proof string π. V has random access to π and
the operation of reading a bit in π is called a query.

The source of random bits of a verifier can be viewed as an input random string
ρ. The figure 2.1 shows a verifier and its components: It can be seen that a verifier
is equivalent to a verification procedure when the verifier does not use the random
string for its computation.

Let L be a language and q, r : N → N be two functions. L has a (r(n), q(n))-
restricted verifier if there is a verifier V such that satisfies the following conditions:

1. Efficiency: For each input x with |x| = n and given a proof string π of length
at most q(n)2r(n), V uses at most r(n) random bits and queries at most q(n)
positions in π. Then V outputs 1 for “accept” or outputs 0 for “reject”.
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random string ρ

input x verifier

vv

oo //

OO

��

proof π

work tape yes\no

Figure 2.1: Probabilistic Turing machine (verifier).

2. Completeness: For each x ∈ L there exists a proof πx such that for every random
string ρ, Pr[V (x, πx, ρ) = 1] = 1.

3. Soundness: For each x /∈ L and every proof π and random string ρ, Pr[V (x, π, ρ) =
1] ≤ 1

2
.

Definition 4. The class PCP[r(n), q(n)] consists of all languages that have (r(n), q(n))-
restricted verifiers.

Note that NP = PCP[0, poly(n)] where poly(n) =
⋃
k∈N n

k.

Theorem 1 (Arora & Safra, [7]). NP = PCP[log n, 1].

Theorem 1 asserts that in order to check membership, just a constant number of
accesses to the proof and a logarithmic number of random bits are required. Also,
theorem 1 has important applications to prove the hardness in approximating NP-
hard problems [45, 82, 78], as we review in the next section.

2.3 Optimization problems

Definition 5. An optimization problem Π is a tuple (IΠ, solΠ,mΠ, goalΠ) where IΠ

is the set of instances of Π, solΠ : IΠ → Ω(x) is a function that associates to any
instance x ∈ IΠ the set of feasible solutions of x, and mΠ : IΠ × solΠ → Z+ is the
measure function and goalΠ ∈ {min,max}.

The optimal solution to an instance x ∈ IΠ is denoted as y∗(x) ∈ solΠ(x) according
to goalΠ and its measure as m∗Π(x).

Let Π = (IΠ, solΠ,mΠ, goalΠ) be an optimization problem, Π is in the class NPO if
the set of instances IΠ can be recognized in polynomial time, namely for each x ∈ IΠ

there exists a polynomial p and for any y ∈ solΠ(x) with |y| ≤ p(|x|), the membership
of y in solΠ(x) can be decided in polynomial time and the measure function can be
computed in polynomial time.

The class NPO is the optimization version of NP, in the sense that every opti-
mization problem in NPO has its corresponding decision problem in NP.
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A problem Π is NP-hard if there exists an NP-complete problem Π′ such that
Π′ ≤T,p Π where ≤T,p is a polynomial Turing reduction (See [8]).

The NP-hard problems are the most difficult problems in NPO.

2.3.1 Approximation algorithms

Let Π be an optimization problem, for any x ∈ IΠ and for any value y ∈ solΠ(x), the
performance ratio of y with respect to x is defined as:

R(x, y) = max

{
mΠ(x, y)

m∗Π(x)
,
m∗Π(x)

mΠ(x, y)

}
,

the performance ratio is always a number greater than or equal to 1 and is closer to
1 as y is closer to the optimum solution.

An algorithm T is an ε-approximation algorithm for Π if, given any x ∈ IΠ,
R(x, T (x)) ≤ ε, and it is said that Π is ε-approximated.

APX is the class of all NPO problems Π such that, for some ε > 1, there exists
a polynomial time ε-approximation algorithm for Π.

Let Π be an NPO problem. An algorithm T is said to be an approximation scheme
for Π if, for any x ∈ IΠ and for any rational ε > 1, T (x, ε) returns a feasible solution
of x whose performance ratio is at most ε.

Definition 6. An NPO problem Π belongs to the class PTAS if it admits a polynomial-
time approximation scheme.

Note that the time complexity of an approximation scheme may be of the type
21/(ε−1)p(|x|) or |x|1/(ε−1) where p is a polynomial.

An NPO problem Π belongs to the class FPTAS if it admits a fully polynomial-
time approximation scheme, that is, an approximation scheme whose time complexity
is bounded by q(|x|, 1/(ε− 1)) where q is a polynomial.

Clearly, FPTAS ⊆ PTAS ⊆ Apx ⊆ NPO.

2.4 Randomized classes

In previous sections a PTM was introduced and considered as a verifier, here a PTM
is used to compute functions in a general setting.

Let L be a language, L has a polynomial-time PTMM if there exists a polynomial
p such that, for each x ∈ L, M(x) can be computed within at most p(|x|) steps. For
any x ∈ L, M(x) is a random variable over the output distribution of M with input
x. Note that, if x ∈ L then M may fail to give the answer M(x) = 1 with input x.

The types of failures of a PTMM for a language L can be characterized as follows:

1. Two-sided error: M can fail in both directions, i.e., if x ∈ L, M may rule that
M(x) = 0, and conversely.
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Type of error Class x ∈ L x /∈ L ⊥
Two-sided BPP Pr[M(x) = 1] ≥ 2

3
Pr[M(x) = 0] ≥ 2

3

One-sided RP Pr[M(x) = 1] ≥ 1
2

Pr[M(x) = 0] = 1
Zero-sided ZPP Pr[M(x) = 1] = 1, Pr[M(x) = 0] = 1, Pr[M(x) = ⊥] = 1

Pr[M(x) = 1] ≥ 1
2

Pr[M(x) = 0] ≥ 1
2

Table 2.1: Randomized class of languages.

2. One-sided error: M can fail in one direction, i.e., if x /∈ L, M may rule that
M(x) = 1, but if x ∈ L, M(x) = 1.

3. Zero-sided error: M does not fail to recognize an element in L and is able to
indicate its failure to find an answer.

The table 2.1 shows the classes of languages L that can be recognized by polynomial-
time PTM’s M with respect to the type of failure defined before:

The symbol “⊥” is the output of a PTM when fails to give an answer.
Formally the class ZPP is defined as follows: A language L is in ZPP if there

exists a PTM M such that Pr[M(x) ∈ {χL(x),⊥}] = 1 and Pr[M(x) ∈ χL(x)] ≥ 1
2

where χL(x) = 1 if x ∈ L and χ(x) = 0 if x /∈ L.
It is easy to prove that RP ⊆ NP and RP ⊆ BPP.
A PTM can approximate solutions of a NP-hard problem considering their corre-

sponding decision problem: Let Π = (IΠ, solΠ,mΠ, goalΠ) be an optimization problem.
Given x ∈ IΠ and an integer k ∈ Z+, the decision problem ΠD with respect to Π is
the following: decide whether m∗Π(x) ≥ k if goalΠ = MAX or whether m∗Π(x) ≤ k
if goalΠ = min. Finally, the language with respect to ΠD is LΠ = {(x, k)|x ∈
IΠ ∧m∗Π(x) ≥ k} if goalΠ = max.

2.4.1 Quantum complexity

Quantum computation is realized in finite dimensional Hilbert spaces, the operations
are realized as unitary operators over unit vectors represented as linear combinations
of vectors in an orthonormal basis. Quantum measurements are the operations of
reading the results. The notion of Quantum algorithms were first introduced in [11]
using Quantum Turing Machines (QTM), which extend the classical TM.

Formally, a QTM is a triplet (Σ, Q, δ) where Σ is a finite alphabet, Q is a finite
set of states with an distinguished initial state q0, a final state qf , and δ a quantum
transition function

δ : Q× Σ→ C̃Q×Σ×{L,R}

where L,R is a left or right displacement over the tape machine and C̃ is a set of
computable complex numbers within some precision.

The QTM has a two-way infinite tape of cells indexed by Z and a single red/write
tape head that moves along the tape. Given a pair (q, s) ∈ Q × Σ, δ associates a
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complex number α ∈ C̃ to (q, s), such that the absolute value of α is the probability
that the QTM will be in the new configuration (q′, s′) performing a left or right
displacement over the tape machine.

A QTM halts if reaches the final configuration with state qf , and it is said to
be polynomial time if it performs a polynomial number of states transitions. It is
possible to define an inner-product S space over C̃ as the space of configurations of a
QTM with the Euclidean norm, in this way, a linear combination of states in S is a
superposition of states of a QTM.

A QTMM recognizes exactly the language L, if for each x ∈ L, M accepts x with
probability 1 and for each x /∈ L, M rejects x with probability 1.

The class EQP consists of all languages recognized exactly by polynomial time
QTM’s.

A QTM M recognizes the language L with probability p if for each x ∈ L, M
accepts x with probability p and for each x /∈ L, M rejects x with probability 1− p.

Definition 7. The class BQP consists of all languages that are recognized by poly-
nomial time QTM’s with probability 2

3
.

The zero-sided error version of BQP is the class ZQP defined as follows: A
language L is in ZQP if for every x ∈ L, x is accepted by some polynomial time QTM
with probability 2

3
and rejected with probability 0, and for every x /∈ L, x is rejected

by some polinomial time QTM with probability 2
3
and accepted with probability 0.

Hence, EQP ⊆ ZQP ⊆ BQP.
The known relations with classical complexity classes are: P ⊆ BQP, BPP ⊆

BQP and BQP ⊆ PSPACE [61].



Chapter 3

Adiabatic quantum computing

This chapter is a self-contained introduction to adiabatic quantum computing (AQC)
as a general approach to solve optimization problems.

The first part is dedicated to recall the basic notions of Hilbert spaces and their
metrics. The linear operators are introduced and their properties in the evolution of
Quantum Systems using the Schrödinger picture.

Also, a brief terminology with Quantum Mechanics is given, in order to define
states, observables, measurements and dynamics of a quantum system. An important
part of this chapter is the exposition of the Adiabatic Theorem, which is the funda-
mental tool in AQC. We sketch the general algorithm for AQC to solve optimization
problems (see [37]).

Finally, we analyze the conditions in which the Adiabatic Theorem is satisfied
and the influence of the geometric Berry phases in the evolution of the adiabatic
paths (see [42]).

3.1 Basic definitions
A metric space is a pair (M,d) where M is a non-empty set and d : M ×M → R+ is
a metric on M satisfying ∀x, y, z ∈M :

1. d(x, y) ≥ 0, and d(x, y) = 0 if and only if x = y,

2. d(x, y) = d(y, x),

3. d(x, y) ≤ d(x, z) + d(z, y).

A metric space M is complete if every Cauchy sequence converges in M .
If V is any vector space then, the elements of V will be written using bold lowercase

letters as x,y, z. Any complex vector space V with induced norm by the inner product
is a metric space with metric defined as d(x,y) = ‖x− y‖ for all x,y ∈ V .

Let 〈·|·〉 : V × V → C be an inner product thus, for all x,y, z ∈ V, a, b ∈ C:

1. 〈x|y〉 ≥ 0 and the following holds 〈x|y〉 = 0 if and only if x = y,

11



12 CHAPTER 3. ADIABATIC QUANTUM COMPUTING

2. 〈x|ay + bz〉 = a 〈x|y〉+ b 〈x|z〉,

3. 〈x|y〉 = 〈y|x〉∗.

The induced norm of a complex vector space V is defined as ‖x‖ = 〈x|x〉
1
2 with

x ∈ V , and for any x,y ∈ V, a ∈ C,

1. ‖x‖ ≥ 0, and ‖x‖ = 0 if x = 0,

2. ‖x + y‖ ≤ ‖x‖+ ‖y‖,

3. ‖ax‖ = |a|‖x‖.

Definition 8. A Hilbert space is a complex vector space H with inner product which
is complete with respect to the metric induced by the inner product.

Let H1 = C2 be the complex Hilbert space of dimension 2. Let, for each n > 1,
Hn = Hn−1⊗H1 be the n-fold tensor product of H1. Hn is a Hilbert space of dimension
N = 2n, and for any x ∈ Hn : x = (x0, . . . , xN−1) is a vector with N complex entries.

For any two integers i, j ∈ N, i ≤ j, let [[i, j]] denote the collection of integers
ranging from i to j, [[i, j]] = {i, i+ 1, . . . , j − 1, j}.

Let 〈·|·〉 : Hn ×Hn → C be the inner product in Hn defined as:

∀x,y ∈ Hn : 〈y|x〉 =
N−1∑
i=0

y∗i xi = (y)Hx

where (y)H = (yT )∗ is the Adjoint Hermitian of y.
A vector x ∈ Hn is a unit vector if ‖x‖ = 1. A basis forHn is a linearly independent

vector family (xi)
N−1
i=0 satisfying ∀z ∈ Hn : z =

∑N−1
i=0 αixi for some complex numbers

(αi)
N−1
i=0 . A basis (xi)

N−1
i=0 is orthonormal if, for all i, j ∈ [[0, N − 1]] with i 6= j,

〈xi|xj〉 = 0.

3.1.1 Linear operators

Let Hn be a Hilbert space and let T : Hn → Hn be an operator, T is a linear operator
if T (

∑k−1
i=0 aixi) =

∑k−1
i=0 aiT (xi) where xi ∈ Hn and ai ∈ C for all i ∈ [[0, k − 1]]. Let

I : Hn → Hn be the identity operator and 0 : Hn → Hn be the zero operator: for any
x ∈ Hn, Ix = x and 0x = 0.

The set of all linear operators from Hn to Hn is denoted as L(Hn). A linear
operator T ∈ L(Hn) is self-adjoint or Hermitian if 〈Tx|y〉 = 〈x|Ty〉 and is unitary if
〈Tx|Ty〉 = 〈x|y〉 for every choice of x,y ∈ Hn.

Let GL(Hn) = {T ∈ L(Hn)| detT 6= 0} be the set of all invertible linear operators
in L(Hn) and let SU(Hn) = {T ∈ GL(Hn)| | detT | = 1} be the set of all unitary
operators in GL(Hn).
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Given an orthonormal basis (xi)
N−1
i=0 for Hn and T ∈ L(Hn) then, the matrix

representation of T is a matrix Tij ∈ CN×N with entries tij:

∀i ∈ [[0, N − 1]] : Txi =
N−1∑
j=0

tijxj,

we will use the matrix representation of an operator when it is clear from the context.
A linear operator T ∈ L(Hn) is Hermitian if TH = T and is unitary if THT = I.

Definition 9. Let T, S ∈ L(Hn) be two Hermitian matrices, T and S commute if
and only if [S, T ] ≡ ST − TS = 0.

For any T, S Hermitian operators and a ∈ C, the following properties are satisfied:

1. (aT )H = a∗TH ,

2. (T + S)H = TH + SH ,

3. (TS)H = SHTH ,

TS is Hermitian if and only if T and S commute.
A Hermitian operator T ∈ L(Hn) is positive definite if xHTx > 0 for any vector

x ∈ Hn.
Let T ∈ L(Hn) be a linear operator, a nonzero vector x ∈ Hn is invariant under

T if and only if there exists a constant λ ∈ C such that Tx = λx. The number λ is
said to be an eigenvalue of T and the vector x is said to be an eigenvector of T .

Let T ∈ L(Hn), the null subspace of T is defined as N (T ) := {x ∈ Hn|Tx =
0}. The spectrum of T is defined as Λ(T ) := {λ ∈ C|N (T − λI) 6= {0}}, i.e.,
Λ(T ) = {λ1, . . . , λm} is the set of all distinct eigenvalues of T . For any j ∈ [[1,m]], let
γj ≡ dimN (T − λjI) be the dimension of the subspace spanned by the eigenvectors
corresponding to the eigenvalue λj. An eigenvalue λj is called non-degenerate if γj = 1
and it is called degenerate if γj > 1.

An important measure on linear operators is the spectral norm, which is defined
as follows: For any linear operator T : Hn → Hn,

‖T‖ = sup
x 6=0

‖Tx‖
‖x‖

= max
‖x‖=1

‖Tx‖.

The spectral norm satisfies the following properties: For any T, S ∈ L(Hn)

1. ‖TS‖ ≤ ‖T‖‖S‖,

2. ‖TH‖ = ‖T‖,

3. ‖T ⊗ S‖ = ‖T‖‖S‖,

4. ‖T‖ = 1 if T is unitary.

If T is a Hermitian operator then its spectral norm ‖T‖ = max{|λ| |λ ∈ Λ(T )}
and ‖T‖2 is the largest eigenvalue of the operator THT .
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3.2 Quantum states and evolution
In the following, a brief introduction to the concepts and terminology of Quantum
Mechanics (QM) used in this thesis are given (see [58] for a complete treatment in
QM).

The Quantum Theory is a mathematical model of the physical world. In order to
specify this model it is necessary to define the following concepts: states, observables,
measurements and dynamics.

1. States: A state is a complete description of a physical system. In QM a state
is an unitary vector in a Hilbert space. Thus, the class of states of a quantum
system coincides with the unit sphere on a Hilbert space. For instance, let
(xi)

N−1
i=0 be an orthonormal basis for Hn, for any z ∈ Hn : z =

∑N−1
i=0 αixi where

αi ∈ C with i ∈ [[0, N−1]], if z is unitary then
∑N−1

i=0 |αi| = 1. The squares of the
absolute value of the scalars (αi)

N−1
i=0 correspond to a probability distribution

and the value |αi|2 is the probability of being in the state xi for i ∈ [[0, N − 1]].

2. Observables and measurements: An observable is a property of a physical system
that in principle can be measured. In QM an observable is a Hermitian opera-
tor. Let us see how an observable M can be represented as a sum of projector
matrices, also called the spectral representation. Let M ∈ L(Hn) be an observ-
able and let (xi)

N−1
i=0 be an orthonormal basis for Hn, M can be represented

as:

M =
N−1∑
i=0

λiPi,

where Pi = xix
H
i is the orthogonal projection onto the subspace spanned by

the eigenvector xi that corresponds to the eigenvalue λi ∈ Λ(M). For all i, j ∈
[[0, N − 1]] : PiPj = δijPi, P

H
i = Pi and

∑N−1
i=0 PH

i Pi = Idn.

An eigenstate of an observable is called an energy state and its corresponding
eigenvalue is called the energy. The lowest energy of an observable is known as
the ground energy and its corresponding energy state is known as the ground
state. For any two observables M1,M2 ∈ L(Hn), M1 +M2 is also an observable,
but M1M2 is an observable if and only if M1 and M2 commute.

The probability of finding a system in the energy λi of an observableM is given
by:

Pr(λi) = ‖Pix‖2 = xPix
H ,

where x is the quantum state prior to the measurement and
∑N−1

i=0 Pr(λi) = 1.
If the outcome of a measurement is λi for an observable M , then the quantum
state right after the measurement becomes:

y =
Pix

(xPixH)
1
2

.
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3. Dynamics: The time evolution of a quantum state is described by a Hermi-
tian operator also called a Hamiltonian of the system. In the Schrödinger pic-
ture of dynamics, the time evolution of a quantum system is governed by the
Schrödinger equation. Let H : R→ GL(Hn) be a time dependent Hamiltonian
and let x : R → Hn be a differentiable transformation in the interval I ⊂ R,
then the Schrödinger equation is:

∀t ∈ I :
d

dt
x(t) = −iH(t)x(t),

and can be rewritten as a first-order equation in the infinitesimal quantity dt
as:

x(t+ dt) = U(dt)x(t),

where U(dt) := Idn − iH(t)dt, hence UHU = Idn. U is unitary if H is a time
independent Hamiltonian.

3.3 The Adiabatic Theorem
The adiabatic approximation is a standard method of quantum mechanics used to
derive approximate solutions of the Schrödinger equation in the case of a slowly
varying Hamiltonian. The adiabatic approximation works as follows:

Put a quantum system in its ground state. If the Hamiltonian varies slowly
enough, then the quantum system will stay in a state close to the instantaneous
ground state of the Hamiltonian as the time goes on (see [58]).

3.3.1 Adiabatic evolution

Let Hn be a Hilbert space and let H : R→ GL(Hn) be a time dependent Hamiltonian.
The differentiable transformation x : R→ Hn is a solution of the Schrödinger equation
in the interval I ⊂ R if

∀i ∈ I : i
d

dt
x(t) = H(t)x(t). (3.1)

Let J ⊂ R be an interval and let τ : s 7→ t = as + b be an affine transformation
J → I. Let G : J → GL(Hn) be such that G(s) = aH(τ(s)).

Thus, if x : R→ Hn is a solution of (3.1) then

∀s ∈ J : H(τ(s))x(τ(s)) = i
d

dt
x(τ(s)) = i

1

a

d

ds
x(τ(s))

thus,

∀s ∈ J : i
d

dt
x(τ(s)) = G(s)x(τ(s))

and x◦τ is a solution of the Schrödinger equation in J for the Hamiltonian G = aH◦τ .
G is a continuous path in the space of Hermitian operators on Hn.
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For instance, if Jt0 = [0, t0] and I = [0, 1] the affine transformation is s 7→ as+b =
s
t0

and the Hamiltonian on Jt0 is Ht0(s) = 1
t0
H( s

t0
).

Let xt0 : Jt0 → Hn be a solution of the equation

∀s ∈ Jt0 : i
d

dt
xt0(s) = Ht0(s)xt0(s) (3.2)

Let {λ0, . . . , λN−1} ⊂ RI be the spectrum of the Hamiltonian H such that for all
j ∈ [[0, N − 1]] and for all t ∈ I, there exists yj(t) ∈ Hn (instantaneous eigenstate of
the Hamiltonian H(t) with corresponding energy λj):

H(t)yj(t) = λjyj(t) with ‖yj(t)‖ = 1

and
λ0(t) ≤ · · · ≤ λN−1(t).

The instantaneous eigenvalues are considered non-degenerated.
The path defined by the eigenvectors (y0(t))t∈[0,1] have extreme points y0(0),y0(1).

Let z 7→ 〈y0(1)|z〉 be a linear transformation from Hn → C with respect to the
instantaneous eigenvector y0(1). If λ1(t) − λ0(t) > 0 for all t ∈ [0, 1] then, the
Adiabatic Theorem asserts that:

lim
t0→+∞

| 〈y0(1)|xt0(t0)〉 | = 1.

This is the case of an infinitely slow or adiabatic passage. In other words, if the system
is initially in an eigenstate ofH(0) it will, at time t = 1, under certain conditions to be
specified later, have passed into the eigenstate of H(1), that derives it by continuity.

An upper-bound for the time needed to satisfy the Adiabatic Theorem is the
following:

T ≥ ∆max

εδ2
min

where δmin = min0≤t≤1(λ1(t) − λ0(t)), ∆max = max ‖ d
dt
H(t)‖ and ε ∈ [0, 1] is the

approximation ratio to the ground state of H.

3.3.2 Quantum computation by adiabatic evolution

The AQC was proposed in [37] as a general technique to solve optimization problems
and was initially applied to the MAX-SAT problem. In [35] it was shown by means of
computational experiments that AQC can approximate solutions in polynomial time
complexity for small instances of the MAX-SAT problem.

In [2] shows that AQC is equivalent to the circuit model of quantum computation
and viceversa.

The adiabatic evolution of a quantum system can be used to solve optimization
problems going from ground states to ground states of a time dependent Hamiltonian.

Thus, given an optimization problem Π with its corresponding energy function or
evaluation function and for a time dependent Hamiltonian H(t) for 0 ≤ t ≤ 1. The
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ground state of H at time t = 1 will correspond to the solution of the optimization
problem. If the Hamiltonian H at time t = 0 is initially in an easily computable
ground state (possibly in an uniform superposition of all basis states), then by the
Adiabatic Theorem, for an infinitely slowly passage from t = 0 to t = 1, the evolution
of the quantum system goes from the ground states to the ground states of H.

The general steps of the AQC algorithm are the following:

1. Prepare the quantum system in the ground state (which is known and easy to
prepare) of another Hamiltonian H0.

2. Encode the solution of an optimization problem into the ground state of a
Hamiltonian Hf .

3. Evolve the quantum system slowly enough satisfying the Adiabatic Theorem
with the Hamiltonian H(t) = (1 − t

T
)H0 + t

T
Hf for a total time T . The final

state x(t) at time t = T will be (very close) the ground state of Hf (see equation
(3.1)).

4. Perform a measurement of the state x(t) at time t = T . With high probability
the optimal solution of the optimization problem is found.

An important problem in AQC is to bound the time evolution T in order to satisfy
the Adiabatic Theorem. Thus, for a given NP-hard problem, it is convenient that T
grows polynomially with respect to the size of the instance problem.

3.4 Adiabatic paths

LetHn be a Hilbert space of dimensionN = 2n and let S be the unit sphere onHn, i.e.,
the class of all unitary states in Hn. Let t 7→ H(t) be a continuous parametrization
from R+ → GL(Hn) (a time dependent Hamiltonian). We claim that, for slowly
changes of H(t) in a closed internal, if the eigenvalue curves of H do not cross, then
the instantaneous ground states remain invariants.

Let t 7→ x(t) be a differentiable transformation and solution of the Schrödinger
equation:

i~
d

dt
x(t) = H(t)x(t). (3.3)

Let Λ(t) = {λ0(t), . . . , λN−1(t)} be the set of eigenvalues of H(t) with t ∈ R+, sorted
in decreasing order with respect to the absolute values. For each j < N , let xj(t) be
an eigenvector with corresponding eigenvalue λj(t). Then:

H(t)xj(t) = λj(t)xj(t). (3.4)

Assuming that the curves λj(t) do not cross, i.e., each curve xj : R+ → S evolve
adiabatically, the ground state of H(t) is xN−1(t).
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At each time t ∈ R+ the set of eigenvectors E(t) = (xj(t))
N−1
j=0 is orthonormal in

Hn:
∀k, j ∈ [[0, N − 1]] :

[
k 6= j =⇒ xk(t)

Hxj(t) = δjk
]
.

Expressing a solution x(t) of the equation (3.3) as a linear combination of the elements
in E(t) modified by a phase factor:

∀t ∈ R+ : x(t) =
N−1∑
j=0

cj(t) e
iθj(t) xj(t), (3.5)

where each phase θj is given by

∀t ∈ R+ : θj(t) = −1

~

∫ t

0

λj(s) ds. (3.6)

Then, according to the equation (3.3) and using elementary rules of derivation:

i~
N−1∑
j=0

eiθj(t)
[
c′j(t)xj(t) + cj(t)x

′
j(t) + iθj(t)cj(t)xj(t)

]
=

N−1∑
j=0

cj(t) e
iθj(t) H(t)xj(t).

(3.7)
and

c′k(t) = −
N−1∑
j=0

cj(t)e
i(θj(t)−θk(t)) xk(t)

Hx′j(t). (3.8)

Now, deriving equation (3.4), it follows:

H ′(t)xj(t) +H(t)x′j(t) = λ′j(t)xj(t) + λj(t)x
′
j(t)

hence

xk(t)
HH ′(t)xj(t)+,xk(t)

HH(t)x′j(t) = λ′j(t) δkj + λj(t) ,xk(t)
Hx′j(t).

Thus, since H is an adjoint operator,

k 6= j =⇒ xk(t)
HH ′(t)xj(t) = (λj(t)− λk(t)) ,xk(t)Hx′j(t). (3.9)

From (3.8) and (3.9), it follows:

c′k(t) = −ck(t)xk(t)Hx′k(t)−
∑

j∈[[0,N−1]]−{k}

cj(t)
ei(θj(t)−θk(t))

λj(t)− λk(t)
xk(t)

HH ′(t)xj(t). (3.10)

Now, if H change slowly enough with respect to t, then ‖H ′(t)‖ will be small, the
terms in the right hand side of (3.10) are negligible, and the following approximation
is found:

c′k(t) = −ck(t)xk(t)Hx′k(t),
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whose solution is given by

∀t ∈ R+ : ck(t) = ck(0)eiγk(t). (3.11)

where

γj(t) = i

∫ t

0

xk(s)
Hx′k(s) ds. (3.12)

The equation (3.5) can be written as

∀t ∈ R+ : x(t) =
N−1∑
j=0

cj(0)eiγj(t) eiθj(t) xj(t). (3.13)

If the system is initially in the ground state of H(0), then cN−1 = 1 and cj = 0 for
any j 6= N − 1, therefore, from equation (3.13),

x(t) = eiγN−1(t) eiθN−1(t) xN−1(t),

that is, the system remains in the same ground state up to a phase factor. The
hypothesis concerning the not-crossing of the eigenvalue curves is used mainly in the
relation (3.10).

3.4.1 Geometric Berry phases

In the following we consider that the continuous parametrization t 7→ H(t) from
R+ → GL(Hn) follows a closed trajectory.

Let P ⊂ Ck be a set of parameters i.e., an open set in the topology of Ck. Let
r 7→ H(r) be a continuous parametrization from P → GL(Hn). Let t 7→ r(t) be a
curve from R+ → P such that, for each t, k-parameters are selected. Let t 7→ x(t) be
a differentiable transformation and solution of the Schrödinger equation:

i~
d

dt
x(t) = H(r(t))x(t). (3.14)

Let Λ(r(t)) = {λ0(r(t)), . . . , λN−1(r(t))} be the set of eigenvalues of H(r(t)) with
t ∈ R+, sorted in decreasing order with respect to the absolute values. For each,
j < N , let xj(r(t)) be an eigenvector with corresponding eigenvalue λj(r(t)). Then:

H(r(t))xj(r(t)) = λj(r(t))xj(r(t)). (3.15)

Assuming that the curves λj(r(t)) do not cross, i.e., the curve r : R+ → P evolve
adiabatically, the ground state of H(r(t)) is xN−1(r(t)).

Assuming that the solution x(t) of (3.14) coincide with the ground state up to a
phase-shift factor:

∀t ∈ R+ : x(t) = eiφN−1(t) xN−1(r(t)). (3.16)
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By physical considerations, the dynamic phase factor is defined as:

∀t ∈ R+ : θN−1(t) = −1

~

∫ t

0

λN−1(r(s)) ds. (3.17)

The Berry phase is defined as the following difference:

∀t ∈ R+ : γN−1(t) = φN−1(t)− θN−1(t). (3.18)

From equations (3.14), (3.15) and (3.16), it follows:

∀t ∈ R+ : 0 =
d

dt
xN−1(r(t)) + i γ′N−1(t)xN−1(r(t)). (3.19)

Hence, ∀t ∈ R+ :

γ′N−1(t) = −i iγ′N−1(t)xHN−1(r(t))xN−1(r(t))

= ixHN−1(r(t))
d

dt
xN−1(r(t))

= ixHN−1(r(t))DrxN−1(r(t))
d

dt
r(t) (3.20)

(in the first equality the fact of unitarity was used, in the second the relation (3.19),
and in the last the chain rule of derivation was used). Integrating the equation (3.20),

γN−1(t) = i

∫ t

0

(
xHN−1(r(s))DrxN−1(r(s)

)
r′(s) ds (3.21)

Assuming that the curve r is a circuit C in P i.e., for a time T , r(T ) = r(0) and
C = {r(t)|t ∈ [0, T ]}, then equation (3.21) becomes the so called Geometric Berry
phase:

γN−1(C) = i

∮
C

(
xHN−1(r)DrxN−1(r)

)
dr (3.22)

Since the states have constant length 1, it follows that:

0 = Dr

(
xHN−1(r)xN−1(r)

)
=

(
Drx

H
N−1(r)

)
xN−1(r) + xHN−1(r)Dr (xN−1(r))

= 2<
(
xHN−1(r)Dr (xN−1(r))

)
,

thus, the integrand xHN−1(r)DrxN−1(r) in (3.22) is entirely imaginary and the geo-
metric Berry phase γN−1(C) is a real number. If γN−1(C) = 0, then the system is
called holonomic. There are several types of non-holonomic systems and each one of
them depends on the geometry where they belong.

Let us write (3.22) as:

γN−1(C) =

∮
C

AN−1(r) dr (3.23)
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where
r 7→ AN−1(r) = ixHN−1(r)DrxN−1(r) (3.24)

is a recalibration potential (gauge potential). AN−1 is invariant under change of
phases, that is, given ξN−1 : P → R continuous, making a change of phase yN−1(r) =
ei ξN−1(r)xN−1(r), it results in AN−1(r) = iyHN−1(r)DryN−1(r).

If the orthonormal basis (xj(r))
N−1
j=0 for H(r) is only changed by phases, then:(

yj(r) = ei ξj(r)xj(r)
)N−1

j=0
,

the Berry phase remains invariant. Thus, the Berry phase is invariant under certain
transformations U(1) of Hamiltonians.

The Aharanov-Bohm effect appears when the Hamiltonian of a magnetic field
and the corresponding electric field are moving in a circuit. The geometric Berry
phase is not negligible, that is, the system is no-holonomic, and this produce the
following effect: an electron beam that passes perpendicularly through a solenoid,
forks, surrounding the solenoid to compose later. The relationship between the paths
and adiabatic geometric phases is evident by the similarity of the phases involved.
The relation (3.12) determines the phase involved in the evolution of an adiabatic
path, while relation (3.21) determines properly the geometric Berry phase (3.22),
when the path followed by a Hamiltonian is a circuit.

There are other geometric phases, such as the Aharonov-Anandan, Pancharatnam
or specific techniques such as NMR.

3.4.2 Geometric quantum computation

The Adiabatic Theorem provides an approximation to the instantaneous ground state
of a Hamiltonian, but with the exception of a global phase, this phase can be divided
into two parts: the dynamic phase and the geometric Berry phase, see equations
(3.17) and (3.18), respectively. The Berry phase depends only on the path taken, not
on how fast the path is traversed. Hence, if we design a cyclic path of Hamiltonians,
the Berry phase is totally determined.

In Geometric Quantum Computing (GQC) [86, 56, 77] it is used the well known
fact in differential geometry that arises when a vector is parallel transported around a
loop on a smooth manifold (see figure 3.1). This vector may return rotated although
there has no been local rotation along the loop. This global rotation is the Holonomy
caused by the curvature of the underlaying space. In QM a state vector can be
transported without locally rotating it around a loop in some quantum parameter
space, and the resulting transformation has the same effect as applying a unitary
matrix or phase factor that depends only on the global geometry of the loop.

In contrast to AQC that encodes the solution of an optimization problem into the
ground state of a Hamiltonian, GQC encodes the solution of the problem into the
Berry phase of the final state. In [87] shows an adiabatic algorithm for the Counting
Problem, such that the solution is encoded in the Berry phase of the final state,
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Figure 3.1: Parallel transport of a vector without local rotation on a curved surface
(in a sphere). The final vector vf has been rotated with respect to the initial vector
vi, and the rotation angle being the solid angle enclosed by the loop.

rather than the ground state of the final state. The final information is obtained by
estimating the relative phase, rather than the usual quantum measurement.

There are several methods that have been proposed to build quantum gates based
on geometric Berry phases. In [34] it was shown a geometric quantum computation
scheme based on laser manipulation of a set of trapped ions. In [49] a controlled phase
shift gate was proposed by performing a nuclear magnetic resonance experiment in
which a conditional Berry phase is implemented. Since, the geometric Berry phase
depends only on the geometry of the path executed, this suggest the possibility of an
intrinsically fault-tolerant way of performing quantum gate operations (see also [84,
63]).

The GQC provides a scheme to design new quantum algorithms that are fault-
tolerant for some kind of source of errors, but it depends on specific physical imple-
mentation such as NMR techniques. There is not yet a general technique to codify
the solution of hard problems into the geometric Berry phase. An important problem
is to propose a quantum algorithm based on the geometric Berry phase for the search
problem in a database with time complexity equal to the proposed in [43].

In this thesis we do not consider the influence of the Berry phase in the adiabatic
evolution, and in general we assume that the adiabatic paths follow an arbitrary
trajectory.



Chapter 4

Efficient Hamiltonian construction

In this chapter we propose a procedural construction of the Hamiltonian operators
for AQC to avoid the direct tensor product construction. A complete treatment of
AQC applied to the MAX-SAT problem is given, the initial and final Hamiltonian are
constructed in order to simulate AQC in a computationally efficient way (see [32]).

The procedural construction of the Hamiltonian operators for AQC can be gen-
eralized for other optimization problems with a similar structure and it can be used
in other applications such as Hamiltonian simulations and numerical analysis of the
eigenvalue paths in the evolution of AQC.

This computational analysis can help to track the involved complexity of the AQC
which is the topic of this thesis.

4.1 AQC applied to the MAX-SAT problem

In AQC, given a problem Π and any instance x of size n, a pair of Hamiltonians in a
n-dimensional Hilbert space is determined. Each Hamiltonian corresponds to a Her-
mitian matrix represented by a (2n× 2n)-complex matrix and in general corresponds
to a sparse matrix. Two problems arise with the computational simulation of AQC:
the first one is that the amount of memory to store the two Hamiltonians becomes
impractical for most of the actual computers, and the number of operations grows
exponentially.

In order to deal with these two problems, we describe and characterize in a proce-
dural way every entry of the initial and final Hamiltonians. Such a characterization
of the Hamiltonians can reduce the amount of used memory to half.

Here we follow a SAT coding similar to the already standard codings [37, 46] into
AQC. We will consider 3-SAT: The satisfiability decision problem for 3-clauses. And
we provide a procedural construction of the initial and final Hamiltonian for the given
instances.

23
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4.1.1 Satisfiability Problem

Let X = (Xj)
n−1
j=0 be a set of n Boolean variables. A literal has the form Xδ, with

X ∈ X , and δ ∈ {0, 1}: X1 = X and X0 = ¬X. A clause is a disjunction of literals,
and a conjunctive form (CF) is a conjunction of clauses. An assignment is a point
ε = (εj)

n
j=1 ∈ {0, 1}

n in the n-dimensional hypercube. Such an assignment satisfies
the literal Xδ

j if and only if εj = δ; it satisfies a clause whenever it satisfies a literal
in the clause; and it satisfies a CF whenever it satisfies all clauses in the CF. An
m-clause is a clause consisting of exactly m literals, and an m-CF is a CF consisting
just of m-clauses.

The satisfiability problem SAT consists of deciding whether a given CF has a
satisfying assignment. SAT is NP-complete and 3-SAT (the restriction of SAT to
3-CF’s) is also NP-complete.

For any clause C, let hC : {0, 1}n → R, be the map such that

ε satisfies C =⇒ hC(ε) = 0,

ε does not satisfy C =⇒ hC(ε) = 1.

And for any CF φ = (Ci)
m−1
i=0 let hφ : {0, 1}n → R be hφ =

∑m−1
i=0 hCi . Clearly:

∀ε ∈ {0, 1}n : [hφ(ε) = 0 ⇐⇒ ε satisfies φ] ,

thus deciding the satisfiability of φ is reduced to decide whether the global minimum
of hφ is 0.

4.1.2 AQC formulation of SAT

Let |0〉 =
[

1 0
]T and |1〉 =

[
0 1

]T be the vectors in the canonical basis of the
Hilbert space H1 = C2. Let, for each n > 1, Hn = Hn−1 ⊗ H1 be the n-fold tensor
power of H1. A basis of Hn is (|ε〉)ε∈{0,1}n where

ε = (εj)
n
j=1 =⇒ |ε〉 =

n⊗
j=1

|εj〉 .

Let σz : H1 → H1 be the Pauli quantum gate with matrix σz =

[
1 0
0 −1

]
. For

any bit δ ∈ {0, 1} let τδz = 1
2
(I2 − (−1)δσz). Independently of δ, the characteristic

polynomial of τδz is pz(λ) = (λ − 1)λ and its eigenvalues are 0 and 1 with unit
eigenvectors |0〉 and |1〉. The correspondence among eigenvalues and eigenvectors is
determined by δ, namely:

∀ε ∈ {0, 1} : τδz |ε〉 = (δ ⊕ ε) |ε〉 , (4.1)

in words: if δ = 0 the index of each eigenvector coincides with the eigenvalue, oth-
erwise, it is the complementary value. Thus, the zero eigenvalue of the map τδz
corresponds to the eigenvector eδ.
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For any δ ∈ {0, 1} and j1 ∈ [[1, n]], let REδj1n =
⊗n

j2=1 ρzδj2 : Hn → Hn where
ρzδj2 = identityH1 if j2 6= j1 and ρzδj1 = τδz, thus the effect of REδjn in an n-quregister
is to apply τδz to the j-th qubit. Consequently,

∀ε ∈ {0, 1}n : REδjn (|ε〉) = (δ ⊕ εj) |ε〉 , (4.2)

thus the zero eigenvalue corresponds to the basic vectors giving a satisfying assignment
for the literal Xδ

j . Given a 3-clause C = X
δj1
j1
∨Xδj2

j2
∨Xδj3

j3
let

HEC = REδ3j3n ◦REδ2j2n ◦REδ1j1n : Hn → Hn.

Thus, for any ε ∈ {0, 1}n, HEC (|ε〉) = 0 if and only if ε satisfies the clause C; and it
coincides with the linear map that on the basis vectors acts as |ε〉 7→ hC(ε) |ε〉. Thus,
if x =

∑
ε∈{0,1}n xε |ε〉 then HEC(x) =

∑
ε∈{0,1}n xεhC(ε) |ε〉 and

〈x|HEC(x)〉 =
∑

ε∈{0,1}n
xεxεhC(ε) =

∑
ε∈{0,1}n

|xε|2hC(ε) ≥ 0. (4.3)

Hence HEC is a positive operator. Indeed, we have 〈x|HEC(x)〉 = 0 if and only if
HEC(x) = 0 ∈ Hn, and this happens if and only if x is a linear combination of those
basic vectors indexed by assignments satisfying the clause C.

For a given CF φ = (Ci)
m−1
i=0 let HEφ : Hn → Hn be HEφ =

∑m−1
i=0 HECi . Again,

HEφ is positive and HEφ(x) = 0 if and only if x is a linear combination of those basic
vectors indexed by assignments satisfying the CF φ.

An unit n-quregister x ∈ Hn such that HEφ(x) = 0 is called a ground state for
HEφ. Thus:

Remark 1. In order to find a satisfying assignment for φ it is sufficient to find a
ground state for HEφ.

Let σx : H1 → H1 be the Pauli quantum gate with matrix σx =

[
0 1
1 0

]
. The

map τδx = 1
2
(I2 − (−1)δσx) also has, independently of δ, characteristic polynomial

px(λ) = (λ − 1)λ and its eigenvalues are 0 and 1, now with corresponding unit
eigenvectors c0 = 1√

2
(|0〉+ |1〉) and c1 = 1√

2
(− |0〉+ |1〉), which form an orthonormal

basis of H1. The correspondence among eigenvalues and eigenvectors is determined
as in relation (4.1) by δ, namely:

∀ε ∈ {0, 1} : τδxcε = (δ ⊕ ε)cε. (4.4)

Let us also make

ε = (εj)
n
j=1 =⇒ cε =

n⊗
j=1

cεj .

For any j1 ∈ [[1, n]], let RZδj1n =
⊗n

j2=1 µδj2 : Hn → Hn where µδj2 = identityH1 if
j2 6= j1 and µδj1 = τδx, thus the effect of RZδjn in an n-quregister is to apply τδx to
the j-th qubit. Consequently, as in relation (4.2):

∀ε ∈ {0, 1}n : RZδjn (cε) = (δ ⊕ εj) cε. (4.5)
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Hence whenever εj = δ, cε is a ground state of the operator RZδjn.
Let us consider δ = 0 and let us write RZjn = RZ0jn. Given a 3-clause C =

X
δj1
j1
∨Xδj2

j2
∨Xδj3

j3
let HZC = RZj1n +RZj2n +RZj3n : Hn → Hn. Then HZC does not

depend on the “signs” δj1 , δj2 , δj3 of the literals, but just on the variables appearing in
the clause. The following implication holds:

[εj1 = εj2 = εj3 = 0 =⇒ HZC (zε) = 0] .

Given a CF φ = (Ci)
m−1
i=0 let HZφ : Hn → Hn be HZφ =

∑m−1
i=0 HZCi .

Remark 2. From relation of equation (4.5), c00···0 = 1

2
n
2

∑
ε∈{0,1}n |ε〉 is a ground

state of HZφ.

Remark 3. The following equation holds:

HZφ =
n∑
j=1

djRZjn (4.6)

where, for each j ∈ [[1, n]], dj = card{i ∈ [[1,m]]| Xj appears in Ci}.

From remark 2 we have that there is a “natural” ground state, c00···0, for the
operator HZφ, while, after remark 19, to solve the SAT instance given by φ it is
necessary to find a ground state for the operator HEφ. In summary, c00···0 is a ground
state for HZφ but our aim is to find a ground state for HEφ.

For any 3-clause C, let us consider the map I → GL(Hn), where GL(Hn) is the
group of invertible linear automorphisms of the space Hn, and I = [0, 1] is the unit
real interval, given as t 7→ HC(t) = (1− t)HZC + tHEC .

For a CF φ = (Ci)
m−1
i=0 , let

Hφ : t 7→ Hφ(t) =
m−1∑
i=0

HCi(t) =
m−1∑
i=0

[(1− t)HZC + tHEC ] .

Let
∀t ∈ [0, 1] : i

d

dt
ψ(t) = Hφ(t)ψ(t). (4.7)

be the proper Schrödinger equation, with Hamiltonian Hφ.
Let {ην}2n−1

ν=0 ⊂ (RI)2n be the sequence of curves giving the eigenvalues of Hφ

(indexed according to their absolute values at the initial points for t = 0). Then it is
possible to see that η0 and η1 never cross on I, and, by the Adiabatic Theorem, there
exists a t0 > 0 such that the solutions ψt0 of the “scaled” equation

∀t ∈ [0, t0] : i
d

dt
ψt0(t) = Hφ

(
t

t0

)
ψt0(t) (4.8)

are such that ψt0(t) gets arbitrarily close, as t ↗ t0, to a ground state for HEφ. A
measurement of such ground state provides an assignment that either satisfies φ or
maximizes the number of satisfied clauses in φ.
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4.2 Procedural Hamiltonian construction

In the following we describe a procedural construction of the Hamiltonian operators
HE and HZ defined in section 4.1.2.

4.2.1 Hyperplanes in the hypercube

Let us enumerate the n-dimensional hypercube with indexes in [[0, 2n−1]] associating
each i ∈ [[0, 2n − 1]] with its length n big-endian base-2 representation:

i↔ rev ((i)2) = (ε0, . . . , εn−1) ∈ {0, 1}n where i =
n−1∑
ν=0

εν2
ν . (4.9)

By putting each such representation as the i-th row of a rectangular array, a (2n×n)-
matrix E ∈ {0, 1}2n×n is obtained. Let us denote by e

(1)
j ∈ {0, 1}2n its j-th column,

j = 0, . . . , n − 1. On one side, e(1)
j can be written as the list (02j12j)2n−1−j

= e
(1)
j ,

and on the other hand it can be seen as the Boolean map that has as support the
hyperplane E1

j : εj = 1. Let e
(0)
j be the 2n-vector obtained from e

(1)
j by taking the

complement value at each entry. Then e
(0)
j = (12j02j)2n−1−j , and it represents the

Boolean map with support the hyperplane E0
j : εj = 0. Clearly:

Remark 4. Each hyperplane Eδ
j is a (n− 1)-dimensional affine variety at the hyper-

cube and its characteristic map can be written as the list

e
(δ)
j = (δ

2j

δ2j)2n−1−j
.

The lists e(δ)
j are easily computable:

Procedure (n− 1)-DimensionalVarieties.
Input: δ ∈ {0, 1}, j ∈ [[0, n− 1]] and k ∈ [[0, 2n − 1]].
Output: The k-th entry of the list e(δ)

j .

1. Let k0 := kmod (2n−1−j).

2. If k0 ≥ 2j then output δ else output δ.

Two (n− 1)-dimensional affine varieties are parallel if they are of the form E0
j and

E1
j , for some index j ∈ [[0, n− 1]].

Remark 5. The intersection of two parallel (n − 1)-dimensional varieties is empty,
while the intersection of any two non-parallel (n−1)-dimensional varieties is a (n−2)-
dimensional affine variety, thus the intersection of any two non-parallel (n − 1)-
dimensional varieties has cardinality 2n−2. Also, the intersection of three pairwise
non-parallel (n− 1)-dimensional affine varieties has cardinality 2n−3.
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4.2.2 The Hamiltonian operator HE

For any δ ∈ {0, 1} and j ∈ [[0, n − 1]], the transform REδjn : Hn → Hn defined in
section 4.1.2, being the tensor product of transforms represented by diagonal ma-
trices with respect to the canonical basis, is represented, with respect to the basis
(|ε〉)ε∈{0,1}n , by a diagonal matrix. Indeed:

Remark 6. The 2n-length diagonal determining the diagonal matrix of REδjn coin-
cides with the list e(δ)

j = (δ
2j

δ2j)2n−1−j .

For a 3-clause C = X
δj1
j1
∨ Xδj2

j2
∨ Xδj3

j3
, the operator HEC = REδ3j3n ◦ REδ2j2n ◦

REδ1j1n is also represented by a diagonal matrix and its diagonal is the component-
wise product of the lists e(δ1)

j1
, e(δ2)

j2
and e

(δ3)
j3

. Since the indexes j1, j2, j3 are pairwise
different, the lists are the characteristic maps of three pairwise non-parallel (n− 1)-
dimensional affine varieties. From remark 5:

Remark 7. With respect to the canonical basis (|ε〉)ε∈{0,1}n of Hn, for any 3-clause

C = X
δj1
j1
∨ Xδj2

j2
∨ Xδj3

j3
, the operator HEC is represented by a diagonal matrix

and its diagonal, DC(C) = DC ((j1, δ1), (j2, δ2), (j3, δ3)), consisting of 2n−3 1’s, is
such that each entry can be calculated by a slight modification of the procedure (n −
1)-DimensionalVarieties outlined above. Namely:

Procedure 3-ClauseDiagonal.
Input: A 3-clause C = {(j1, δ1), (j2, δ2), (j3, δ3)}, and k ∈ [[0, 2n − 1]].
Output: The k-th entry of the list DC .

1. For r = 1 to 3 do

(a) kr0 := kmod (2n−1−jr).
(b) If kr0 ≥ 2jr then xr := δr else xr := δr.

2. Output x1 · x2 · x3.

Remark 8. With respect to the canonical basis (|ε〉)ε∈{0,1}n of Hn, for any CF φ =

(Ci)
m−1
i=0 the operator HEφ =

∑m−1
i=0 HECi is represented by a diagonal matrix, and its

diagonal is DF (φ) =
∑m−1

i=0 DC(Ci).

For any 3-clause C, let SptC(C) = {j ∈ [[0, 2n−1]]|DC(C)[j] 6= 0} be the collection
of indexes corresponding to non-zero entries at the vector in the diagonal DC(C).
Then card(SptC(C)) = 2n−3. Similarly, let SptF (φ) be the collection of indexes
corresponding to non-zero entries at the vector in the diagonal DF (φ). Clearly:

φ = (Ci)
m−1
i=0 =⇒ SptF (φ) =

m−1⋃
i=0

SptC(Ci).

The entries at DF (φ) are the eigenvalues of the operator HEφ, and the satisfying
assignments are determined by the eigenvectors corresponding to the zero eigenvalue
(if zero indeed is an eigenvalue). From remark 19 the following results:
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Remark 9. Any zero entry in the 2n-vector DF (φ) determines a satisfying assignment
for φ. Namely, if DF (φ)[i] = 0 then φ(rev ((i)2)) = True.

This can also be stated as follows:

Remark 10. For a given CF φ = (Ci)
m−1
i=0 , φ is satisfiable if and only if the following

happends SptF (φ) 6= [[0, 2n − 1]].

Thus, the satisfiability problem can be rephrased as follows:
Problem QASAT.
Instance: A CF φ = (Ci)

m−1
i=0 .

Solution: “Yes” if SptF (φ) 6= [[0, 2n − 1]]; “No”, if SptF (φ) = [[0, 2n − 1]].
SAT is thus reducible to QUSAT in polynomial time, consequently QUSAT is

NP-complete as well.
As a second construction of the vector at the diagonal DC(C) for any 3-clause, let

us enumerate these clauses in another rather conventional manner.
In a general setting, let k ≥ 3. Then the number of k-clauses, C =

∨
j∈J X

δj
j , with

card(J) = k, in n variables, is νkn =
(
n
k

)
2k. For any i ∈ [[0, νkn − 1]] let i0 = i mod 2k

and i1 = (i − i0)/2k. Then the map η : i 7→ (i1, i0) allows us to identify [[0, νkn − 1]]
with the Cartesian product [[0,

(
n
k

)
− 1]]× [[0, 2k − 1]]. The map η can also be seen as

the function that to each index i ∈ [[0, νkn − 1]] associates the clause C =
∨
j∈Ji1

X
δj
j

where Ji1 is the i1-th k-set of [[0, n− 1]] and i0 =
∑k−1

κ=0 δjκ2κ.

Remark 11. Let C = X
δj1
j1
∨ Xδj2

j2
∨ Xδj3

j3
be a 3-clause, 0 ≤ j1 < j2 < j3 < n.

Then the collection SptC(C) of indexes corresponding to non-zero entries at DC(C)
is characterized as follows: For any k ∈ [[0, 2n − 1]], k ∈ SptC(C)⇐⇒

∃(k0, k1, k2, k3) ∈ K :

(k1 = δ1 mod 2) & (k2 = δ2 mod 2) & (k3 = δ3 mod 2) &

k = k0 + 2j1k1 + 2j2k2 + 2j3k3

where K = [[0, 2j1 − 1]]× [[0, 2j2−j1 − 1]]× [[0, 2j3−j2 − 1]]× [[0, 2n−j3 − 1]].

The remark 11 is consistent with the calculated cardinality of SptC(C) because:
2n−3 = 2j12j2−j1−12j3−j2−12n−j3−1. And also, it justifies an algorithm to compute
DC(C). Namely:
Procedure 3-ClauseDiagonalBis.
Input: A 3-clause C = {(j1, δ1), (j2, δ2), (j3, δ3)}, and k ∈ [[0, 2n − 1]].
Output: The k-th entry of the list DC .

1. flg := True ; crk := k ;

2. k0 := crk mod 2j1 ; crk := (crk− k0)/2j1 ;

3. k1 := crk mod 2j2−j1 ; crk := (crk− k1)/2j2−j1 ;
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4. flg := (k1 == δ1 mod 2) ;

5. If flg then

(a) k2 := crk mod 2j3−j2 ; crk := (crk− k2)/2j3−j2 ;

(b) flg := (k2 == δ2 mod 2) ;

(c) If flg then

i. k3 := crk mod 2j3−j2 ; crk := (crk− k3)/2n−j3 ;
ii. flg := (k3 == δ3 mod 2) ;

6. If flg then b := 1 else b := 0;

7. Output b.

4.2.3 The Hamiltonian operator HZφ

Now let us consider the operators with subindex Z defined in section 4.1.2.
Let us define the following matrices:

A0 = [1] ; B0 = [1]

A1 = I2 ⊗ A0 − 1
2
σx ⊗B0 ; B1 = I2 ⊗B0

A2 = I2 ⊗ A1 − 1
2
σx ⊗B1 ; B2 = I2 ⊗B1

A3 = I2 ⊗ (1
2
B2 + A2)− 1

2
σx ⊗B2 ; B3 = I2 ⊗B2

(4.10)

where I2 is the (2× 2)-identity matrix. For each k ≤ 3, Ak, Bk are matrices of order
(2k × 2k), indeed we have Bk = I2k .

For n = 3 and any 3-clause C012 = Xδ0
0 ∨Xδ1

1 ∨Xδ2
2 involving the three variables,

the transform HZC012 : H3 → H3 is represented, with respect to the canonical basis
of H3, by the matrix

H[012],3 = A3 =
1

2



3 −1 −1 0 −1 0 0 0
−1 3 0 −1 0 −1 0 0
−1 0 3 −1 0 0 −1 0

0 −1 −1 3 0 0 0 −1
−1 0 0 0 3 −1 −1 0

0 −1 0 0 −1 3 0 −1
0 0 −1 0 −1 0 3 −1
0 0 0 −1 0 −1 −1 3


. (4.11)

which is a band matrix with the following properties: its upper-right boundary is its
diagonal at distance 4 = 23−1 above the main diagonal, the lower-left boundary is
also at distance 4 below the main diagonal, the main diagonal has constant value 3

2

and the only values appearing in the matrix are 3
2
, 0,−1

2
.
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Naturally, for any n > 3 the transform HZC012 : Hn → Hn is represented by the
matrix

H[012],n = H[012],n−1 ⊗ I2. (4.12)

The tensor product at eq. (4.12) substitutes each current entry at H[012],n−1 by the
product of that entry by the (2 × 2)-identity matrix. Thus also H[012],n is a band
matrix, its boundaries are diagonals at distance 2n−1 from the main diagonal, the
main diagonal has constant value 3

2
and the only values appearing in the matrix are

3
2
, 0,−1

2
. The following algorithm results:

Procedure HZ012.
Input: An integer n ≥ 3 and a pair (i, j) ∈ [[0, 2n − 1]]2.
Output: The (i, j)-th entry of the matrix H[012],n.

1. k := j − i ;

2. Case k of

0 : v := 3
2
.

±2` : (a power of 2, with ` ≥ 1)
i. ι := min{i, j} ;
ii. ι0 := ι mod 2`+1 ;
iii. If ι0 < 2` Then v := −1

2
Else v := 0 ;

Else: v := 0 ;

3. Output v.

For an arbitrary 3-clause Cj1j2j3 = Xδ1
j1
∨Xδ2

j2
∨Xδ3

j3
, with 0 ≤ j1 < j2 < j3 < n let

πj1j2j3 be a permutation [[0, n− 1]]→ [[0, n− 1]] such that j1 7→ 0, j2 7→ 1, j3 7→ 2 and
the restriction πj1j2j3|[[0,n−1]]−{j1,j2,j3} is a bijection [[0, n− 1]]−{j1, j2, j3} → [[3, n− 1]].
Then, there is a permutation ρj1j2j3 : [[0, 2n−1]]→ [[0, 2n−1]], which can be determined
in terms of πj1j2j3 , such that the matrix H[j1j2j3],n representing the transform HZCj1j2j3
is the action of ρj1j2j3 over rows and columns on the matrix H[012],n. Namely, let

ρj1j2j3 : [[0, 2n − 1]]→ [[0, 2n − 1]] ,

n−1∑
κ=0

εκ2
κ 7→

n−1∑
κ=0

επj1j2j3 (κ)2
κ, (4.13)

then when writing H[012],n =
[
h

(0)
ij

]
0≤i,j≤2n−1

one has

H[j1j2j3],n =
[
h

(0)
ρj1j2j3 (i) ρj1j2j3 (j)

]
0≤i,j≤2n−1

.

The following algorithm results:
Procedure HZFor3Clauses.
Input: An integer n ≥ 3, a 3-clause C = {(j1, δ1), (j2, δ2), (j3, δ3)} and a pair (i, j) ∈
[[0, 2n − 1]]2.
Output: The (i, j)-th entry of the matrix H[j1j2j3],n.
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1. Compute the permutation ρj1j2j3 : [[0, n− 1]]→ [[0, n− 1]] as in (4.13) ;

2. Output HZ012[n; (ρj1j2j3(i), ρj1j2j3(j))].

(Evidently, the permutation ρj1j2j3 can be computed as a preprocess to be used later
for several entries (i, j).)

For a CF φ = (Ci = {(ji1, δi1), (ji2, δi2), (ji3, δi3))m−1
i=0 , the Hamiltonian operator

HZφ : Hn → Hn is represented by the matrix Hφ,n =
∑m−1

i=0 H[ji1ji2ji3],n. Thus it can
be computed directly by an iteration of algorithm HZFor3Clauses.

Remark 12. The ground eigenvector of the matrix Hφ,n will tend to a ground state of
the matrix HEφ when solving the Schrödinger equation (4.8), providing thus a solution
of SAT for the instance φ.

In this chapter we have provide procedures to construct the initial and final Hamil-
tonians HE and HZ , respectively. The procedure 3-ClauseDiagonal construct the
diagonal elements of the operator HEC for each clause C, as the intersection of three
pairwise non-parallel (n− 1)-dimensional varieties (see remark 5). The diagonal ele-
ments of HEφ is the pairwise addition of the diagonal elements of the operators HEC

for every clause C. Although we have described the diagonal elements of HEφ, this
construction still requires an exponential number of operations, namely m2n where
m is the number of clauses and n is the number of Boolean variables.

On the other hand, in section 4.2.3 it is shown a recursive construction of the
Hamiltonian HZ that corresponds to a sparse matrix. The procedure HZFor3Clauses
returns the (i, j)-th entry of the matrix H[j1j2j3],n and for a 3-CF φ the Hamiltonian
operator HZφ is constructed by iterative calls to the procedure HZFor3Clauses.

In chapter 5 we show two constructions of the initial Hamiltonian operator for
AQC, one based on the Pauli matrices and other on the Hadamard transform.



Chapter 5

AQC for pseudo-Boolean optimization

The pseudo-Boolean maps [21] appears naturally in many areas of mathematics such
as in combinatorial optimization, operation research, integer programming and ar-
tificial intelligence. Its importance is in modeling many branches of optimization
problems into a general scheme based on quadratic forms. This general scheme can
be used to design AQC algorithms by means of the Adiabatic Theorem in order to
optimize the underlying pseudo-Boolean maps.

In this chapter the pseudo-Boolean maps are introduced to build a general model
for optimization in combinatorial problems. In particular the quadratic pseudo-
Boolean maps are described in order to express combinatorial graph problems. We
develop the Adiabatic Quantum Optimization (AQO) for pseudo-Boolean maps and
we prove that the defined Hamiltonians are two-local.

We also give a general algorithm to transform any Monadic Second Order Logic
sentence into a pseudo-Boolean map, and its corresponding optimization problem for
AQO. This part can be seen independently from the above results, and it can be
considered as a general framework for optimization that is not restricted to graph
problems.

In the background the basis for AQC given in chapter 4 is assumed.

5.1 Basic transformations

Let Q = {0, 1} be the set of the integer values 0 and 1. A Boolean function on n
variables is a function on Qn into Qn, where n is a positive integer and Qn denotes
the n-fold Cartesian product of Q with itself.

A pseudo-Boolean map of n variables is a function f : Qn → R, where n is a
positive integer. Consider the following problem:

Pseudo-Boolean Optimization
Instance: A pseudo-Boolean map f : Qn → R.
Solution: A minimum point x∗ = arg minx∈Qn f(x).

33
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In the following we will deal with the Pseudo-Boolean Optimization Problem.
The set of n Boolean variables will be denoted as X = {xi : 0 ≤ i ≤ n − 1} and

the set of literals will be denoted as L = {xi, xi : 0 ≤ i ≤ n− 1} where xi := 1− xi.
Note that, Qn is in correspondence with the power set of [[0, n− 1]]. The following

theorem asserts that any pseudo-Boolean map can be expressed as a real-valued map
from P([[0, n− 1]]) to R.

Theorem 2. For every pseudo-Boolean map f : Qn → R on n Boolean variables,
there exists a unique mapping c : P([[0, n− 1]])→ R such that

f(X) =
∑

S∈P([[0,n−1]])

c(S)
∏
j∈S

xj. (5.1)

See a proof in [21].
The size of the largest subset S ∈ P([[0, n − 1]]) for which c(S) 6= 0 is called the

degree of f , and is denoted by deg(f).

Remark 13. Every pseudo-Boolean map has a unique multilinear polynomial repre-
sentation as in equation (5.1).

A posiform is a polynomial expression with non-negative terms of the form:

φ(L) =
m−1∑
k=0

bk

(∏
i∈Ak

xi

)(∏
j∈Bk

xj

)
(5.2)

where bk ∈ R and bk > 0; Ak, Bk ⊆ [[0, n − 1]], Ak ∩ Bk = ∅ and Ak ∪ Bk 6= ∅ for all
k = 0, . . . ,m− 1.

Proposition 1. Any pseudo-Boolean map can be represented as a posiform.

Proof. Let f : Qn → R be a pseudo-Boolean map defined as in (5.1). For any
S ⊆ [[0, n− 1]], let tS be the term in f determined by S as tS = c(S)

∏
j∈S xj, and let

πS be a permutation of the elements in S. A posiform is an expression in which for
every S ⊆ [[0, n− 1]] : c(S) ≥ 0. Thus, if c(S) < 0 then tS can be written as

tS = c(S)(1− xπS(0) − xπS(0)xπS(1) − · · · − xπS(0) · · ·xπS(m−2)xπS(m−1))

where m = card S. Repeating this transformation for every negative term of f
eventually produces a posiform of f .

From proposition 1, it can be seen that any pseudo-Boolean map can have many
different posiforms representing it.

Of particular interest are the quadratic pseudo-Boolean maps fue : Qn → R (i.e.,
deg(fue) ≤ 2) expressed by polynomials of the form

fue(X) =
∑

j∈[[0,n−1]]

ujxj +
∑

{i,j}∈[[0,n−1]](2)

eij xixj, (5.3)
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for some coefficient vector u ∈ Rn and coefficient matrix e ∈ R
n(n−1)

2 .
For instance, given a graph G = (V,E), with V = [[0, n− 1]] and E ⊆ [[0, n− 1]](2),

a representative quadratic pseudo-Boolean map is obtained as

fG(X) =
∑

j∈[[0,n−1]]

xj −
∑
{i,j}∈E

xixj.

It can be seen that the problem to find a maximal independent vertex subset in G is
equivalent to maximize the map fG(X) over the hypercube Qn.

Also, quadratic maps can be considered over the n-fold Cartesian power of the set
S = {−1,+1}. In fact:

Proposition 2. Any maximization problem of a quadratic pseudo-Boolean map over
the hypercube Qn is equivalent to a minimization problem of a quadratic map over the
power Sn. In symbols: ∀e ∈ R

n(n−1)
2 , u ∈ Rn ∃w ∈ Rn ε ∈ Qn:

ε = arg max
Qn

fwe(X) ⇔ θ(ε) = arg min
Qn

fwe(X). (5.4)

Proposition 3. Every pseudo-Boolean function f expressed as in equation (5.1) can
be reduced to a quadratic pseudo-Boolean function.

Let us consider the following algorithm:
Procedure Reduce.
Input: A pseudo-Boolean function Sf =

∑
S⊆[[0,n−1]] cS

∏
j∈S Xj.

Output: A quadratic pseudo-Boolean function fue.

1. M = 1 +
∑

S⊆[[0,n−1]] |cS|; m = n;

2. While ∃S∗ ⊆ [[0, n− 1]] with (|S∗| > 2 & cS∗ 6= 0) do

Choose {i, j} ⊂ S∗ and let

c{i,j} := c{i,j} +M ;

c{i,m+1} := −2M ; c{j,m+1} := −2M ;

c{m+1} := 3M ;

For all subsets S ⊇ {i, j} with cS 6= 0 define

c(S\{i,j})∪{m+1} := cS;
cS := 0;

m := m+ 1;

3. Output fue :=
∑

S⊆[[0,m−1]] cS
∏

k∈S Xk.

Quadratic pseudo-Boolean maps appear naturally in many areas of mathematics.
For instance, consider the following:
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Proposition 4. Any instance of the 3-SAT problem can be reduced to a quadratic
pseudo-Boolean map.

Proof. Let φ = (Ci)
m−1
i=0 be an instance of the 3-SAT problem i.e. a 3-CF over the set

of Boolean variables X = {Xj|0 ≤ j ≤ n − 1}, where Ci = X
δj1
j1
∨ Xδj2

j2
∨ Xδj3

j3
. Let

fφ : Qn → R be the map defined as

fφ(X) =
∑
Ci∈φ

(δj1 + (−1)δj1Xj1)(δj2 + (−1)δj2Xj2)(δj3 + (−1)δj3Xj3)

such that fφ(ε) = 0 if and only if ε satisfies φ, for some assignment ε ∈ Qn. By given
as input fφ to the algorithm Reduce, fφ can be reduced to a quadratic pseudo-Boolean
map.

From proposition 4 it follows that:

Remark 14. For every 3-CF φ, minimizing hφ as defined in section 4.1.1 is equivalent
to minimize fφ.

5.2 AQC for quadratic pseudo-Boolean maps
The adiabatic quantum optimization (AQO) developed in chapter 4 can be generalized
as follows:

Let (|ε〉)ε∈Qn be an orthonormal basis for Hn also called the computational basis.
Given a pseudo-Boolean map f : Qn → R, let us define

Hf : Hn → Hn, Hf =
∑
ε∈Qn

f(ε) |ε〉 〈ε| . (5.5)

For any x ∈ Hn, if x =
∑

ε∈Qn xε |ε〉 then Hf (x) =
∑

ε∈Qn xεf(ε) |ε〉 and conse-
quently

〈x|Hf (x)〉 =
∑
ε∈Qn
|xε|2f(ε). (5.6)

From equation (5.6), Hf is a positive operator and ∀ε ∈ Qn : Hf |ε〉 = f(ε) |ε〉,
then Hf is diagonal in the computational basis, i.e. diag(Hf ) = (f(ε))ε∈Qn .

In order to construct explicitly Hf , it is necessary to evaluate the map f at every
point in Qn (see chapter 4).

The Hamiltonian problem Hf for AQO is constructed as a sum of one-dimensional
projectors along every possible direction in the computational basis. Now, let us define
a more convenient Hamiltonian for quadratic pseudo-Boolean maps.

Let fue : Qn → R be a quadratic pseudo-Boolean map of the form:

fue(X) = a+
∑
j∈A

ujxj +
∑
{i,j}∈B

eijxixj (5.7)
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where A ⊆ [[0, n − 1]], B ⊆ [[0, n − 1]](2), and ∀j ∈ A : uj ∈ R, ∀{i, j} ∈ B : eij ∈ R
and a ∈ R.

Remark 15. Any quadratic pseudo-Boolean map can be represented as in equa-
tion (5.7).

Remark 15 also asserts that any quadratic pseudo-Boolean map has an inherent
graph structure.

For any j ∈ [[0, n − 1]] and δ ∈ {0, 1} let σjz,δ =
⊗n−1

ν=0 sν : Hn → Hn where
sν = 1

2
(I2 + (−1)δσz) if ν = j and sν = Id otherwise.

Let Hfue : Hn → Hn be defined as follows:

Hfue = a(σbz,0 + σbz,1) +
∑
j∈A

ujσ
j
z,0 +

∑
{i,j}∈B

eijσ
i
z,0σ

j
z,0 (5.8)

where b ∈ [[0, n− 1]].
For any ε ∈ Qn : Hfue |ε〉 = fue(ε) |ε〉, then Hfue is diagonal in the computational

basis.
Similar constructions for some specific combinatorial graph problems can be seen

in [24, 25, 26, 66, 67].
The construction of Hfue is more efficient than the construction of Hf . Hf is an

addition of 2n projections, while Hfue is a sum of card(A)+card(B)+1 Pauli operator
products.

The Hamiltonian problemHfue can be implemented by the well known Ising model
in QM (see [10, 48]).

In the following we consider the construction and structure of two initial Hamil-
tonians for AQO, the first one is based on the Hadamard transform and the last one
is based on the σx Pauli operator.

5.2.1 Hadamard transform

In the following we describe the initial Hamiltonian for AQO based on the Hadamard
transform similar to the proposed in [80], and we show its matrix structure, i.e. its
construction from the computational point of view.

Let us recall that the Hadamard transform is the unitary map W : H1 → H1

whose matrix, relative to the canonical basis is

W =
1√
2

[
1 1
1 −1

]
.

Let W⊗n : Hn → Hn be the n-fold tensor product of W . For n ≥ 1,

W⊗n = (wijn)0≤i,j≤2n−1 (5.9)

such that ∀i, j ∈ [[0, 2n − 1]] : wijn = 1

2
n
2

(−1)i·j where i · j is the bitwise dot product
of the binary representations of the numbers i and j.
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Remark 16. The set of states (W⊗n |ε〉)ε∈Qn form an orthonormal basis for Hn, also
called the Hadamard basis.

Thus, any vector x ∈ Hn can be written as x =
∑

ε∈Qn xεW
⊗n |ε〉 where ∀ε ∈ Qn :

xε ∈ C. Observe that (W⊗n |ε〉)Hx = xε for all ε ∈ Qn and therefore(∑
ε∈Qn

(W⊗n |ε〉)(W⊗n |ε〉)H
)
x =

∑
ε∈Qn

(W⊗n |ε〉)(W⊗n |ε〉)Hx

=
∑
ε∈Qn

xεW
⊗n |ε〉

= x,

it follows that ∑
ε∈Qn

(W⊗n |ε〉)(W⊗n |ε〉)H = I, (5.10)

this equation is known as the completeness relation [61].
Let h : Qn → R+ be a map such that h(0n) = 0 and h(ε) ≥ 1 for all ε ∈ Qn−{0n}.
Let Hh : Hn → Hn be defined as follows:

Hh = W⊗n

(∑
ε∈Qn

h(ε) |ε〉 〈ε|

)
(W⊗n)H

=
∑
ε∈Qn

h(ε)
(
W⊗n |ε〉

) (
W⊗n |ε〉

)H
. (5.11)

The ground state of Hh is given by x0 = W⊗n |0n〉 = 1

2
n
2

∑
ε∈Qn |ε〉. Then,

Hh(x0) =
∑
ε∈Qn

h(ε)
(
W⊗n |ε〉

) (
W⊗n |ε〉

)H
x0 = 0.

i.e., x0 is an eigenvector corresponding to the eigenvalue 0.
Now, let us describe explicitly the construction of the matrix Hh. Consider the

correspondence from Qn to [[0, 2n − 1]] by the map ε 7→
∑n−1

ν=0 εν2
ν . For each j ∈

[[0, 2n − 1]], W⊗n |j〉 corresponds to the j-th column of W⊗n, and ∀i, j ∈ [[0, 2n − 1]]:(
W⊗n |i〉

) (
W⊗n |j〉

)H
= (vkl)0≤k,l≤2n−1 (5.12)

such that vkl = 1

2
n
2

(−1)k·i+l·j and if i = j then vkl = 1

2
n
2

(−1)(k⊕l)·i.
Hh can be rewritten as follows:

Hh = (ukl)0≤k,l≤2n−1

such that

ukl =
1

2n

2n−1∑
i=0

h(i)(−1)(k⊕l)·i

=
1

2n
[

(−1)(k⊕l)·0 · · · (−1)(k⊕l)·(2n−1)
] [

h(0) · · · h(2n − 1)
]T
,(5.13)
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and since k ⊕ l = l ⊕ k, then Hh is a symmetric matrix.
For every j ∈ [[0, 2n−1]], letW⊗n

j = (wklj)0≤k,l≤2n−1 such that wklj = 2−
n
2 (−1)(k⊕j)·l.

From equation (5.13), every column of Hh can be expressed as 2−
n
2W⊗n

j h where
h =

[
h(0) · · · h(2n − 1)

]T .
Proposition 5. For every j ∈ [[0, 2n− 1]] : Pj = W⊗n

j W⊗n is a permutation matrix.

Proof. A permutation matrix is a square matrix which has exactly one 1 in every row
and every column, and the other elements are zeros. Now, by definition Pj is a square
matrix, and let W⊗n

j W⊗n = (wpq)0≤p,q≤2n−1 where wpq = 1
2n

∑2n−1
l=0 (−1)(j⊕p⊕q)·l, and

wpq = 1 if (j ⊕ p⊕ q) = 0 and wpq = 0 otherwise. For fixed j, p ∈ [[0, 2n − 1]], there is
a unique q ∈ [[0, 2n − 1]] such that j ⊕ p⊕ q = 0, then the proposition follows.

From proposition 5 it follows that:

Remark 17. For every j ∈ [[0, 2n − 1]], the j-th column of Hh can be expressed as
2−

n
2PjW

⊗nh.

Thus, from remark 17 every column of Hh can be constructed by permuting the
elements of the column vector 2−

n
2W⊗nh.

5.2.2 σx transform

Let us consider the Pauli transform σx : H1 → H1 whose matrix with respect to the
canonical basis is

σx =

[
0 1
1 0

]
. (5.14)

σx has eigenvalues +1,−1 with respective eigenvectors c0 = W |0〉 and c1 = W |1〉.
For every ε ∈ Qn, let

cε =
n−1⊗
j=0

cεj ,

(cε)ε∈Qn is the Hadamard basis of Hn.
For any index j ∈ [[0, n−1]] and δ ∈ {0, 1} let σx,δ,j =

⊗n−1
ν=0 τν,δ : Hn → Hn, where

τν,δ = 1
2
(I + (−1)δσx) if ν = j and τν,δ = Id otherwise. Notice that τν,δ can be written

as τν,δ = cδc
H
δ .

For any ε ∈ Qn, δ ∈ {0, 1} and j ∈ [[0, n− 1]] :

σx,δ,j(cε) = (I ⊗ · · · ⊗ cδcHδ ⊗ · · · ⊗ I)(cε0 ⊗ · · · ⊗ cεj ⊗ · · · ⊗ cεn−1)

= cε0 ⊗ · · · ⊗ cδcHδ cεj ⊗ · · · ⊗ cεn−1

= cε0 ⊗ · · · ⊗ (cδ, cεj)cδ ⊗ · · · ⊗ cεn−1 , (5.15)

where (cδ, cεj) is the inner product of cδ and cεj . Since that {c0, c1} form a basis for
H1, (cδ, cεj) = 1 if δ = εj and (cδ, cεj) = 0 otherwise.
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From equation (5.15) it is satisfied that

σx,δ,j(cε) = ¬(δ ⊕ εj)cε. (5.16)

Now, let ∆ : [[0, n− 1]]→ R be a weighting map. For any δ ∈ {0, 1} let us define
the operator:

Hx : Hn → Hn , Hx =
n−1∑
j=0

∆(j)σx,δ,j. (5.17)

From (5.16) it is satisfied that:

∀ε ∈ Qn : Hx(cε) =

(
n−1∑
j=0

¬(δ ⊕ εj)∆(j)

)
cε. (5.18)

The ground state of Hx is the state x0 = 1

2
n
2

∑
ε∈Qn |ε〉 with corresponding eigen-

value equal to 0.
The Hamiltonians in equations (5.11) and (5.17) are both diagonal in the Hadamard

basis and can be written as follows:

Hh = W⊗nDhW
⊗n, Hx = W⊗nDxW

⊗n

where Dh and Dx are diagonal matrices.
From equations (5.11) and (5.18), diag(Dh) = (h(ε))ε∈Qn and diag(Dx) = (η(ε))ε∈Qn

such that for any δ ∈ {0, 1},∀ε ∈ Qn : η(ε) =
∑n−1

j=0 ¬(δ ⊕ εj)∆(j).

Remark 18. The Hamiltonian given in equation (5.17) can be expressed as in equa-
tion (5.11). The converse is not always true.

5.3 k-local Hamiltonian problems
For each n ∈ N let Qn be the set of n-length words over Q and let Q∗ =

⋃
n≥0Q

n be
the dictionary, i.e. the set of finite length words, of Q.

A promise problem consists of a partition {Y,N} of Q∗. For any word instance
σ ∈ Q∗ the corresponding solution is a decision whether σ ∈ Y (σ is a Yes-instance)
or σ ∈ N (σ is a No-instance).

For each n ∈ N, Bn = (|σ〉)σ∈Qn ⊂ Sn is the canonical basis of Hn. Let B∗ =⋃
n≥0Bn.
A verifier is a map of the form V : B∗×B∗ → Q. If V (|σ〉 , |τ〉) = 1 then it is said

that the verifier accepts σ as a Yes-instance with proof, or certificate, τ .
Let ε : N→ [0, 1] be such that

∀σ ∈ Q∗ : 2−Ω(|σ|) ≤ ε(|σ|) ≤ 1

3
. (5.19)

The class QMAε consists of those promise problems {Y,N} such that there is a
quantum polynomial time verifier V satisfying:
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• ∀σ ∈ Y ∃τ ∈ Q∗: Pr (V (|σ〉 , |τ〉) = 1) ≥ 1− ε(|σ|).

• ∀σ ∈ N ∀τ ∈ Q∗: Pr (V (|σ〉 , |τ〉) = 1) ≤ ε(|σ|).

Remark 19 ([52]). If ε0, ε1 : N → [0, 1] satisfy condition (5.19) then QMAε0 =
QMAε1.

The common class resulting from remark 19 is QMA.
Let k ≤ n. Let K ⊂ [[0, n− 1]] be an index set of cardinality k. Let

BK = {
n−1⊗
j=0

bj| bj = |sj〉 with sj ∈ Q if j ∈ K, bj = |0〉 otherwise }

be the collection of basic vectors in Hn whose “non-horizontal tensor factors” appear
just at indexes in K. Let VK = L (BK) be the space spanned by BK . Then VK is
isomorphic to Hk and there is a complementary space V ′K isomorphic to Hn−k such
that Hn = VK ⊗ V ′K .

Let H : Hn → Hn be a Hamiltonian operator. It is said that H acts on k-qubits if
there is an index set K ⊂ [[0, n− 1]] of cardinality k such that there is a Hamiltonian
operator HK : VK → VK with

H = HK ⊗ Id2n−k (5.20)

where Id2n−k is the identity map in the complementary space V ′K .
A Hamiltonian H : Hn → Hn is k-local if it can be expressed as the addition of

Hamiltonian operators, each acting on k-qubits, with the additional conditions stated
below:

1. H =
∑

j∈J Hj, with card (J) = nO(1).

2. ∀j ∈ J : ‖Hj‖ ≤ nO(1).

The second condition is equivalent to state that ∀j, both Hj and Idn −Hj are non-
negative.

For any Hamiltonian H : Hn → Hn let us denote by λ0(H) the smallest, in
absolute value, eigenvalue of H.

Instance: k-local Hamiltonian
Solution: A k-local Hamiltonian H : Hn → Hn and two real numbers a, b such that
b− a ≥ n−O(1) and either λ0(H) ≤ a or λ0(H) ≥ b. 1 if H has an eigenvalue below a
and 0 if all eigenvalues of H are at least b.

k-local Hamiltonian is NP-hard for k ≥ 2 [83]. 5-local Hamiltonian, 3-local Hamil-
tonian and 2-local Hamiltonian were proved QMA-complete, respectively, in [52],
in [51], and in [50].
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5.3.1 Reduction of graph problems to the 2-local Hamiltonian
problem

Let G = ([[0, n− 1]], E) be a graph. Let us assume that there is a quadratic Boolean
map f : Qn → R,

ε 7→ f(ε) =
∑
ij∈E

[a3εiεj + a2(1− εi)εj + a1εi(1− εj) + a0(1− εi)(1− εj)] (5.21)

that should be minimized. The map f is determined by the edges at the graph G.
Equivalently, the map f can be expressed as

∀ε ∈ Qn : f(ε) =
∑
ij∈E

[c0 + c1εi + c2εj + c3εiεj] (5.22)

with 
a0

a1

a2

a3

 =


1 0 0 0
1 1 0 0
1 0 1 0
1 1 1 1



c0

c1

c2

c3

 (5.23)

Let us consider the projection

π2 = a0 |00〉 〈00|+ a1 |01〉 〈01|+ a2 |10〉 〈10|+ a3 |11〉 〈11| : H2 → H2, (5.24)

represented by the matrix π2 = diag[a0 a1 a2 a3], hence its eigenvalues are a0, a1,
a2, a3 with corresponding eigenspaces L(|00〉), L(|01〉), L(|10〉), L(|11〉) respectively.
Namely, for the basis vector |ε0ε1〉 ∈ B2 we have

π2 |ε0ε1〉 = a(ε0ε1)2 |ε0ε1〉 . (5.25)

For any index pair ij let π2[ij] be the Hamiltonian defined by (5.20), with K = {i, j}
and HK = π2. The eigenvalues of each π2[ij] are the coefficients ai and after (5.25)

∀ε = (ε0, . . . , εn−1) ∈ Qn : π2[ij]ε = a(εiεj)2ε. (5.26)

Let
H =

∑
ij∈E

π2[ij]. (5.27)

Clearly ‖H‖ = maxi |ai|, thus H is a 2-local Hamiltonian if |ai| ≤ 1. From (5.26)

∀ε = (ε0, . . . , εn−1) ∈ Qn : Hε =

(∑
ij∈E

a(εiεj)2

)
ε. (5.28)

Thus, the ground states correspond to the eigenvalue

λ0(H) = min
ε

∣∣∣∣∣∑
ij∈E

a(εiεj)2

∣∣∣∣∣ . (5.29)
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2-local Hamiltonian would then provide a solution of the minimization problem of the
quadratic Boolean map.

The above technique is just a generalization of the reduction of Max Cut and
Independent Set to 2-local Hamiltonian presented at [83].

A cut in a weighted graph G = ([[0, n− 1]], E, w), where w : E → R+ is a weight-
ing map, is a partition C = {V0, V1} of the vertex set [[0, n − 1]]. For δ, ε ∈ Q let
Eδε = {ij ∈ E| i ∈ Vδ , j ∈ Vε} be the collection of edges with an extreme in Vδ and
the other in Vε. The weight of the cut is w(C) =

∑
δ 6=ε,ij∈Eδε w(ij).

Max Cut
Instance: A weighted graph G = ([[0, n− 1]], E, w) and a threshold w0 ∈ R+.
Solution: A decision about whether there exists a cut C such that w(C) ≥ w0.

Simple Max Cut is the restriction of Max Cut to weighted graphs with constant
weights 1. Both Max Cut and Simple Max Cut are NP-complete.

Let us consider G = ([[0, n − 1]], E, 1) as a weighted graph with unitary weights.
Let X = (Xj)

n−1
j=0 be a collection of Boolean variables. For any assignment ε =

(εj)
n−1
j=0 ∈ Q

n and each δ ∈ Q, let Vδ = {j| εj = δ}. This determines a correspondence
among assignments and cuts. For any cut C = {V0, V1} we have

w(C) = card (E01) + card (E10) =
∑
ij∈E

[(1− εi)εj + εi(1− εj)] .

Thus, given a threshold w0 ∈ Z+ we have

w(C) ≥ w0 ⇐⇒
∑
ij∈E

[εiεj + (1− εi)(1− εj)] ≤ card (E)− w0.

Hence Max Cut can be stated as an optimization problem for the quadratic Boolean
map

Qn → R , ε 7→
∑
ij∈E

[εiεj + (1− εi)(1− εj)] ,

which is indeed of the form (5.21) with a0 = a3 = 1 and a1 = a2 = 0.
On the other side, a vertex set V ⊂ [[0, n − 1]] is independent if E[V ] = ∅, i.e.

no edge exists among two points in V . The following is a well known NP-complete
problem:

Independent Set
Instance: A graph G = ([[0, n− 1]], E) and a threshold w0 ∈ Z+.
Solution: A decision about whether there exists an independent set V such that
card (V ) ≥ w0.

For any instance graph let us consider the quadratic Boolean map

f : Qn → R , ε 7→ f(ε) =
n−1∑
i=0

εi −
∑
ij∈E

εiεj.
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Thus, given a threshold w0 ∈ Z+ we have

f(ε) ≥ w0 ⇐⇒ g(ε) = n− f(ε) =
n−1∑
i=0

[1− εi] +
∑
ij∈E

εiεj. ≤ n− w0.

The second sum is a quadratic of the form (5.21) with a0 = a1 = a2 = 0 and a3 = 1.
For the first sum, let us consider the projections ρ1 = |0〉 〈0| : H1 → H1 and for the
second π2 = |11〉 〈11| : H2 → H2. Let

H =
n−1∑
i=0

ρ1[i] +
∑
ij∈E

π2[ij]. (5.30)

By choosing a = n − w0 + 1
2
and b = a + 1

4
a solution of 2-local Hamiltonian gives a

solution of Independent Set.

5.4 Graph structures and optimization problems
In Descriptive Complexity the class of problems defined in Computational Complexity
are characterized by expressions in first and second order logic. There are many results
in this area such as the Fagin’s Theorem that asserts that the class of problems NP
is equal to the set of Boolean queries in existential second order logic [47, 57].

On the other hand, Monadic second order logic has play an important role to
express many NP-complete problems, for instance the graph coloring problem. In [28]
shows that any problem expressible in monadic second order logic can be stated as
an optimization problem (see also [64, 27, 47]).

Monadic second order logic expressions provide a syntactical representation of
many optimization problems. This representation is in correspondence with a Boolean
algebra. Following [21], we consider the correspondence between second order logic
expressions and Boolean formulas, in order to define a corresponding pseudo-Boolean
map. This scheme can be applied to any optimization problem expressible in monadic
second order logic, and subsequently to be solved by AQO.

The necessary terminology and definitions on first and second order logic are given.

5.4.1 Relational signatures

A signature Σ = (Φ,Π) consists of a set Φ of function symbols and positive integers
(ρ(f))f∈Φ, and of a set of relation symbols Π and positive integers (ρ(R))R∈Π. The
numbers ρ(f) and ρ(R) assert that f is a function of ρ(f) variables and R is a ρ(R)-ary
relation.

A signature without relation symbols is called an algebraic signature and a signa-
ture without function symbols is called a relational signature.

Let R be a relational signature, let R0 := {R ∈ R|ρ(R) = 0} be the set of relation
symbols of arity zero called constant symbols, let Ri := {R ∈ R|ρ(R) = i} be the
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set of relation symbols of arity i and let R+ :=
⋃
{Ri|i ≥ 1} be the set of relation

symbols of positive arity.
A R-structure is a tuple S = 〈DS, (RS)R∈R+ , (cS)c∈R0〉 where DS is a finite set

called the domain of S, for each R ∈ R+, RS ⊆ D
ρ(R)
S is called the interpretation of

R, and for each c ∈ R0, cS ∈ DS is called the interpretation of c.

5.4.2 First order logic

Let V0 be a countable set of variables and let R be a relational signature. A term
is either a variable in V0 or a constant symbol in R0. An atomic formula s is either
s = t or s = R(t1, . . . , tρ(R)) where R ∈ R+ and t, t1, . . . , tρ(R) are terms. If φ and ψ
are atomic formulas, then φ, ¬φ, (φ∧ψ), (φ∨ψ), (φ⇒ ψ) and (φ⇔ ψ) are first-order
formulas over R. If ϕ is a first-order formula and x ∈ V0, then ∃xϕ and ∀xϕ are
first-order formulas as well.

It is said that a variable x ∈ V0 is free in a formula φ, if it is not inside a ∃x or ∀x
quantifier; otherwise, it is bound. A formula without free variables over a relational
signature R is called closed.

The set of all first-order formulas over a relational signature R with free variables
in X ⊆ V0 is denoted as FO(R,X ). A formula ϕ ∈ FO(R, {x1, . . . , xn}) will be
written as ϕ(x1, . . . , xn) to specify its free variables. The set of all R-structures will
be denoted as STR(R). For a S ∈ STR(R) given as S = 〈DS, (RS)R∈R+ , (cS)c∈R0〉,
if ϕ(x1, . . . , xn) ∈ FO(R, {x1, . . . , xn}) and d1, . . . , dn ∈ DS, then S |= ϕ(d1, . . . , dn)
denotes that ϕ is true in S when xi = di for i = 1, . . . , n.

5.4.3 Second order logic

Let Vω be a countable set consisting of first-order variables and relation variables
denoted by upper-case letters X1, . . . , Xm. Each relation variable X ∈ Vω has arity
ρ(X), and there are countably many relation variables of each arity.

The second-order formulas over a relational signature R are defined as follows:
For any R ∈ R, R(t1, . . . , tρ(R)) is an atomic formula where t1, . . . , tρ(R) are terms,
and for any X ∈ Vω, X(t1, . . . , tρ(X)) is also an atomic formula where t1, . . . , tρ(X) are
terms. Then, the second-order formulas are constructed from the atomic formulas
together with the propositional connectives and quantifications over first-order and
relational variables.

The set of all second-order formulas over a relational signature R with free vari-
ables in X ⊆ Vω is denoted as SO(R,X ). In the following we will represent a formula
ϕ ∈ SO(R, {X1, . . . , Xm, x1, . . . , xn}) as ϕ(X1, . . . , Xm, x1, . . . , xn) to specify its free
variables. For a structure S ∈ STR(R) given by S = 〈DS, (RS)R∈R+ , (cS)c∈R0〉, for
a formula ϕ ∈ SO(R, {X1, . . . , Xm, x1, . . . , xn}), E1 ⊆ D

ρ(X1)
S , . . . , Em ⊆ D

ρ(Xm)
S and

d1, . . . , dn ∈ DS, S |= ϕ(E1, . . . , Em, d1, . . . , dn) denotes that ϕ is true in S for the
values E1, . . . , Em of X1, . . . , Xm and d1, . . . , dn of x1, . . . , xn.
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Let V1 be a set of the countable set V0 of first-order variables and the countably
many relation variables of arity one from Vω. A monadic second-order formula is a
second-order formula written with variables from V1. The set of all monadic second-
order formulas with free variables in X ⊆ V1, over a relational signature R is denoted
by MSOL(R,X ).

Note that, any relation variable can be interpreted as a set. Thus, any relation
variable will be called a set variable.

5.4.4 Monadic second-order logic decision and optimization
problems

The following definitions are from [28]:

Definition 10. A decision problem is an MSOL(R) decision problem over STR(R),
if it can be expressed in the following form: Given an R-structure S ∈ STR(R), does
S |= ϕ hold? where ϕ is a closed MSOL(R) formula.

Example 1: Let G = (V,E) be graph and let Rs := {edg} be a relational signature
with ρ(edg) = 2. An Rs-structure for G is defined by bGc := 〈VG, edgG〉 where
edgG ⊆ V

[2]
G such that ∀u, v ∈ V : [{u, v} ∈ edgG ⇔ {u, v} ∈ E] and VG is the vertex

set of G.
The 3-colorability problem is an MSOL(Rs) decision problem since it can be stated

as follows: Let G be a graph and let bGc be a structure for G, does bGc |= γ3? where
γ3 is the closed MSOL(Rs) formula defined as

γ3 = ∃X1, X2, X3

(
Part(X1, X2, X3) ∧

∀u, v
(
edgG(u, v) ∧ u 6= v ⇒ ¬(X1(u) ∧X1(v)) ∧

¬(X2(u) ∧X2(v)) ∧ ¬(X3(u) ∧X3(v))
))

(5.31)

and Part(X1, X2, X3) is defined as

Part(X1, X2, X3) = ∀v
((
X1(v) ∨X2(v) ∨X3(v)

)
∧
(
¬(X1(v) ∧X2(v)) ∧

¬(X2(v) ∧X3(v)) ∧ ¬(X1(v) ∧X3(v))
))
.

Thus bGc |= γ3 if and only if G is 3-colorable.

Definition 11. An optimization problem P is said to be a LinEMSOL(R) opti-
mization problem over STR(R), if it can be expressed in the following form: Given
S ∈ STR(R) and m evaluation functions f1, . . . , fm associating values to the ele-
ments of S, find relations E1, . . . , El ⊆ Dom(S) for the free variables of the formula
ϕ(X1, . . . , Xl) ∈ MSOL(R, {X1, . . . , Xl}) such that:∑

1≤i≤l
1≤j≤m

aijE[Xi]j = opt
{ ∑

1≤i≤l
1≤j≤m

aijE
′
[Xi]j : S |= ϕ(E

′

1, . . . , E
′

l)
}

(5.32)
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where E[Xi]j :=
∑

b∈Ei fj(b), opt is either min or max and {aij : 1 ≤ i ≤ l, 1 ≤ j ≤ m}
is a set of ml integers.

Example 2: Let G = (V,E, δ) be a weighted graph where δ : V → Z is a map. For
a subset A ⊆ V , the weight of A is defined as w(A) :=

∑
a∈A δ(a). The maximum

weighted clique problem (MWC) consists in finding a clique in G with maximum
weight.

The MWC problem is an LinEMSOL(R) optimization problem since it can be
expressed as follows: Given a weighted graph G = (V,E, δ), a Rs-structure bGc for
G and an evaluating function f1 : V → Z with a 7→ δ(a). Find an instance relation
V1 ⊆ VG to the free variable X1 in θ such that:∑

a∈V1

f1(a) = max
{∑
a∈V ′1

f1(a) : bGc |= θ(V
′

1 )
}

(5.33)

where
θ(X1) = ∀u, v((X1(u) ∧X1(v) ∧ u 6= v)⇒ edgG(u, v)). (5.34)

Remark 20. Every MSOL(R) decision problem can be expressed as a LinEMSOL(R)
optimization problem.

Note that, in order to optimize the objective function (5.33), every instance re-
lation V

′
1 ⊆ VG must satisfies that bGc |= θ(V ′1). It is possible to define another

objective function as in (5.33) without restrictions if a penalty function is added.
Considers the following definition:

Let P be a LinEMSOL optimization problem as defined in (5.32), then there
is an MSOL expression ϕ(X1, . . . , Xl) over a structure S, and evaluation functions
f1, . . . , fm, and a set of integers {aij : 1 ≤ i ≤ l, 1 ≤ j ≤ m}. For any instance rela-
tions E1, . . . , El ⊆ Dom(S), let us define

ΓP (E1, . . . , El) =
∑

1≤i≤l
1≤j≤m

aijE[Xi]j + gϕ(E1, . . . , El) (5.35)

where gϕ is a penalty function such that gϕ(E1, . . . , El) is equal to some constant c if
and only if S |= ϕ(E1, . . . , El), and gϕ(E1, . . . , El)� c otherwise.

Remark 21. Minimizing (5.32) is equivalent to minimizing (5.35). A similar result
can be stated for maximization.

5.4.5 MSOL optimization problems and pseudo-Boolean maps

A pseudo-Boolean map f : Qn → R+ on n Boolean variables is a non-negative real
valued map on the hypercube Qn. From theorem 2, f can be represented as:

f(X) =
∑

S∈P([[0,n−1]])

c(S)
∏
j∈S

xj
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for some map c : P([[0, n− 1]])→ R.
The set of Boolean variables will be denoted by X = {xi : 0 ≤ i ≤ n− 1} and the

set of literals will be denoted by L = {xi, xi : 0 ≤ i ≤ n− 1} where xi := 1− xi.
A disjunctive form (DF) is an expression of the form

φ =
m∨
k=1

(∧
i∈Ak

xi ∧
∧
j∈Bk

xj

)
(5.36)

where Ak ∩Bk = ∅ for k = 1, . . . ,m.
A DF φ is said to be orthogonal if (Ak∩Bl)∪(Al∩Bk) 6= ∅ for all k, l ∈ {1, . . . ,m}

with k 6= l.
It is said that a DF φ represents a Boolean function g if the true valued points of

g coincide with the true valued points of φ.

Theorem 3. Every Boolean function g : Qn → Q can be represented through an
orthogonal DF φg.

See a proof in [31].

Theorem 4. Every Boolean function g : Qn → Q represented by an orthogonal DF,
has an associated multilinear polynomial given as

g(X) =
m∑
k=1

(∏
i∈Ak

xi
∏
j∈Bk

(1− xj)

)
.

See a proof in [31].
From theorem 4 it follows that every FO sentence has an associated multilinear

polynomial. Let us consider the following algorithm to obtain a multilinear polyno-
mial of a given FO sentence.

FO sentence into multilinear polynomial (1)
Input: A FO(Σ) sentence ϕ where Σ = (Φ,Π).
Output: A multilinear polynomial pϕ over a set of Boolean variables X.

1. Transform ϕ into a DF (See [75] for a standard procedure)

2. Apply the equivalences x ∧ y = xy, x ∨ y = x + y − xy and x = 1 − x on ϕ to
obtain an arithmetic expression pϕ

3. For every atomic formula s in pϕ introduce a Boolean variable Xs to obtain a
multilinear polynomial over X = {Xs|s is an atomic formula in ϕ}

The step 1 in the algorithm 1 drop all existential quantifier in the sentence ϕ by
Skolemization.
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Example 3: Let G = (V,E) be a undirected graph, and let

ϕ = ∀x(¬edg(x, x)) ∧ ¬∃w, x, y, z(edg(w, x) ∧ edg(x, y) ∧ edg(y, z)

∧¬edg(w, y) ∧ ¬edg(w, z) ∧ ¬edg(x, z)).

Then, it is satisfied that bGc |= ϕ if and only if G has no loops and no induced
subgraph isomorphic to P4 (P4 is the graph • − • − • − •).

By transforming ϕ into a DNF we obtain

ϕ = (¬edg(u, u) ∧ ¬edg(w, x)) ∨ (¬edg(u, u) ∧ ¬edg(x, y)) ∨
(¬edg(u, u) ∧ ¬edg(y, z)) ∨ (¬edg(u, u) ∧ edg(w, y)) ∨
(¬edg(u, u) ∧ edg(w, z)) ∨ (¬edg(u, u) ∧ edg(x, z)),

and after applying the steps 2 and 3 of the algorithm (1)

pϕ =

(∑
u∈V

(1−Xuu)

) ∑
w,x,y,z∈V

(1−XwxXxyXyz +XwxXxyXyzXwy +

XwxXxyXyzXwz −XwxXxyXyzXxz −XwxXxyXyzXwyXwz −
XwxXxyXyzXwyXxz −XwxXxyXyzXwzXxz +XwxXxyXyzXwyXwzXxz)

where ∀u, v ∈ V : Xuv := edg(u, v).
Finally, given pϕ as input to the procedure Reduce in section 5.1, it produces a

quadratic pseudo-Boolean map.

Remark 22. Given a undirected graph G = (V,E), pϕ(X) = (card V )5 if and only
if, G has no loops and no induced subgraph isomorphic to P4. pϕ(X) < (card V )5

otherwise.

In the second order logic it is allowed to quantify over relations of any arity, then
in order to obtain a polynomial expression of a given SO sentence ψ, we will write ψ
in existential second-order logic form.

An sentence of existential second-order logic (ESOL) ψ over a signature Σ = (Φ,Π)
is of the form

ψ = ∃R1 · · · ∃Rrϕ,

where R1, . . . , Rr are relational symbols of respective arities ρ(R1), . . . , ρ(Rr) and ϕ
is a first-order sentence over the signature Σ′ = (Φ,Π ∪ {R1, . . . , Rr}). A structure
S ∈ STR(Σ) satisfies an ESOL sentence ∃R1 · · · ∃Rrϕ, if there are relations E1 ⊆
D
ρ(R1)
S , . . . , Er ⊆ D

ρ(Rr)
S such that S, augmented with {E1, . . . , Er} to comprise a

structure for Σ′, satisfies ϕ.
An ESOL sentence ∃R1 · · · ∃Rrϕ is an existential monadic second-order logic (EM-

SOL) sentence if the relations R1, . . . , Rr are of arity one.

Theorem 5 (Fagin, 74). Every decision problem on finite graphs is in NP if and
only if it is expressible in existential second-order logic.
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Examples of graph problems that can be written as an EMSOL expression are 3-
colorability, Maximum Clique problem, Hamiltonian circuit problem, and TSP prob-
lem.

Let us consider the following algorithm to obtain a multilinear polynomial of a
given EMSOL expression.

EMSOL sentence into multilinear polynomial (2)
Input: A SO(Σ) sentence ψ where Σ = (Φ,Π).
Output: A multilinear polynomial pψ over a set of Boolean variables X.

1. Transform ψ into an EMSOL sentence ∃R1, . . . , Rr.ϕ

2. Transform ϕ into a DF (See [75] for a standard procedure)

3. Apply the equivalences x ∧ y = xy, x ∨ y = x + y − xy and x = 1− x, on ϕ to
obtain an arithmetic expression pϕ

4. For every atomic formula s in pϕ introduce a Boolean variable Xs to obtain a
multilinear polynomial pψ over X = {Xs|s is an atomic formula in ϕ}

Let us consider the following example:

Example 4: Let G = (V,E) be a simple undirected graph, and let

γ3 = ∃X, Y, Z
(
Part(X, Y, Z) ∧

∀u, v
(
edgG(u, v)⇒ ¬(X(u) ∧X(v)) ∧

¬(Y (u) ∧ Y (v)) ∧ ¬(Z(u) ∧ Z(v))
))

and Part(X, Y, Z) is defined by

Part(X, Y, Z) = ∀v
((
X(v) ∨ Y (v) ∨ Z(v)

)
∧
(
¬(X(v) ∧ Y (v)) ∧

¬(Y (v) ∧ Z(v)) ∧ ¬(X(v) ∧ Z(v))
))
.

Then, it is satisfied that bGc |= γ3 if and only if, G is 3-colorable.
It can be seen that γ3 is already in EMSOL form, then we can apply the algorithm

(2). We claim that there are polynomials pϕ1 and pϕ2 such that pψ = pϕ1 · pϕ2 , where

pϕ1 =
∑
u∈V

(Xu + Yu + Zu −XuYu −XuZu − YuZu +XuYuZu) ·

(1−XuYu)(1− YuZu)(1−XuZu) (5.37)

and

pϕ2 =
∑
u,v∈V

((1−Xuv) + (1−XuXv)(1− YuYv)(1− ZuZv)Xuv) . (5.38)

For any non-empty sets X, Y, Z ⊆ V , pψ(X, Y, Z) is a multilinear polynomial over the
set of Boolean variablesX = {Xuv|u, v ∈ V }∪{Xu|u ∈ X}∪{Yu|u ∈ Y }∪{Zu|u ∈ Z}.
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Remark 23. Given a simple undirected graph G = (V,E) and any subsets X, Y, Z ⊆
V then G is 3-colorable if and only if, pψ(X, Y, Z) = (card V )2. pψ(X, Y, Z) <
(card V )2 otherwise.

In example 4 the polynomial expressions given in (5.37) and (5.38) depend on the
given partition (X, Y, Z). Then, it is not possible to state the optimization problem
using the algorithm 2 for the 3-coloring problem. A possible alternative to construct
a polynomial expression for the 3-coloring problem is by considering an objective
function over all possible partitions such that a partition (X, Y, Z) is a 3-coloring if
and only if, the objective function is minimized.

Proposition 6. Any existential monadic second order logic sentence is suitable to be
expressed through a polynomial map defined on the hypercube.

Proposition 6 can be proved by considering the algorithm 2, but restricted to
subset graph problems, i.e. the Maximum Clique Problem.

Remark 24. The polynomial expression obtained by the algorithm 2 can be considered
as a penalty function in (5.35).

The polynomial expression returned by the algorithm 2 can be reduced to a
quadratic form and subsequently to be optimized using an AQO algorithm. Also,
from the remark 24 the objective function defined in (5.35) can also be used in AQO.
These polynomial expressions provide us a general scheme to deal with optimization
problems that are expressible in MSOL.
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Chapter 6

A general strategy to solve NP-hard
problems

In computational complexity, it is well known that NP-hard problems are the most
difficult problems to solve and in many cases only an approximation to the optimal
solution is given (see [8]). On the other hand, logical characterization of NP-problems
has provided a classification of NP optimization problems in terms of first and second
order logic expressions [47, 55, 4, 88]. Tree-decomposition and treewidth of graphs are
important concepts introduced in a series of publications on graph minors [69, 70,
71, 68, 72]. In [28, 29, 27] show that on graphs of bounded treewidth, every decision
or optimization problem expressible in Monadic Second Order Logic (MSOL) has a
linear time algorithm. In [54, 13, 14, 15, 81, 18, 17, 16] show that there is a dynamic
programming approach on tree-decomposition on graphs of bounded treewidth to solve
optimization problems in linear time.

Another important concept related to the treewidth is the Clique-width [28, 41, 30],
it has been considered to show linear time algorithms on graphs of bounded clique-
width. Recently, it has been considered the Tree-Depth as a parameter to build
efficient algorithms [60]. This chapter is divided into two parts, the first one is
devoted to a study on tree-decompositions, we analyze the iterative construction and
updating of tree-decompositions, this is done by adding one edge at a time [33]. In the
second part we consider the dynamic programming approach to solve optimization
problems, we propose a solution to the classical Ising spin glass model based on the
Dynamic Programming approach. We also propose a composition strategy of local
Hamiltonians for AQC on tree-decompositions of graphs.

6.1 Background

6.1.1 Basic notions

Let G = (V,E) be a graph with V (G) = V as set of vertices and E(G) = E as
set of edges, let n = |V | be the number of vertices, or graph order. For any subset

53
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S ⊆ V of vertices, the subgraph of G induced over S, denoted by G[S], is the graph
S = (S,ES) where ES = {{x, y} ∈ E|x, y ∈ S}. A clique in G is a complete subgraph
of G. The clique number ω(G) is the size of the largest clique in G.

If i < j, then [[i, j]] will denote the set of integers {i, i+ 1, . . . , j − 1, j}, and from
now on we will identify V with [[0, n− 1]].

A Hamiltonian path in G may be realized as a subgraph Pπ = (V,Eπ) of G, where
π is a permutation of V and Eπ = {{π(i), π(i+ 1)}|0 ≤ i < n− 1}. The vertices π(0)
and π(n− 1) are linked by Pπ and are called the ending points of the path.

A Hamiltonian cycle has the form Cπ := Pπ + {π(0), π(n − 1)} where Pπ is a
Hamiltonian path. In other words, a Hamiltonian cycle is a Hamiltonian path whose
ending points form an edge.

A cycle is a Hamiltonian cycle in a subgraph of G. The length of a cycle is the
number of its edges. A chord is an incident edge to two vertices that are not adjacent
within the cycle. The graph G is triangulated (or chordal) if every cycle of length
at least 4 has a chord. A triangulation of G is a graph H with the same set of
vertices such that G is a subgraph of H and H is triangulated, and it is a minimal
triangulation of G if there is no triangulation of G that is a proper subgraph of H.

Definition 12. The notion of k-tree is defined recursively as follows:

1. A clique with k + 1 vertices is a k-tree.

2. Given a k-tree Tn with n vertices, it is expanded to a k-tree with n+ 1 vertices
as follows: add a new vertex xn+1, choose a k-clique of Tn and connect xn+1

with each vertex in the chosen k-clique.

A partial k-tree is a subgraph of a k-tree with the same set of vertices. The
treewidth of a graph G is the minimum value k for which G is a partial k-tree. Any
k-tree has treewidth k.

Problem 1 (Treewidth Problem). Given a graph G and an integer k ≥ 1, decide
whether the treewidth of G is at most k.

As was shown in [5] the treewidth problem is NP-complete. However, the Treewidth
Problem restricted to graphs with treewidth bounded by a parameter kb ∈ Z+, is de-
cidable in linear time [54].

A simple characterization of k-trees was shown in [73]:

Lemma 1 (Rose, 1974). A graph G with n vertices is a k-tree if and only if G is
triangulated, ω(G) = k + 1, and |E(G)| ≥ nk − 1

2
k(k + 1).

A characterization of triangulated graphs was shown in [39]. Let us recall it: Let
G = (V,E) be a graph, and let x ∈ V . The vertex x is simplicial if the subgraph
induced by G over the neighborhood N(x) := {y ∈ V |{x, y} ∈ E} is a clique. Let σ
be a permutation of V . For an index i ∈ [[0, n−1]], let G[σ(i, n)] denote the subgraph
G[Si] induced by G over Si = {σ(i), . . . , σ(n − 1)}. It is said that σ is a perfect
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elimination scheme (PES) in G if for each i ∈ [[0, n− 1]], the vertex σ(i) is simplicial
in G[σ(i, n)].

The triangulated graphs are determined as follows:

Lemma 2 (Fulkerson & Gross, 1965). A graph G is triangulated if and only if there
exists a PES for G. Furthermore, if a graph is triangulated, any simplicial vertex can
start a PES for the graph.

Now let us recall the Minimum Triangulation Problem. Let σ be a permutation
of the vertex set V . The fill-in produced by σ, denoted Fill(σ), is a set of new edges
that should be added to the graph G in such a way that for each i ∈ [[0, n − 1]],
the vertex σ(i) becomes simplicial in G[σ(i, n)]. Consequently, if σ is a PES then
Fill(σ) = ∅.

Problem 2 (Minimum Fill-in). Given a graph G = (V,E), find a permutation σ of
V such that Fill(σ) is minimum.

Equivalently, the Minimum Fill-in Problem can be stated as finding the minimum
set of edges whose addition to the graph G is a chordal graph. The Minimum Fill-
in Problem is indeed NP-complete [85], however, the decision of whether a given
graph G is triangulated, can be done in linear time with respect to the number of
vertices [74, 59, 53, 44].

The algorithm 1 Fill-in(G, π) below receives a graph G and a permutation π of
the set of vertices, and constructs a triangulation H of G such that π is a PES in
H, by adding a minimum number of edges to G. Clearly, the time complexity of this
algorithm is of the order O(nm), where m = |E| is the number of edges of the input
graph.

Algorithm 1 Fill-in(G, π)

Input: A graph G = (V,E) with n = |V | and a permutation π : [[0, n− 1]]→ V .
Output: A triangulation H of G such that π is a PES for H.
H := G;
for all i = 0, . . . , n− 1 do

Let v = π(i) be the i-th vertex according to π;
for all pair w, u ∈ N(v) such that π−1(w) > i, π−1(u) > i do
if w and u not adjacent in H then

Add {w, u} to H
end if

end for
end for
Return H.
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6.1.2 Tree decompositions

Definition 13. A tree decomposition of a graph G = (V,E) is a pair (T,X ) where
T = (T, F ) is a tree, and X = (Xt)t∈T is a family of subsets of V such that the
following conditions are satisfied:

1.
⋃
t∈T Xt = V ,

2. ∀{u, v} ∈ E ∃t ∈ T : u, v ∈ Xt, and

3. ∀x ∈ V the subgraph induced by T over {t ∈ T |x ∈ Xt} is a subtree of T.

Alternatively the condition 3. can be formulated as follows:

3’. For all t1, t2, t3 ∈ T , if t2 is on the path connecting t1 with t3 in T then Xt1 ∩
Xt3 ⊂ Xt2.

For each tree vertex t ∈ T , the subset Xt ⊂ V of graph vertices is called its bag.
The width of a tree decomposition (T,X ) is maxt∈T |Xt|−1. The treewidth of a graph
G is the minimum width over all possible tree decompositions of G, and it is written
as tw(G).

Definition 14. A branch decomposition of a graph G = (V,E) is a tree decomposi-
tion (T,X ) such that T is just a branch, namely a path.

The branchwidth of the graph G is the minimum width over all possible branch
decompositions of G.

The algorithm 2 below produces a tree decomposition of G, with the same set of
vertices, assuming that a PES π in G is given. For each vertex at G, it is required
the computation of the subgraph G[π(k, n)], and then an exploration on the edges is
necessary in order to find the index j in the main cycle of the algorithm, thus, the
time complexity of the algorithm is of the order O(n2m).

In order to produce a tree decomposition of a graph in a general setting, with the
algorithm 1, and any permutation π, a triangulation H is produced with π as PES
and then the algorithm 2 produces the tree decomposition. Since a triangulation of
a graph with n vertices will have O(n) edges, the composition of algorithm 1 with
algorithm 2 has time complexity O(n2m).

6.2 Procedural modification of tree decompositions
Let us consider a general algorithm to construct a tree decomposition using elimi-
nation schemes: Given a graph G = (V,E), a tree decomposition (T,X ) of G is
obtained as follows:

(G, π) � Ψ //Hπ
� Φ // (T,X ) (6.1)

where Ψ is a procedure to triangulate G in such a way that π is a PES in Hπ (for
instance, the algorithm 1), and Φ is the transformation calculated by the algorithm 2.
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Algorithm 2 GeneralTreeDecomposition(G, π)

Input: A graph G = (V,E), n = |V |, and a PES π : [[0, n− 1]]→ V of G.
Output: A tree decomposition (T = (V, F ),X ) of G.
Let ((T, F ),X ) = ((V, ∅), ∅) be the initial empty tree decomposition;
for all k = n− 1, . . . , 0 do
if k == n− 1 then
Xπ(k) = {π(k)};

else
Let G′ = (V ′, E ′) := G[π(k, n)];
Let π(j) be the lowest numbered neighbor of π(k) in G′, i.e.,
j := min{i ∈ [[0, n− 1]]|{π(k), π(i)} ∈ E ′};
Let Xπ(k) := N(π(k),G′) ∪ {π(k)}: the neighborhood of π(k) in G′;
Let F := F ∪ {π(k), π(j)};

end if
end for
Return (T := (V, F ),X ).

Any tree decomposition obtained using the general procedure (6.1), depends in
the vertex ordering determined by π. In general, for a fixed triangulation, different
PES’s will produce different tree decompositions.

6.2.1 Modification by the addition of an edge

Now, suppose that we have an already constructed tree decomposition (T,X ) of a
graph G. Let us modify the graph by the addition of an edge. Let G+ e be the new
graph, and let us pose as a task to build a corresponding tree decomposition (T′,X ′)
of G + e, see the following diagram:

G � A //
_

Φ◦Ψ
��

G + e


Φ◦Ψ

&&
(T,X ) �

B
// (T′,X ′) (T′′,X ′′)

(6.2)

where (Φ◦Ψ) is the general algorithm sketched at diagram (6.1), A is the addition of
an edge to a graph, and B is the sought corresponding tree decomposition transfor-
mation. Naturally, the procedure (Φ◦Ψ) can be applied to the modified graph G+e,
producing thus a tree decomposition (T′′,X ′′). Both trees (T′,X ′) and (T′′,X ′′) are
tree decompositions of the graph G + e.

It is important to note that, when an edge e is added to G, it is not generally true
that the current triangulation Hπ = Ψ(G) remains a triangulation of the modified
graph G + e, thus it would be necessary to construct a new triangulation for G + e.
However, the lemma 2 asserts that there exists a PES which can be used to test
whether Hπ + e is triangulated or not. In the affirmative case no new computation
of the triangulation is required.
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The next section gives some results about this approach.

6.2.2 Iterative modification

Let G = (V,E) be a graph with n = |V | vertices and let H be a triangulation of the
graph G. By the lemma 2, there exists a PES π in H. For each index i ∈ [[0, n− 1]],
let Nπ(i) be the neighborhood of π(i) in H[π(i, n)]. Then H[π(i, n)] induces a clique
over Nπ(i).

Remark 25. Let e = {u, v} be an edge not in H and let j1 := min{π−1(u), π−1(v)}
and j2 := max{π−1(u), π−1(v)}. Then the following conditions are equivalent:

1. H′ := H + e is triangulated and it has π as a PES.

2. H′[π(j1, n)] induces a clique over Nπ(j1) ∪ {π(j2)}.
Let us say that any edge e ∈ E maintains the triangulation if condition 1. in

remark 25 holds. In a procedural way, the checking of whether an edge main-
tains the triangulation can be done, through the condition 2., in time complexity
O(degreeH(j1)2) ≤ O(|E|2).

Hence if an edge e is added to a triangulated graph Hπ, and π remains as a PES
for Hπ + e, then the neighborhood Nπ(j) of just one vertex π(j) increases by one
element, while the other neighborhoods do not change.

Claim 1. Let H be a triangulation of a graph G, different than the whole clique KV ,
and let π be a PES in H. Then, there exists an edge e, not in E(G), that maintains
the triangulation.

The selection of such an edge e can be applied iteratively until the arrival to the
whole clique KV .

Proof. Let e ∈ E be an edge not in the triangulated graph Hπ, and let j1, j2 be two
indexes defined as in remark 25. Let j be an index such that j1 < j and π(j) ∈ Nπ(j1),
and let N ′ = {π(j2)} ∪ (Nπ(j1)\{π(j)}). Then H + e remains triangulated while
N ′ ⊂ Nπ(j), just because H[π(j, n)] induces a clique over N ′ and π(j) is connected to
N ′.

The claim 1 is the basis of an iterative procedure: Choose a PES π for H, then
pick an edge e ∈ E −E(H), and check whether π is a PES for H′ := H+ e, in which
case update H′ as the triangulated graph. Repeat the procedure.

Now, let (T = (V, F ),X ) be a tree decomposition of a graph G = (V,E) obtained
using the general algorithm Φ ◦ Ψ, then there exists a triangulation Hπ of G, for a
PES π in H, such that Ψ produces (T,X ) from Hπ.

Remark 26. Let e = {u, v} be an edge such that Hπ + e is triangulated. Let (T′ =
(V, F ′),X ′) be its tree decomposition as defined in algorithm 2. Using the notation at
remark 25, let π(j) be the lowest numbered neighbor of π(j1) in Hπ[π(j1, n)]. Then,
initially (T′,X ′) = (T,X ) and consecutively it is modified according to the following
cases:
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1. If j < j2 then τ ′(π(j1)) := τ ′(π(j1)) ∪ {π(j2)}.

2. If j > j2 then τ ′(π(j1)) := τ ′(π(j1)) ∪ {π(j2)}, F ′ := F ′\{π(j1), π(j)} and
F ′ := F ′ ∪ {π(j1), π(j2)}.

From the remark 26, it is easy to see that the tree decomposition T′ does not
change by adding new edges that maintain the triangulation and satisfies the case 1.,
while the family of bags X ′ grows in one graph vertex at just one tree vertex when
a new edge is added. Also, it is important to note that the width of the tree T′

increases in one only when the cardinality of the bag at vertex π(j1) is the greatest
in T.

If an edge e does not maintain the triangulation, due to claim 1 there exists a
sequence of edges e1, . . . , ek such that for the sequence of triangulated graphs (Hi)

k
i=0,

with H0 = H and Hi = Hi−1 + ei, the edge ei maintains the triangulation Hi−1 and
the last edge ek coincides with the original edge e. Let us say that the edge sequence
e1, . . . , ek is a climbing sequence for e.

Then, the following problem can be posed:

Problem 3. For a given edge e that does not maintain the triangulation H, find the
minimum length among all possible climbing sequences for e.

The algorithm 3 below solves this problem by adding the necessary edges to the
triangulation H, in such a way that H[π(j1, n)] induces a clique over Nπ(j1) ∪ {π(j2)}
and by repeating the same task for each element in Nπ(j1).

We see that the array A acts as a queue in order to perform a breadth-first
examination of potential edges in a climbing sequence. Hence, the time complexity
of this algorithm is of the order O(m), where m is the number of edges in the input
triangulation.

6.2.3 Branch decompositions

An application of the iterative modification of tree decompositions is the following:
Let G be a graph, Hπ = Ψ(G) be a triangulation of G and let (T,X ) = Φ ◦ Ψ(G)
be its tree decomposition as defined in algorithm 2 from Hπ. Then, it is possible to
obtain a branch decomposition from (T,X ) by adding new edges to Hπ in order to
maintain the triangulation with respect to π.

The idea behind this transformation from a tree to a branch decompositions is a
consequence of the case 2. in remark 26. Namely, when the condition 2. is fulfilled, the
tree shrinks. Then, by adding the necessary edges to the triangulation Hπ satisfying
the condition 2., the tree becomes a branch.

Claim 2. Let G = (V,E) be a graph with n = |V |, Hπ = Ψ(G) be a triangulation
of G and let (T,X ) = Φ ◦ Ψ(G) be its tree decomposition as defined in algorithm 2.
Then, there exists a set of edges {e1, . . . , ek} such that when adding to Hπ successively
(satisfying remark 26), (T,X ) becomes a branch decomposition (T′,X ′) where T′ =
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Algorithm 3 MinimumClimbing
Input: An edge e = {u, v}, a triangulation H of a graph and a PES π for N .
Output: The length of the minimal climbing sequence for e.
Let A := ∅; Let j1, j2 be defined as in remark 25;
for all w ∈ Nπ(j1) do
if w is not adjacent to π(j2) then

Add {w, π(j2)} to N ; A = A ∪ {w};
end if

end for
B = A;
while A is not empty do

Let a ∈ A and j = π−1(a);
for all w′ ∈ Nπ(j) do
if w′ is not adjacent to π(j2) then

Add {w′, π(j2)} to H;
B = B ∪ {w′};A = A ∪ {w′}

end if
end for
A = A− {a};

end while
Return |B|.

(V, F ′), F ′ = {{π(i), π(i + 1)}|0 ≤ i ≤ n − 2} and X ′ is described according to the
remark 26.

Proof. By the case 2. in remark 26, when a new edge e is added to Hπ, the edge
{π(j1), π(j)} is deleted from the tree and replaced by the edge {π(j1), π(j2)} where
the index j2 < j. Hence, the lowest index j′ such that j′ < j satisfies j′ = j1 + 1, and
it corresponds indeed to the edge {π(j1), π(j1 + 1)}.
Remark 27. Let G = (V,E) be a graph, Hπ be a triangulation of G and let (T,X )
be its tree decomposition as defined in algorithm 2. By the claim 1 it is possible to
arrive to the whole clique KV , adding edges successively to Hπ. Then, (T,X ) evolves
into a branch decomposition of the complete graph KV .

The remark 27 determines an upper bound of the number of required edges to
transform a tree decomposition into a branch decomposition.

Then, the following problem can be posed:

Problem 4. For a given tree decomposition (T,X ) of a graph G, find the minimum
number of edges satisfying the claim 2, in order to transform (T,X ) into a branch
decomposition.

Let us considerer the following example: Let G = (V,E) be a graph where:

V = {0, 1, 2, 3, 4, 5, 6} and
E = {{0, 1}, {0, 6}, {2, 1}, {2, 3}, {2, 6}, {3, 5}, {3, 4}, {4, 5}, {5, 6}}.
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Let π := (6, 3, 4, 5, 1, 0, 2) be a permutation of V , the algorithm 1 with (G, π) as input
returns a triangulation H1 = (V,E ′) of G where:

E ′ = E ∪ {{0, 2}, {0, 5}, {2, 5}, {2, 4}}

and π is a PES for H1. Using the algorithm 2 with (H1, π) as input a tree decompo-
sition T1 is obtained. Note that π remains a PES for H2 := H1 + {1, 5} and from the
remark 26, T1 becomes a tree decomposition T2 that satisfy condition 2. In the same
way, π remains a PES for H3,H4 where H3 := H2 +{0, 4},H4 := H3 +{0, 3}, and its
corresponding tree decompositions T3 and T4 that satisfy condition 1 in remark 26.

Finally, π is a PES for H5 := H4 +{3, 6} and T4 becomes a branch decomposition
T5 that satisfies condition 2 in remark 26.

Note also that {1, 5}, {0, 4}, {0, 3}, {3, 6} are the minimum number of edges to
transform T1 into the branch decomposition T5.

6.2.4 Comparison of time complexities

As in last section, let Φ ◦ Ψ be the map calculated by the algorithm 1 Fill-in(G, π),
followed by the algorithm 2 GeneralTreeDecomposition(G, π).

According to the diagram (6.2), a tree decomposition (T′,X ′) of the graph of the
form G + e, can be done either through the transformation B ◦ Φ ◦ Ψ or through
Φ ◦Ψ ◦ A.

If the edge e maintains the triangulation H = Ψ(G), then T′ = T, hence B ◦
Φ ◦ Ψ(G) = Φ ◦ Ψ(G). By remark 25 the checking of whether e maintains the
triangulation is proportional to the square of the degree of the triangulation. Thus,
in general the time complexity of B ◦ Φ ◦ Ψ(G) is O(n2m), where n = |V (G)| and
m = |E(G)|.

On the other hand, the processing of Φ◦Ψ◦A entails a time complexity O(n2(m+
1)), since a new edge e is added, and also the checking of whether e maintains the
triangulation is performed.

Thus we see that the processing of B ◦ Φ ◦ Ψ is more convenient than that of
Φ ◦Ψ ◦ A.

This work can be generalized as in [19, 20] in order to provide a deterministic
algorithm for tree decompositions for a greater graph class. The generalization entails
a potential application in the solution of graph problems with the use of dynamic
programming approaches.

6.3 A strategy to solve NP-hard problems

In this section a brief introduction to the applications of the tree decomposition of
graphs is given. We show how to exploit a tree decomposition to solve optimization
problems using a Dynamic Programming approach. We use the language of MSOL
to express properties of graph problems. Finally, the Courcelle theorem is introduced
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and a possible application in the design of local Hamiltonian operators for AQC is
given.

6.3.1 Dynamic programming approach

Let k ∈ Z+ be an integer. Let Bk be the class of graphs G = (V,E) such that
tw(G) ≤ k.

Theorem 6 (Robertson-Seymour, 1986). For each k ∈ Z+, Bk can be characterized
by finite sets of forbidden minors.

The Dynamic Programming approach for solving NP-hard problems consists in
solving partial instances and then to ensemble the corresponding solutions into a
solution of the whole initial instance. The deal is computing tables of characterizations
of partial solutions.

A nice tree decomposition (T = (T, F ),X ) is a rooted binary tree having nodes of
just four types:

• a start, a node with no children,

• a join, a node with two children, and whose bag is the union of its children’s
bags,

• a forget, a node with just one node, and whose bag is a subset of its child bag,
and

• a introduce, a node with just one node, and whose bag is a superset of its child
bag.

Proposition 7 (Bodlaender, 1998). Any tree decomposition of width k of a graph G
can be transformed into a nice decomposition tree of the same width with O(k card (V (G)))
nodes in linear time.

Thus from now on, it can be assumed that all tree decompositions are nice.
A partial solution of a problem corresponds to a bag in the decomposition tree.

The computation of partial solutions is performed bottom-up (“bottom” corresponds
to the leaves, “up” to the root), thus the partial solution at any node is computed
from the partial solutions of its children. The partial solution at the root will be the
whole solution.

For any bag Xt with t ∈ T in the tree decomposition, let Gt be the subgraph of
G whose nodes are the vertexes at the bag Xt and its descendants:

V (Gt) =
⋃
{t′ ∈ T | Xt = Xt′ or [t′ is a descendant of t in T]}.

In a general way, the following procedural steps synthesizes the Dynamic Pro-
gramming reduction: Let P be a problem that given a graph G has associated a
solution solP (G).
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1. Define the notion of a partial solution: For a bag Xt for some t ∈ T , it should
be the restriction to Gt of a solution solP (G). Observe that this may coincide
or not with solP (Gt).

2. Define the notion of partial solutions extension within a tree decomposition.

3. Define the notion of partial solution characteristic within a tree decomposition.
Most generally, the characteristic of a partial solution at a bag Xt for some
t ∈ T is the restriction to the bag Xt of the partial solution at the graph Gt.

4. Show that for any of the three bag types, there is a polynomial-time algorithm
to find the characteristic.

5. Show that the characteristic of the root produces indeed a whole solution.

6.3.2 The Courcelle Theorem

Courcelle showed that every problem definable in Monadic Second-Order Logic (MSOL)
can be solved in linear time on graphs with bounded treewidth. The Courcelle theo-
rem has important applications for several fixed parameter tractability results. Many
problems can be expressed in MSOL such as Minimum Vertex Cover, Minimum Dom-
inating Set, and Maximum Independent.

Using the definitions of the previous section on tree decompositions, let

Bk = {G|G a graph and tw(G) ≤ k}.
We say that ϕ be a well formed sentence in MSOL for a graph G then G is called

a model for ϕ.

Theorem 7 (Courcelle Theorem [27]). Let k ≥ 1 and ϕ a sentence in MSOL. There
exists a linear time algorithm such that for each graph G ∈ Bk decide if G is a model
of ϕ.

An application of the Courcelle theorem A kernel in a directed graph G =
(V,E) is a subset K of V such that, no two vertices in K are adjacent and for every
vertex a ∈ V \K there is a vertex b ∈ K such that (a, b) ∈ E.

Let k ≥ 1 and G be a graph with tw(G) ≤ k. There exist a liner time algorithm
which decide whether G has a kernel.

6.3.3 Examples of second order formulae

Independent set

An independent set U in a graph G = (V,E) is a set of vertexes, U ⊆ V , containing
no pair of edge extremes. As a second order formula, this can be stated by:

φ(U, V ) ≡ ∀v0, v1 ∈ V : [v0, v1 ∈ U ⇒ {v0, v1} 6∈ E] .
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Three-coloring

For a graph G = (V,E) a coloring with n-colors or n-coloring, is a map γn : V → N
where N is a set of cardinality n, such that no pair of adjacent vertexes share a
common color:

∀v0, v1 ∈ V : {v0, v1} ∈ E =⇒ γn(v0) 6= γn(v1).

Namely, an n-coloring can be realized as the partition (γ−1
n (i))i∈N of its monochro-

matic sets, in which all edges traverse them.
In order to put the notion of 3-colorability as a second order formula let us intro-

duce the following formulae:

• Set inclusion:
φ10(V,W ) ≡ W ⊆ V.

• Three sets form a partition of the set of vertexes:

φ1(V,W0,W1,W2) ≡ φ10(V,W0) ∧ φ10(V,W1) ∧ φ10(V,W2) ∧
[∀v ∈ V : (v ∈ W0) ∨ (v ∈ W1) ∨ (v ∈ W2)] .

• Two vertexes lie in different subsets:

φ20(v0, v1,W ) ≡ ¬ (v0 ∈ W ∧ v1 ∈ W ) .

• No edge lies within a monochromatic set:

φ2(V,W0,W1,W2) ≡ ∀v0, v1 ∈ V :

[{v0, v1} ∈ E ⇒ φ20(v0, v1,W0) ∧ φ20(v0, v1,W1) ∧ φ20(v0, v1,W2)] .

• 3-colorability is thus stated by the sentence

φ3(V ) ≡ ∃W0,W1,W2 : φ1(V,W0,W1,W2) ∧ φ2(V,W0,W1,W2).

Hamiltonian cycle

A Hamiltonian cycle in a graph G = (V,E) is a permutation of the vertexes such
that any pair of contiguous vertexes, modulus the order of the graph, form an edge.
In order to put it as a second order formula let us define some predicates:

• Permutation definition: A map is a list of pairs P = ((i, vi))
n−1
i=0 associating to

each i ∈ {0, . . . , n− 1} an unique point vi ∈ V :

φ00(P, V ) ≡
n−1∧
i=0

[∀v0, v1 ∈ V : [(i, v0) ∈ P ∧ (i, v1) ∈ P ⇒ v0 = v1]] ,

and P is a permutation if it is one-to-one:

φ01(P, V ) ≡
∧

0≤i<j≤n−1

[∀v0, v1 ∈ V : [(i, v0) ∈ P ∧ (j, v1) ∈ P ⇒ v0 6= v1]] .

Let φ0(P, V ) = φ00(P, V ) ∧ φ01(P, V ).



6.3. A STRATEGY TO SOLVE NP-HARD PROBLEMS 65

• Each vertex has an index:

φ1(P, V ) ≡ ∀v ∈ V :
n−1∨
i=0

[(i, v0) ∈ P ] .

• Two indexes correspond to an edge:

φ2ij(P, V ) ≡ ∀v0, v1 ∈ V : [(i, v0) ∈ P ∧ (j, v1) ∈ P ⇒ {v0, v1} ∈ E] .

• Hamiltonian cycle:

φ3(P, V ) ≡ φ0(P, V ) ∧ φ1(P, V ) ∧

[
n−2∧
i=0

φ2,i,i+1(P, V )

]
∧ φ2,n−1,0(P, V ).

6.3.4 Dynamic Programming applied to NP-hard problems

The Dynamic Programming approach for solving NP-hard problems consists in solv-
ing partial instances and then to ensemble the corresponding solutions into a solution
of the whole initial instance.

A partial solution of a problem corresponds to a bag in the tree decomposition.
The computation of partial solutions is performed bottom-up (“bottom” corresponds
to the leaves, “up” to the root), thus the partial solution at any node is computed
from the partial solutions of its children. The partial solution at the root will be the
whole solution.

In the following we expand the procedural steps of the Dynamic Programming
approach sketched in section 6.3.1, we based on [16]:

A terminal graph is a tripleH = (V,E,X) where (V,E) is a graph and the elements
of X ⊆ V are called the terminals of (V,E). Let H1 and H2 be two terminal graphs,
H1 ⊕ H2 is the disjoint union of H1 and H2. A terminal graph H1 is a terminal
subgraph of a graph G if and only if, there exists a terminal graph H2 such that
G = H1 ⊕H2.

1. Define a notion of solution. Let Π be a problem or a graph property. Let
solΠ(G, s) be a formula with two variables with G a graph and s a solution for
the instance problem G, such that:

Π(G)⇐⇒ ∃s : solΠ(G, s).

2. Define the notion of partial solution: A partial solution is an object associated
with a terminal graph. Let psolΠ(H, s) be a formula with two variables with H
a terminal graph and s a partial solution.

3. Define a notion of extension of partial solutions. Let exΠ(G, s,H, s′) be a for-
mula with four variables with G a graph, s a solution for the instance problem
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G, H a terminal graph and s′ a terminal solution for H. The following must
hold, for all G, s,H, s′:

exΠ(G, s,H, s′) =⇒ ∃H′ : G = H⊕H′ ∧ solΠ(G, s) ∧ solΠ(H, s′).

The following condition expresses that every solution has a partial solution on
any terminal graph:

∀G, s,H,H′ : (solΠ(G, s)∧G = H⊕H′) =⇒ ∃s′ : psolΠ(H, s′)∧exΠ(G, s,H, s′).

4. Define a notion of characteristic of a partial solution. It is meant to describe
what is needed to know about the partial solution to see whether it can be
extended to a solution. Let chΠ(H, s) 7→ psolΠ(H, s) be a function with H a
terminal graph and s a terminal solution for H. It must fulfill, for all terminal
graphs H,H′,H′′ and terminal solutions s, s′:

(chΠ(H, s) = chΠ(H′, s′)) =⇒ (∃s′′ : exΠ(H⊕H′′, s′′,H, s))⇐⇒
(∃s′′′ : exΠ(H′ ⊕H′′, s′′′,H′, s′)).

5. A full set of characteristics for a terminal graphG is the set of all characteristics
of partial solutions. For instance, let H be a terminal graph, the full set of
characteristics for H is:

fullΠ(H) = {chΠ(H, s) | psolΠ(H, s)}.

Show that for every type of nodes in a nice tree decomposition, there is a
polynomial-time algorithm to find the full set of characteristics.

6. Show that the characteristic of the root produces indeed a whole solution.

A solution to the Maximum Weight Independent Set problem:

Let G = (V,E, c) be a weighted graph where c : V → Z+ is a weighted map. An
independent set is a subset S ⊆ V such that ∀u, v ∈ S : {u, v} /∈ E. For any subset
S ⊆ V , the cost of S is defined as c(S) =

∑
v∈S c(v).

The Maximum Weight Independent Set problem
Input: A weighted graph G = (V,E, c)
Solution: An independent set S ⊆ V with maximum cost.

Let (T = (T, F ),X ) be a nice tree decomposition of G. For each t ∈ T , let
Gt = (Vt, Et) be the subgraph of G at node t where Vt = {v|v ∈ Xt1 & (t1 =
t or t1 is a descendant of t in T)} and Et = {{u, v} ∈ E|u, v ∈ Vt}. The table of
characteristics Ct at node t is such that, ∀S ⊆ Xt, Ct(S) = maxW⊆Vt{c(W )|Xt ∩
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W = S & W is an independent set}, in case that such independent set does not exist
Ct(S) = −∞.

The procedural steps of the Dynamic Programming approach will compute the
tables Ct for all t ∈ T in a bottom-up order. We proceed by cases according to the
types of nodes on T:

• Start. If t is a leaf node of T, then |Xt| = 1 and Xt = {v}. The table Ct has
only two entries: Ct(∅) = 0 and Ct({v}) = c(v).

• Introduce. If t is an introduce node with a child t1, then Xt = Xt1 ∪ {v} for a
vertex v. Observe that Gt is formed from Gt1 by adding v and zero or more
edges from v to vertices in Xt1 . It is satisfied that v is not adjacent to any
vertex in Vt1 −Xt1 . For each S ⊆ Xt1 :

1. Ct(S) = Ct1(S).

2. If there is a vertex w ∈ S with {v, w} ∈ E then Ct(S ∪ {v}) = −∞.

3. If for all w ∈ S, {v, w} /∈ E then Ct(S ∪ {v}) = Ct1(S) + c(v).

• Forget. If t is a forget node with a child t1, then Xt = Xt1−{v} for some vertex
v, and the graphs Gt,Gt1 are the same. Suppose that v ∈ Xt1 − Xt is that
vertex.

For each S ⊆ Xt : Ct(S) = max{Ct1(S), Ct1(S ∪ {v})}.

• Join. If t is a join node with children t1, t2, then Xt = Xt1 = Xt2 .

For each S ⊆ Xt : Ct(S) = Ct1(S) + Ct2(S)− c(S).

Lemma 3. The maximum weight of an independent set in G is maxS⊆Xroot Croot(S).

See [16] for a proof.
The independent set with maximum weight given by the Dynamic Programming

solution can be constructed from the characteristic tables and does not introduce
additional time complexity.

In the following we propose a solution to the classical Ising Spin Glass model
based on the Dynamic Programming approach, we also introduce the Quantum Ising
model and its relation with AQC.

6.3.5 The Classical Ising model

LetG = (V,E) be a graph with vertex set V and edge set E ⊂ V (2). Let S = {−1,+1}
be the set of signs. An assignment is a map σ : V → S. An edge weight map is of
the form e : E → R and a vertex weight map is of the form w : V → R. In a physical
context, an assignment is called a spin configuration, a positive edge weight e is said
ferromagnetic and a negative edge weight is said antiferromagnetic. Let us enumerate
V = (vi)

n−1
i=0 , thus there are 2n assignments. For respective edge and vertex weight
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e, w, let us write eij = e(vi, vj) and wi = w(vi). For those weight maps and an
assignment σ, their energy is

η(e, w;σ) = −
∑

{vi,vj}∈E

eijσ(vi)σ(vj)−
∑
vk∈V

wkσ(vk). (6.3)

An assignment with minimum energy is called a ground state.
For a positive constant β > 0, let us consider the map

φ(e, w, β; ·) : σ 7→ φ(e, w, β;σ) = exp (−β η(e, w;σ)) . (6.4)

Let Φ(e, w, β) =
∑
{φ(e, w, β;σ)| σ is an assignment}. Thus a probability density on

the space of assignments is given as

π(e, w, β; ·) : σ 7→ φ(e, w, β;σ)

Φ(e, w, β)
. (6.5)

From relation (6.3) it is evident that if the vertex weight w is null then the energy
map is “even”:

∀σ : assignment : η(e, 0;σ) = η(e, 0;−σ). (6.6)

For an assignment σ, its support is Spt (σ) = {v ∈ V | σ(v) = +1}. A 2-partition of
V is a collection of the form {U, V −U}, such that U ⊆ V . Clearly σ ↔ {Spt (σ) , V −
Spt (σ)} is a bijective correspondence among assignments and 2-partitions of V .

For any set U ⊆ V , let

c(U) = {e ∈ E| card (e ∩ U) = 1 & card (e ∩ (V − U)) = 1} (6.7)

be the collection of edges with an extreme in U and the other in its complement.
Since an assignment is a S-valued map:

∀σ : assignment : η(e, 0;σ) = −
∑

{vi,vj}∈E

eij + 2
∑

{vi,vj}∈c(Spt(σ))

eij

=: ηs(e; Spt (σ)). (6.8)

Let us introduce the following problem:

Minimum weight cut
Instance: An edge weighting map e.
Solution: A ground state.

Clearly, this problem is equivalent to minimize the energy operator η(e, 0; ·) as
defined by (6.3), or equivalently to find a vertex set U which minimizes ηs(e;U) as
defined by (6.8).

A similar problem is the following:
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Two dimensional magnetic field
Instance: A planar graph G = (V,E).
Solution: A ground state σ0 for the operator

σ 7→ η(−1,−1;σ) =
∑

{vi,vj}∈E

σ(vi)σ(vj) +
∑
vk∈V

σ(vk). (6.9)

Theorem 8 (Barahona [10]). Two dimensional magnetic field is an NP-complete
problem.

For edge and vertex weight e and w, we refer to the Ising spin model as the map:

∀σ ∈ assignment : η(−e,−w;σ) =
∑

{vi,vj}∈E

eijσ(vi)σ(vj) +
∑
vk∈V

wkσ(vk) (6.10)

and for any subset S ⊆ V , let η(−e,−w;σ, S) =
∑
{vi,vj}∈E(G[S]) eijσ(vi)σ(vj) +∑

vk∈S wkσ(vk) be the Ising spin model defined on G[S].
The Ising spin model can be solved using the Dynamic Programming approach by

solving partial solutions at every node on a tree-decomposition, and by the Courcelle
Theorem there exists an algorithm with polynomial time complexity that solve the
Ising spin glass model over graph instances with bounded treewidth.

The Dynamic Programming solution is as follows:
Let G = (V,E) be a graph with edge and vertex weigths e and w. Let (T =

(T, F ),X ) be a nice tree decomposition of G and assume that the treewidth of (T,X )
is bounded by a constant k. We compute the tables Ct for all t ∈ T in a bottom-up
order. We proceed by cases according to the types of nodes on T:

• Start. If t is a leaf node of T, then |Xt| = 1 and Xt = {vi} for vi ∈ V . The table
Ct has only two entries: ∀τ ∈ {0, 1} : Ct({vi}, τ) = η(−e,−w;σ(vi) = τ, {vi}).

• Introduce. If t is an introduce node with a child t1, then Xt = Xt1 ∪ {vi} for
vi ∈ V . For all τ ∈ {0, 1}|Xt|−1 :

1. For all vj ∈ Xt1 , b ∈ {0, 1} : if {vi, vj} ∈ E then Ct(Xt, τ ·b) = Ct1(Xt1 , τ)+
eijσ(vi)σ(vj) + wiσ(vi), otherwise Ct(Xt, τ · b) = Ct1(Xt1 , τ) + wiσ(vi).

• Forget. If t is a forget node with a child t1, then Xt = Xt1 − {vi} for vi ∈ V .
For all τ ∈ {0, 1}|Xt| :

1. Ct(Xt, τ) = min{Ct(Xt1 , τ · 0), Ct(Xt1 , τ · 1)}.

• Join. If t is a join node with children t1, t2 then Xt = Xt1 = Xt2 . For all τ ∈
{0, 1}|Xt| : Ct(Xt, τ) = Ct1(Xt1 , τ) + Ct2(Xt2 , τ)− η(−e,−w;σ(Xt) = τ, {Xt}).

It is easy to prove that the energy ground state of G can be obtained from the
table Croot. A similar algorithm for the Ising spin model is the proposed in [9], where
a conditional restriction is imposed on the set of nodes of the tree-decomposition.
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6.3.6 Quantum Ising model

Let us consider the Pauli transforms σx, σz : H1 → H1 whose matrices with respect
to the canonical basis are

σx =

(
0 1
1 0

)
, σz =

(
1 0
0 −1

)
. (6.11)

Over the canonical basis, we have,

∀ε ∈ Q : σz(|ε〉) = θ(ε) |ε〉 , (6.12)

where θ : Q→ S, ε 7→ 1− 2ε.
Let n ∈ Z+ be a positive integer and let [[0, n− 1]] = {0, . . . , n− 1} be the initial

segment of the natural numbers with n elements.
For any index j ∈ [[0, n− 1]] let σjz =

⊗n−1
ν=0 sν : Hn → Hn, where sν = σz if ν = j

and sν = Id otherwise. In other words, σjz applies the transform σz at the j-th qubit
of any n-quregister in Hn. Then, as in (6.12):

∀j ∈ [[0, n− 1]], ε ∈ Qn : σjz(|ε〉) = θ(εj) |ε〉 , (6.13)

Let G = (V,E) be a graph whose vertices are the first n indexes, V = [[0, n− 1]],
and E ⊆ [[0, n− 1]](2) is a set of index pairs.

For any vertex weighting map w : V → R let us consider the operator

Hw : Hn → Hn , Hw =
n−1∑
j=0

wjσ
j
z. (6.14)

From (6.13) we have

∀ε ∈ Qn : Hw(|ε〉) =

(
n−1∑
j=0

wjθ(εj)

)
|ε〉 (6.15)

hence, Hw is a diagonal operator.
Similarly, for any edge weighting map e : E → R, let us consider the operator

He : Hn → Hn , He =
∑
{i,j}∈E

eij σ
i
z ◦ σjz. (6.16)

Since the operators σjz are pairwise commutative, again from (6.13) we have

∀ε ∈ Qn : He(|ε〉) =

 ∑
{i,j}∈E

eijθ(εi)θ(εj)

 |ε〉 (6.17)

hence, He is as well a diagonal operator.
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As in eq. (6.3) let us define the operator

H(e, w; ·) : Hn → Hn , H(e, w; ·) = −He −Hw. (6.18)

From (6.15) and (6.17) we have

∀ε ∈ Qn : H(e, w; |ε〉) =

− ∑
{i,j}∈E

eijθ(εi)θ(εj)−
n−1∑
j=0

wjθ(εj)

 |ε〉 (6.19)

Between the greatest parenthesis, an energy map η(e, w; ·) : Qn → R appears of the
type of eq. (6.3), and a ground state |ε0〉 of H corresponds naturally with a ground
state ε0 of η(e, w; ·).

On the other hand, the Pauli transform σx (see (6.11)) has eigenvalues +1,−1
with respective eigenvectors c0 = W |0〉 and c1 = W |1〉, where W is the Hadamard
transform. For any index j ∈ [[0, n− 1]] let σjx =

⊗n−1
ν=0 rν : Hn → Hn, where rν = σx

if ν = j and rν = Id otherwise. In other words, σjx applies the transform σx at the
j-th qubit of any n-quregister in Hn. Then, as in (6.12):

∀j ∈ [[0, n− 1]], ε ∈ Qn : σjx(cε) = θ(εj) cε, (6.20)

where cε = ⊗n−1
i=0 cεi .

For any vertex weighting map h : V → R let us introduce the operator

Hh : Hn → Hn , Hh =
n−1∑
j=0

hjσ
j
x.

From (6.20) we have

∀ε ∈ Qn : Hh(cε) =

(
n−1∑
j=0

hjθ(εj)

)
cε (6.21)

hence, Hd is a diagonal operator, and a ground state has the form cε0 for ε0 ∈ Qn

minimizing
∑n−1

j=0 hjθ(εj), which in turn can easily be calculated depending on the
map h.

Thus, the problem to find a ground state of the operator H(e, w; ·) determined
by (6.19) can be solved using the Adiabatic Theorem with the operator path:

Ht =

(
1− t

T

)
Hh +

t

T
H(e, w; ·)

for some large enough T ∈ R+.
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Chapter 7

Conclusions and future work

We investigate the application of the adiabatic quantum computing to solve NP-hard
problems. We have shown a procedural construction of the Hamiltonian operators
for adiabatic computing for the MAX-SAT problem. This construction can be ex-
tended to describe the Hamiltonian operators of other NP-hard problems with similar
structure.

We investigate the construction of local Hamiltonian operators for Adiabatic
Quantum Computing. It is based on the dynamic programming approach and the
monadic second order logic. We have shown results to modify an initial tree decom-
position when new edges to the input graph are added. We have shown a general
methodology to construct local Hamiltonian operators based on the Ising model in
which the energy function minimization is equivalent to the optimization problem of
pseudo Boolean functions. The Ising Hamiltonians have been used to design local
Hamiltonian for the Adiabatic Quantum Computing (AQC), and they have a natural
use to describe graph problems and other optimization problems.

We investigated the properties of the optimization problem of pseudo Boolean
functions to construct local Hamiltonian operators. We consider the quadratic opti-
mization problem, since every pseudo boolean optimization problem is equivalent to
the quadratic case. Hence at present time we are involved in the decomposition of
initial and ending Hamiltonians, arose from the AQC approach, into a sum of local
Hamiltonians.

The future work of this thesis are the following: To improve the symbolic char-
acterization provided in chapter 4of the AQC solution to many others combinatorial
optimization problems. It is important to have a general characterization of the ini-
tial and final Hamiltonians for any NP-hard problems. In chapter 6 we have shown a
general methodology to construct AQC algorithms, we have shown that every MSOL
expression has associated quadratic pseudo-Boolean forms. It is important to classify
optimization problems in terms of its representability, for instance according to the
polynomial hierarchy.

The Dynamic Programming approach studied in chapter 6 has been considered
in [9]. This approach depends on the possible physical implementation of quantum
memories, the Dynamic Programming solution requires to store partial solutions.
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This still remain as an open problem in the design of quantum algorithms.
Finally, a new tool in the design of quantum algorithms is the geometric Berry

phase, these kind of algorithms are robust to some sources of errors. The Berry phase
can encode the solution of search problems, it is important to find a general technique
to encode the solution of optimization problems into the Berry phase.



Appendix

The following is a list of computer programs developed in this research. They have
been used to analysis the properties of the AQC algorithms. The programming
languages used were the Mathematica environment v8 and C++ on a Mac Pro
computer with operating system v10.6., 16 GB of memory and 2 processors with
6 cores each at 2.4 GHz. The source code of programs can be downloaded from
https://computacion.cs.cinvestav.mx/~cwilliam

1. Adiabatic.nb

This notebook implements the AQC solution for the MAX-SAT problem. The
input instance is an adjacency matrix of a graph and the procedure hc2satList
reduce the graph problem into a SAT instance problem i.e., into a conjunctive
normal form. The Hamiltonian construction proposed in [37] is implemented
and the eigenpaths of the linear interpolation Hamiltonian are computed using
the procedure Eigensystem. The number of vertices n of the graph instances
that can be computed with our computer specifications was n = 8, and the
number of Boolean variables of the SAT instances was 2n = 16.

2. EfficientAdiabatic.nb

This notebook implements the efficient AQC solution proposed in chapter 4
for the MAX-SAT problem. The SAT instances are generated randomly and
all possible clauses with n variables are listed, this have been used to explore
all possible AQC algorithms. Also, all clauses with n variables and m clauses
have been listed. The efficient Hamiltonian construction compute the diagonal
elements of the initial Hamiltonian rather than the matrix tensor products,
and the final Hamiltonian is constructed recursively. The number of Boolean
variables of the SAT instances used to simulate the AQC solution was n = 16.

3. qboolAdiabatic.nb

This notebook implements the AQC optimization problem for quadratic pseudo-
Boolean maps. The pseudo-Boolean maps are obtained using the reduction
given in chapter 5 for the SAT problem (see Proposition 4). The procedure
Reduce implements the reduction into quadratic forms of pseudo-Boolean maps.
Hard instances with unique solution of the SAT problems are generated, and the
Hamiltonian construction implemented in the notebook EfficientAdiabatic.nb
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was used. The number of Boolean variables of the SAT instances used to sim-
ulate the AQC solution was n = 16.

4. hamilsim.nb

This notebook implements the simulation of the adiabatic evolution by splitting
the evolution time into small intervals. At each interval of time the matrix ex-
ponentiation of the total Hamiltonian is computed, given thus a unitary matrix.
This simulation corresponds to the implementation of the AQC solution into
the QCM proposed in [2].

MatLab versions of the .nb notebooks were also implemented.

5. treeDecomp project

This C++ project implements the tree-decomposition of graphs given in chap-
ter 6. The nice tree-decomposition was implemented and all graphs instances
were taken from the TSPLIB webpage. In order to display graphs and tree-
decompositions, the GraphViz tool was used and a routine to format conver-
sion from .dgf into .gv was implemented. All results and performance of our
computer programs were compared with the project treewidth.org leaded by
Bodlaender.

6. dynProgram project

This C++ project implements the Dynamic Programming approach given in
chapter 6. This project uses the tree-decomposition developed in the treeDecomp
project, and the Dynamic Programming solution to the maximum Weight in-
dependent set was implemented. This implementation can be also be used
without majors modifications to other problems. All results and performance
of our computer programs were compared with the project TSPLIB project.

7. plasmaAdiabatic project

An implementation for multicore architecture was also developed for AQC, the
PLASMA code for high performance processing was used.
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