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Summary. In this chapter, we propose an approach for solving the job shop
scheduling problem using a cultural algorithm. Cultural algorithms are evolution-
ary computation methods that extract domain knowledge during the evolutionary
process. Additional to this extracted knowledge, the proposed approach also uses
domain knowledge given “a priori” (based on specific domain knowledge available
for the job shop scheduling problem). The proposed approach is compared with
respect to a Greedy Randomized Adaptive Search Procedure and to a Parallel Ge-
netic Algorithm. The cultural algorithm proposed is able to produce competitive
results with respect to the two approaches previously indicated at a significantly
lower computational cost than at least one of them and without using any sort of
parallel processing.

1 Introduction

Scheduling problems constitute a very important class within combinatorial
optimization because of their complexity and their frequency in real-world
applications. The purpose of scheduling (in general) is to allocate a set of
(limited) resources to tasks over time [38]. Scheduling has been a very active
research area during several years, both in the operations research and in the
computer science literature [4, 3, 29]. Research on scheduling basically focuses
on finding ways of assigning tasks (or jobs) to machines (i.e., the resources)
such that certain criteria are met and certain objective (or objectives) function
is optimized.

In the particular case of job shop scheduling, the tasks are jobs and the
resources are the machines used to perform such jobs. Each job has a tech-
nological sequence and therefore requires to be processed in the machines
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following a certain order, which is fixed for that problem. The machines can-
not process more than one job at a time, and once a machine has started
a certain job, it cannot be interrupted before the job is finished. The objec-
tives to be optimized in the case of job shop scheduling can be several, but
the most common are either minimizing the maximum makespan or the total
makespan.

Several heuristics have been used for different types of scheduling problems
(e.g., job shop, flowshop, production, etc.): evolutionary algorithms [47, 10,
11], tabu search [5, 45], simulated annealing [46, 9], the ant system [15], and
artificial immune systems [25, 24, 16], among others.

Note however, that this chapter presents the first attempt (to the authors’
best knowledge) to use cultural algorithms to solve job shop scheduling prob-
lems. Cultural algorithms [40] are a particular class of evolutionary algorithm
that use domain knowledge extracted during the evolutionary process in or-
der to improve the performance of the search engine (i.e., the evolutionary
algorithm) adopted. What we explore in this chapter is the use of a com-
bination of knowledge extracted during the evolutionary search with some
knowledge that is inserted a priori because it is normally known to be use-
ful in the job scheduling problem. Our main hypothesis in this regard was
that the incorporation of knowledge into an evolutionary algorithm would in-
crease its performance as to make it competitive with other approaches whose
computational cost is significantly higher.

The proposed approach is compared with respect to GRASP (Greedy Ran-
domized Adaptive Search Procedure) and a Parallel Genetic Algorithm in sev-
eral test problems taken from the specialized literature. Our results indicate
that the proposed approach is a viable alternative for solving efficiently job
shop scheduling problems.

The remainder of this chapter is organized as follows: in Section 2 we pro-
vide a brief description of the statement of the problem that we wish to solve.
Section 3 contains an introduction to cultural algorithms which includes a
description of their main components and the main motivation to use them.
Section 4 contains the details of our proposed approach to solve job shop
scheduling problems using a cultural algorithm. As part of this section, we
include a description of the representation of solutions adopted in our work
as well as the mechanisms implemented to add domain knowledge to our evo-
lutionary algorithm both before and during the search process. Section 5 pro-
vides a comparative study. Finally, Section 6 presents our general conclusions
and some possible paths for future research.

2 Problem Statement

We can define the job shop scheduling problem (JSSP) in the following way:
we have a set of jobs, j1, j2, - - ., jn that we need to process in a set of machines,
M1, M2, ..., My. The processing of job j; in the machine m, is an operation
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that requires of a time p;.. Each job has a technological sequence (i.e., an
order for the machines in which the job should be processed). Other important
constraints are that the processing of a job requires the exclusive use of the
machine in which it is located at that time. Additionally, the processing of a
job cannot be interrupted in a machine once started.

Since the number of jobs will be represented by n and the number of ma-
chines will be represented by m, we will say that we are dealing with n x m
job shop scheduling problems. A schedule is then a set of duration times for
each operation {er}]_s j<n,i<r<m that satisfies the previously indicated con-
ditions. The total duration time required to complete all the jobs (makespan)
will be called L. The goal is then to minimize L. For the purposes of the work
reported in this chapter, the objective considered will be the minimization of
the makespan (i.e., the time taken to finish the last job available). In other
words, the goal is to find a schedule that has the minimum duration required
to complete all the jobs [4].

Garey and Johnson [31] showed that the JSSP is an NP-hard problem
and within its class it is one of the least tractable problems [3]. To have an
idea of the difficulty of the JSSP, it is reported that a famous 10 x 10 in-
stance formulated by the first time by Muth and Thompson in 1963 [36], was
exactly solved until 1989 by Carlier and Pinson using a branch and bound al-
gorithm [8]. Several enumerative algorithms based on Branch & Bound have
been applied to JSSP. However, due to the high computational cost of these
enumerative algorithms, some approximation approaches have also been de-
veloped. The most popular practical algorithm to date is the one based on
priority rules and active schedule generation [28]. However, other algorithms,
such as an approach called shifting bottleneck (SB) have been found to be
very effective in practice [1]. Furthermore, a number of heuristics have also
been used in the JSSP (e.g., genetic algorithms [3, 47], tabu search [5], simu-
lated annealing [9], artificial immune systems [24], among others), as indicated
before.

An instance of the JSSP can be formulated in tabular form as indicated in
Table 1, where we show a 3x 3 problem. Each table entry indicates the machine
in which a job must be processed (based on its corresponding technological
sequence) followed by a number in parentheses that represents the time pj,
that takes to the job to be processed in that machine.

machine (time)
job 111 3)]2 3)[3 (3)
job 2|1 (2)[3 (3)|2 (4)
job 312 (3)|1 (2)|3 (1)

Table 1. Example of a 3 x 3 job shop scheduling problem.
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3 Cultural Algorithms

Cultural algorithms were developed by Robert G. Reynolds as a complement
to the metaphor used by evolutionary algorithms [18], which had focused
mainly on genetic and natural selection concepts [40].

Cultural algorithms are based on some theories originated in sociology and
archaeology which try to model cultural evolution (see for example [39, 17]).
Such theories indicate that cultural evolution can be seen as an inheritance
process operating at two levels: (1) a micro-evolutionary level, which consists
of the genetic material that an offspring inherits from its parents, and (2) a
macro-evolutionary level, which consists of the knowledge acquired by individ-
uals through generations. This knowledge, once encoded and stored, is used
to guide the behavior of the individuals that belong to a certain population.

Culture can be seen as a set of ideological phenomena shared by a popu-
lation. Through these phenomena, an individual can interpret its experiences
and decide its behavior. In these models, we can clearly appreciate the part
of the system that is shared by the population: the knowledge, acquired by
members of a society, but encoded in such a way that such knowledge can be
accessed by every other member of the society. And then there is an individual
part, which consists of the interpretation of such knowledge encoded in the
form of symbols. This interpretation will produce new behaviors as a conse-
quence of the assimilation of the corresponding knowledge acquired combined
with the experiences lived by the individual itself.

Reynolds attempts to capture this double inheritance phenomenon through
his proposal of cultural algorithms [40]. The main goal of such algorithms is to
increase the learning or convergence rates of an evolutionary algorithm such
that the system can respond better to a wide variety of problems [20].

Cultural algorithms operate in two spaces. First, we have the population
space, which consists of (as in all evolutionary algorithms) a set of individuals.
Each individual has a set of independent features that are used to determine
its fitness. Through time, such individuals can be replaced by some of their
descendants, which are obtained from a set of operators applied to the popu-
lation.

The second space is the belief space, which is where we store the knowledge
acquired by individuals through generations. The information contained in
this space must be accessible to each individual, so that they can use it to
modify their behavior. In order to join the two spaces, it is necessary to
provide a communication link, which dictates the rules regarding the type of
information that must be exchanged between the two spaces.

The pseudo-code of a cultural algorithm is shown in Algorithm 1.

Most of the steps of a cultural algorithm correspond with the steps of
a traditional evolutionary algorithm. It can be clearly seen that the main
difference lies in the fact that cultural algorithms use a belief space. In the
main loop of Algorithm 1, we have the update of the belief space. It is at this
point in which the belief space incorporates the individual experiences of a
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Algorithm 1 Pseudo-code of a cultural algorithm.

Generate the initial population
Initialize the belief space
Evaluate the initial population
Repeat
Update the belief space (with the individuals accepted)
Apply the variation operators (under the influence of the belief
space)
Evaluate each child
Perform selection
‘While the end condition is not satisfied

select group of members of the population. Such a group is obtained with the
function accept, which is applied to the entire population.

On the other hand, the variation operators (such as recombination or mu-
tation) are modified by the function influence. This function applies some
pressure such that the children resulting from the variation operators can
exhibit behaviors closer to the desirable ones and farther away from the un-
desirable ones, according to the information stored in the belief space.

These two functions (accept and influence) constitute the communication
link between the population space and the belief space. Such interactions can
be appreciated in Figure 1 [41].

In [40], Reynolds proposed the use of genetic algorithms [22] to model
the micro-evolutionary process, and Version Spaces [35] to model the macro-
evolutionary process of a cultural algorithm. This sort of algorithm was called
the Version Space guided Genetic Algorithm (VGA). The main idea behind
this approach is to preserve beliefs that are socially accepted and discard (or
prune) unacceptable beliefs. Therefore, if we apply a cultural algorithm for
global optimization, the acceptable beliefs can be seen as constraints that
direct the population at the micro-evolutionary level [32].

In genetic algorithms’ theory, there is an expression, called schema theorem
[26] that represents a bound on the speed at which the best schemata of the
population are propagated. Reynolds [40] provided a brief discussion regarding
how could the belief space affect the schema theorem. His conclusion is that
by adding a belief space to an evolutionary algorithm, the performance of such
algorithm can be improved by increasing its convergence rate. That constitutes
the main motivation to use cultural algorithms. Despite the lack of a formal
mathematical proof of this efficiency improvement, there is empirical evidence
of such performance gains reported in the literature (see for example [12, 14]).
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Fig. 1. Spaces of a cultural algorithm

4 Our Proposed Approach

The approach proposed in this chapter uses as its population space to the pop-
ulation adopted by evolutionary programming [19], together with its selection
and variation operators.

In evolutionary programming, we have p individuals in the original pop-
ulation (such individuals are randomly generated). In the main loop of the
evolutionary programming algorithm only mutation is applied (this is because
this approach simulates evolution at the species level, and different species do
not recombine among themselves [18]), besides selection.

The mutation operator obtains a child from each of the individuals in
the population (i.e., p children are obtained). In the case of continuous op-
timization, the mutation operator consists of adding Gaussian noise to each
variable [14]. In our case, since we are dealing with a combinatorial optimiza-
tion problem, we use a set of exchanges in the sequence of the operations as
our mutation operator.

Selection in evolutionary programming consists of a set of tournaments.
For each individual in the population (including both parents and offspring),
a random sample of size ¢ is chosen, and each individual is compared with
respect to each member of this sample through ¢ binary tournaments. The
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number of wins accumulated by each individual is stored. At the end of all
the tournaments, the p individuals with the largest number of wins are selected
to constitute the population at the next generation.

All of these steps are similar to the algorithm proposed in this paper.
However, in our case, we integrate the influence of the belief space in our
evolutionary algorithm. This process will be explained later in the chapter.

4.1 Representation

The representation adopted to encode our solutions plays a very important
role when applying an evolutionary computation technique [44, 43], and this
issue plays a crucial role when specifically dealing with the job shop scheduling
problem [47]. This is due to the fact that a solution to the job scheduling
problem cannot be represented as a permutation as normally done in many
combinatorial optimization problems [42, 33].

The use of a permutation-based representation would only be possible in
job shop scheduling if the problem to be solved only had one machine. In such
case, the n jobs would require to be processed in the only existing machine
and the different solutions would consist of the ordering in which the jobs
would be processed (this is precisely the ordering that could be represented
using a permutation). However, regardless of the processing order of the jobs,
the time taken to complete the last job (i.e., the makespan) is always the
same, as long as there are no pauses in the schedule.

For the general job shop scheduling problem of size n x m, several types of
possible encodings have been proposed in the literature. Some examples are
the use of binary encoding [37], the use of disjunctive graphs [15], and the
permutations with repetitions [7].

Most of the existing encodings can generate invalid schedules and thus
require a repair mechanism [34]. These repair mechanisms tend to bias so-
lutions towards a certain region of the search space and are, therefore, not
always advisable [13].

The permutation with repetitions has the advantage of never generating
invalid schedules and that was precisely the main reason for which we decided
to adopt it for our approach. This representation consists of a permutation in
which each component is repeated m times. The components of the permuta-
tion represent jobs as in our previous example of a single machine. However,
in this case, the k-th occurrence of a job indicates the k-th operation in the
technological sequence of such job. In Figure 2, we show an example of the
decoding of a permutation with repetitions for the problem described in Ta-
ble 1.

The main disadvantage of this representation is that different permuta-
tions can encode the same schedule. We found in our experiments that this
redundancy in the encoding is not a serious drawback when the search space is
properly explored. However, this remains as an issue that must be considered
when adopting this representation.
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permutation with repetition 121221333

decoded schedule m, 1 2 3

Fig. 2. Example of the decoding process of a permutation with repetitions.

4.2 Domain Knowledge Added a priori to the Algorithm

In order to incorporate domain knowledge into our algorithm, we use two
mechanism. The first of them involves adding knowledge a priori (i.e., before
actually running the algorithm), whereas the second involves extracting infor-
mation during the execution of the algorithm following the traditional model
of a cultural algorithm. We will proceed to describe first the addition of a
priori domain knowledge.

This mechanism is integrated during the evaluation of a new individual.
First, we define a semi-active schedule in which the operations are performed
as soon as possible, but without changing the ordering of the schedule. For
example, in Figure 2, the operation of job 1 in machine 2 can start at the
same time as the operation of the job 2 in machine 1, since machine 2 is not
busy at the moment and the technological sequence of job 1 is accomplished.

However, it may be the case that a semi-active schedule has large pauses
in the use of some of the machines. In some cases, it is possible that some of
the jobs can be traversed to fill up that pause, thus reducing the makespan
of the schedule. This traversal movements are generically called permissible
left shifts. A schedule to which it is not possible to apply more permissible
left shifts is called active. Figure 3 shows the same schedule from Figure 2
before and after applying permissible left shifts. The search of active schedules
through permissible left shifts considerably reduces the search space and it is,
therefore, advisable.

In the algorithm proposed in this chapter, permissible left shifts are ap-
plied during the evaluation of an individual. The individual to be evaluated is
applied all the permissible left shifts possible and then its genes are modified
as to encode the new corresponding (active) schedule.

Since these modifications are ad hoc to the job shop scheduling problems,
and given that they are encoded in the algorithm prior to its execution, we
call them insertion of a priori domain knowledge.
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Fig. 3. Left shifts applied to obtain an active schedule.

4.3 Domain Knowledge Extracted During the Search Process

This second knowledge insertion mechanism is integrated to the mutation
operator. The identification of the best individual and the use of a mechanism
to enforce that new individuals generated are similar to this one, is used in
our case to accelerate convergence.

This is precisely the main idea on which we based the design of the belief
space of our approach. The belief space contains a part called situational
knowledge, which has previously been used for continuous optimization [12,
27]. Situational knowledge consists of storing the best individual found so far,
and use it as a leader that other solutions must follow.

In this case, the idea is that the best individuals found during the search
process provide us information about the patterns that the sequences of oper-
ations in the machines should follow in order to decrease the makespan value
of the solutions generated.

We modify the mutation operator in order to cause that the other solutions
have a greater “resemblance” (i.e., that their values are more similar) with
respect to the individual stored in the situational part. The mutation operator
that we propose is based on swaps of components in the permutation with
repetitions.

In order to perform each of these swaps, we first locate the first match
between the individual to be mutated and the individual stored in the situa-
tional part, beginning from a random position. Once we find this match, we
try to increase the coincidence between the two solutions compared. This is
done by extending it to the next component that is different between the two
individuals compared. Since we are dealing with permutations, it is necessary
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to make exchanges in the components in order to keep the permutation as
valid.

An example of this process is shown in Figure 4. Let’s suppose that the
random initial position is location 2. If the string containing the permutation
finishes and no match is found, we continue searching from the beginning
of the string. In the example shown in Figure 4, the match occurs in the
same location 2. In location 3, the values are different, and thus we take this
position as the first exchange point. The second exchange point is the location
of the component that matches the next value in the individual stored in the
situational part. In the example shown in Figure 4, it is location 6, which
contains a value of 2.

Situational knowledge ’ 3‘ l‘ 2‘ 5‘ 4‘ 6‘

Individual before mutation ’ 6‘ 1‘ 4‘ 5‘ 3‘ 2‘

\— First match

VRN
Individual after mutation ’ 6‘ 1‘ 2‘ 5‘ 3‘ 4‘
L Component swapped
Forced match

Fig. 4. Example of the mutation operator modified through the use of situational
knowledge.

If, when attempting to perform an exchange (swap), we find that the
individual to be mutated and the individual stored in the situational part are
exactly the same, then the exchange points will be randomly selected.

The permutations with repetitions adopted in this work, have a size n xm.
Thus, by performing (nxm)/2 exchanges, we would completely reorder the en-
tire string (each exchange reorders 2 individuals). In order to have a mutation
operator that could perform the corresponding perturbations in an efficient
manner and, that at the same time, could allow an appropriate balance in
terms of exploration and exploitation of the search space, we decided to set
the number of swaps (or exchanges) to be performed to a certain individual (in
order to generate an offspring) as a random number between 1 and (n xm)/2.
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The update of the belief space consists only of replacing the individual
stored in the situational knowledge with the best individual found in the
current population.

It is worth clarifying that the update of the belief space is not done at every
generation. We perform this update at every gpeiier generations, in order to
avoid an excessive selection pressure that would cause convergence to a local
optimum.

5 Comparison of Results

We compare our Cultural Algorithm (CULT) with respect to 2 different ap-
proaches: a Greedy Randomized Adaptive Search Procedure (GRASP) ap-
proach reported in [2], and a Parallel Genetic Algorithm (PGA) reported in
[23]. We chose these references for three main reasons: (1) they provide enough
information (e.g., numerical results) as to allow a comparison, (2) these algo-
rithms have been been found to be very powerful in the job shop scheduling
problem studied in this paper, and (3) the comparison with respect to another
evolutionary algorithm that does not use knowledge as ours was an important
issue for us. In this regard, to compare our results with respect to a parallel
genetic algorithm was of particular importance, since we hypothesize that the
use of knowledge would make our sequential cultural algorithm as competitive
as a parallel genetic algorithm.

The benchmark adopted for our experiments is a subset of the job shop
scheduling instances contained in the OR-library [6]. The OR-library is a set of
test problems for different types of problems of interest in operations research.
Over the years, the OR-library has become a standard benchmark to validate
new approaches to solve such problems. The OR-library contains problems
of different degrees of difficulty and reports the best known solution in each
instance contained within. In our particular case, we adopted the 40 problems
of Lawrence [30], labeled from LAQ1 to LA40.

All our tests were performed on a PC with an Intel Pentium III processor
running at 866 MHz with 256 MB of RAM and using Red Hat Linux 7.3. Our
approach was implemented in C language and was compiled using the GNU
gee compiler.

deviation| CULT |[Improvement
GRASP 0.45%) 0.96% -0.48%

PGA 0.92%) 0.96% -0.03%
Table 2. Comparison of results between our Cultural Algorithm (CULT) and two

other algorithms: Greedy Randomized Adaptive Search Procedure (GRASP) [2] and
Parallel Genetic Algorithm (GA) [23].
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Table 2 shows the overall comparison of results. In the first column, we
show the algorithm with respect to which we are comparing our results. In
the second column, we show the average deviation of the best results ob-
tained by each algorithm with respect to the best known solution for the 40
test problems adopted in our study. In the third column, we show the average
deviation of our cultural algorithm with respect to the best known solution
for the 40 test problems adopted in our study. The last column indicates the
improvement achieved by our cultural algorithm with respect to each of the
other algorithms compared. From Table 2, we can see that our approach was
not able to improve on the results produced by any of the two algorithms
compared (this is indicated by the negative values obtained in the last col-
umn of the table), but it practically tied in terms of overall performance with
the PGA. Note however, that our approach performed a considerably lower
number of evaluations than GRASP (except for one problem) and was im-
plemented sequentially and not in parallel as the PGA. Despite these two
important differences, our cultural algorithm produced competitive results
with respect to these two other techniques.

CULT
Win |Tie|Lose
GRASP| 13 (26| 1
PGA| 9 21| 10

Table 3. Overall performance of our cultural algorithm (CULT) with respect to
the 2 other algorithms against which it was compared. The column labeled Win
shows the number of problems in which each algorithm beat our cultural algorithm.
The column labeled Tie indicates ties between our cultural algorithm and the other
algorithms. Finally, the column labeled Lose indicates the number of problems in
which each algorithm lost with respect to our cultural algorithm.

In Table 3, we show the overall performance of our cultural algorithm with
respect to the 2 other algorithms against which it was compared. Results in-
dicate that GRASP beat our cultural algorithm in 13 problems and lost only
in 1. This performance is, however, associated with a much higher computa-
tional cost, as we will see later on. Regarding the PGA, it beats our cultural
algorithm in 9 problems and loses in 10. This indicates that the PGA has
practically the same performance as our approach. Note however, that our
approach is implemented sequentially and not in parallel as the PGA.

Table 4 compares the best results found by our cultural algorithm, the
Greedy Randomized Adaptive Search Procedure (GRASP) approach reported
in [2], and a Parallel Genetic Algorithm (PGA) reported in [23]. We use bold-
face to indicate both the best known results and when an algorithm reached
such result. We do not include the number of evaluations performed by the
PGA, because that information is not provided by the authors of the approach.
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|Instance|Size |BKS|CULT|Evals (CULT)|GRASP|Iters (GRASP)|PGA|

LAO1 10 x5 [666 |666 [4000 666 100000 666
LA02 10 x5 (655 |655 [20000 655 100000 666
LAO03 10 x 5 [597 [603 8000 597 50.1 x 10° 597
LA04 10 x5 [590 [590 [700000 590 100000 590
LAO05 10 x5 [593 [593 (2000 593 100000 593
LA06 15 x5 [926 [926  [2000 926 100000 926
LAO7 15 x5 [890 [890  [4000 890 100000 890
LAOS 15 x5 [863 [863  [4000 863 100000 863
LA09 15 x5 [951 [951  [2000 951 100000 951
LA10 15 x5 [958 [958 (2000 958 100000 958
LA11 20 x 5 [1222(1222 {2000 1222 100000 1222
LA12 20 x 5 [1039(1039 {2000 1039 100000 1039
LA13 20 x 5 [1150(1150 {2000 1150 100000 1150
LA14 20 x 5 [1292(1292 {2000 1292 100000 1292
LA15 20 x 5 {1207[1207 (8000 1207 100000 1207
LA16 10 x 10[945 [946 25000 945 50.1 x 10° 977
LA17 10 x 10784 [784 (25000 784 20.1 x 10° 787
LA18 10 x 10[848 [848  [140000 848 20.1 x 10° 848
LA19 10 x 10(842 [842 (32000 842 10.1 x 10° 857
LA20 10 x 10{902 (907 100000 902 50.1 x 10° 910
LA21 15 x 10(1046 {1089 [1700000 1057 50.1 x 10° 1047
LA22 15 x 10[927 [945 1700000 927 50.1 x 10° 936
LA23 15 x 10{1032[1032 [200000 1032 10.1 x 10° 1032
LA24 15 x 10(935 964 1000000 954 10.1 x 10° 955
LA25 15 x 10[977 [993 1000000 984 10.1 x 10° 1004
LA26 20 x 10(1218[1218 [1700000 1218 10.1 x 10° 1218
LA27 20 x 10{1235(1269 200000 1269 10.1 x 10° 1260
LA28 20 x 10(1216(1241 [1800000 1225 10.1 x 10° 1241
LA29 20 x 10{1157[1189 1800000 1203 10.1 x 10° 1190
LA30 20 x 10/1355(1355 [200000 1355 10.1 x 10° 1356
LA31 30 x 10{1784[1784 [15000 1784 10.1 x 10° 1784
LA32 30 x 10{1850({1850 [40000 1850 10.1 x 10° 1850
LA33 30 x 10{1719(1719 [20000 1719 10.1 x 10° 1719
LA34 30 x 10{1721(1721 [160000 1721 10.1 x 10° 1730
LA35 30 x 10[{1888|1888 [160000 1888 10.1 x 10° 1888
LA36 15 x 1512681292 [1000000 1287 11.2 x 10° 1305
LA37 15 x 15[1397(1451 [1400000 1410 11.2 x 10° 1441
LA38 15 x 15[1196(1276 [1800000 1218 11.2 x 10° 1248
LA39 15 x 15[1233(1266 200000 1248 11.2 x 10° 1264
LA40 15 x 15[1222(1265 [1000000 1244 11.2 x 10° 1252

Table 4. Comparison of results between our cultural algorithm (CULT), GRASP
(Greedy Randomized Adaptive Search Procedure) [2], and PGA (Parallel Genetic
Algorithm) [23]. Only the number of iterations of GRASP and our cultural algorithm
are reported because this value was not available for the PGA. We show in boldface
both the best known solution and the cases in which an algorithm reached such value.
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In all the examples, we performed 10 independent runs of our algorithm.
Note that the number of objective function evaluations performed by our
cultural algorithm is variable. The criterion adopted to stop our algorithm
was to detect when no changes in the result were reported after a certain
(normally large) number of consecutive iterations. The number of evaluations
reported is then the average value obtained from the 10 independent runs
performed. That is the reason for the large variability of values.

The parameters of our cultural algorithm that remained without changes
are the following;:

p=20
b
P _10

“T3

Gbeliefs = 50

where p is the population size, ¢ is the number of binary confrontations to
be performed by each individual during the tournament selection, and gpeije s
is the update frequency (measured in terms of generations) of the belief space.

Note that, except for LA04, in all the problems, our approach performed
less evaluations than GRASP and in several instances, the difference is re-
markable.! Some of the most remarkable examples are the following (note
that in the following, we will be treating the iterations of GRASP as evalua-
tions):

e LA30: In this problem both GRASP and our cultural algorithm can reach
the best known solution. However, GRASP requires 10.1 million evalua-
tions, whereas our approach only requires 200,000.

e LA2T: In this problem, none of the 3 approaches converged to the best
known solution, and both GRASP and our cultural algorithm converged
to the same solution. However, our cultural algorithm required 250,000
evaluations whereas GRASP required 10.1 million evaluations.

e LA17: Both GRASP and our cultural algorithm found the best known
solution. However, GRASP required 20.1 million evaluations and our ap-
proach required only 250,000 evaluations.

e LA13: Both GRASP and our cultural algorithm found the best known
solution. However, GRASP required 100,000 evaluations, and our approach
required only 2,000 evaluations.

e LA16: Our cultural algorithm converges to a solution that is only 1 unit
away from the best known solution. GRASP, in contrast, converges to the
best known solution. However, GRASP required 50.1 million evaluations,
whereas our cultural algorithm only performed 250,000 evaluations.

! In fact, as noted in Table 4, we report the number of iterations performed by
GRASP. However, at each iteration, GRASP performs several evaluations of the
objective function. Thus, the real number of evaluations of GRASP is much higher
than the values reported in Table 4.
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Looking for a compromise to setup a priori a maximum number of objec-
tive function (or fitness) evaluations, we suggest to use a population size of
20 individuals, and a maximum number of generations of 10,000. This will
produce a total of 200,000 fitness function evaluations, which is a good com-
promise for solving both the “easy” and the “difficult” problems included in
the benchmark adopted. The results obtained in this case are shown in Ta-
ble 5. Note that in this case we also report the median and worst results
found by our approach in each case. As expected, results are poorer in this
case, because some problems require a significantly larger number of evalu-
ations. However, this alternative provides an alternative to setup a priori a
maximum number of fitness function evaluations in our cultural algorithm. In
any case, more work in this direction is desirable as to improve the search ca-
pabilities of our approach while maintaining a relatively low number of fitness
function evaluations.

6 Conclusions and Future Work

We have introduced a new approach based on a cultural algorithm to solve
job shop scheduling problems. The approach uses both knowledge introduced
a priori (i.e., a heuristic to perform local rearrangements that we know be-
forehand that can reduce the makespan) and extracted during the evolution-
ary search. Our proposed approach adopts a permutation representation that
allows repetitions. The comparison of results indicated that the proposed ap-
proach is competitive with respect to other heuristics, even improving on their
results in some cases.

In terms of computational efficiency, our approach performs a number of
evaluations that is (on average) considerably lower than those performed by
GRASP [2] while producing similar results. Results are also competitive (there
is practically a tie) with respect to a parallel genetic algorithm, despite the
fact that our results were obtained with a sequential version of our cultural
algorithm.

As part of our future work, we plan to improve the heuristics adopted
to perform local moves. We also intend to introduce a backtracking mecha-
nism to recover from movements towards local attractors and we also plan to
incorporate into our algorithm certain mechanisms from tabu search [21]. Ad-
ditionally, the introduction of parallelism in our approach is another possible
path of future research.

It is also desirable to find a set of parameters that can be fixed for a
larger family of problems as to eliminate the variability of iterations that we
currently report for our algorithm.

Finally, we also plan to work on a multiobjective version of the job
shop scheduling problem in which 3 objectives would be considered [3]: 1)
makespan, 2) mean flowtime and 3) mean tardiness. This would allow us to
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|Instance|Size |BKS |Best |Median|Worst|

LAO1 10 x5 |666 (666 |666 667
LAO02 10 x5 |655 (655 |666 672
LAO3 10 x5 |697 (603 |617 633
LA04 10 x5 |590 (593 |600 611
LAO05 10 x5 |593 (593 |593 593
LA06 15 x5 |926 (926 [926 926
LAO07 15 x5 |890 (890 |890 897
LAO8 15 x5 |863 (863 |863 863
LA09 15 x5 |951 (951 [951 951
LA10 15 x5 [958 (958 [958 958
LA11 20 x 5 |1222|1222|1222 1222
LA12 20 x 5 |1039(1039|1039 1039
LA13 20 x 5 |1150|1150{1150 1150
LA14 20 x 5 |1292|1292|1292 1292
LA15 20 x 5 |1207|1207(1207 1225
LA16 10 x 10{945 (946 |982 995
LA17 10 x 10784 (784 |792 809
LA18 10 x 10(848 (848 (861 897
LA19 10 x 10(842 (842 |862 891
LA20 10 x 10{902 (907 (917 947
LA21 15 x 10{1046 (1096 |1124 1132
LA22 15 x 10{927 (950 |977 995
LA23 15 x 10{1032(1032(1032 1085
LA24 15 x 10{935 (974 (998 1021
LA25 15 x 10(977 (996 |1021 1056
LA26 20 x 10{1218(1228 {1257 1319
LA27 20 x 10{1235 1269 |1312 1359
LA28 20 x 10{1216 {1254 {1297 1323
LA29 20 x 10{1157|1245 |1253 1302
LA30 20 x 10{1355|1355|1373 1412
LA31 30 x 10{1784 (1784|1784 1784
LA32 30 x 10{1850|1850|1850 1852
LA33 30 x 10{1719(1719|1719 1719
LA34 30 x 10{1721|1721|1721 1770
LA35 30 x 10{1888|1888|1888 1902
LA36 15 x 15(1268 (1321 {1347 1380
LA37 15 x 151397 (1467 1496 1543
LA38 15 x 15(1196 (1286 {1308 1372
LA39 15 x 151233 (1266 |1305 1370
LA40 15 x 15|1222(1273 {1292 1312

Table 5. Results obtained by our cultural algorithm when fixing the maximum
number of fitness function evaluations to 200,000. We show in boldface both the
best known solution and the cases in which our algorithm reached such value.
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nerate trade-offs that the user could evaluate in order to decide what solu-

tion to choose.
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