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Abstract- In this paper, we present an empirical study
whose aim is twofold: (1) to analyze the on-line behavior
of two state-of-the-art approaches for constrained opti-
mization, whose results provided in a well-known bench-
mark were competitive, in order to identify features of
a problem which makes it difficult to solve when using
an evolutionary algorithm and (2) to propose a new set
of problems whose features cover those sources of dif-
ficulty. The on-line behavior analyzed consists on us-
ing three performance measures to know how fast the
technique reaches the feasible region and to also know
the capabilities of the algorithm to improve feasible so-
lutions previously found. Besides, we analyze the abil-
ity of the approaches to maintain diversity (to have so-
lutions inside and outside the feasible region as well).
Based on the obtained results we propose a set of eleven
test problems (either artificial or real-world problems)
taken from the literature in order to re-test the ap-
proaches. The results are discussed and some conclu-
sions are drawn.

1 Introduction

Evolutionary algorithms (EAs) have been widely used to
solve optimization problems [8, 5, 4]. However, in their
original versions, EAs lack of a mechanism to deal with
constrained search spaces. Thus, many approaches have
been proposed to incorporate the constraints of a problem
into the fitness function of an EA [16, 3]. These approaches
are mainly proposed to either solve an specific real-world
problem [19] or to be tested on a well known set of prob-
lems [17]. However, most of the time, the approaches are
only compared based on their final statistical results on a
sample of independent runs. The motivation of this work is
twofold: (1) To propose the use of performance measures in
the comparison of different constraint-handling techniques
in order to get a better knowledge of the behavior of the ap-
proaches and (2) based on these results, to propose a set of
problems which contain features that have been found to be
sources of difficulty in the behavior of the algorithms.

In this work, we propose to use three performance mea-
sures in order to analyze the behavior of two state-of-the-
art approaches found in the literature whose performances
when tested in a well-known set of

���
functions were very

competitive. The performance measures will allow us: (1)
to known how many evaluations of the objective function
are required to reach the feasible region of the search space,
(2) to quantify the improvement of feasible solutions found
and (3) to assess the effectiveness of the approach to main-

tain diversity in the population (in constrained optimization
we understand diversity as the fact of having both, feasible
and infeasible solutions during all the evolutionary process).
The approaches used in our study are the Simple Multimem-
bered Evolution Strategy (SMES) [12] and the Stochastic
Ranking [17]. The SMES is based on three mechanisms: (1)
A diversity mechanism which allows infeasible solutions
close to the feasible region and with a good value of the
objective function to remain in the population for the next
generation; (2) a reduction of the initial stepsize of the mu-
tation operator and (3) a panmictic discrete-intermediate re-
combination operator. The SR promotes a balance between
the value of the objective function and the sum of constraint
violation in the selection process; allowing infeasible so-
lutions with a promising value of the objective function to
remain in the population for the next generation. Both ap-
proaches use an evolution strategy as a search engine. Based
on the obtained results and the detected sources of difficulty
in the current benchmark, we propose a set of eleven new
test problems which are solved using both techniques with
the same set of parameters defined when the previous set of
thirteen problems were solved.

The paper is organized as follows: In Section 2 we pro-
vide a review of the related work. Afterwards, in Section 3
we detail the three performance measures used in this work
and discuss the obtained results from each compared ap-
proach. In Section 4, we present the new

���
test functions

whose features cover the sources of difficulty found in the
study presented in Section 3. After that, in Section 5 the
results obtained using the two compared approaches when
solving this new set of problems are discussed. Finally in
Section 6 some conclusions are established and the future
work is presented.

2 Related Work

The use of performance measures in global constrained op-
timization using EAs is not very common. However, there
are some authors whose reported results include other mea-
sures. For example, Lampinen [11] reported the number
of evaluations required to find the first feasible solution.
Mezura & Coello [12] reported the rate of feasible solutions
at a certain generation.

On the other hand, the idea of having a set of con-
strained optimization problems with different characteris-
tics to test evolutionary algorithms was initially proposed
by Michalewicz [14, 13], and summarized by Michalewicz
& Schoenauer [16]. That set consisted of eleven problems
with features such as different types of objective function



(linear, quadratic, nonlinear), different types of constraints
(linear, nonlinear, equality or inequality) and different di-
mensionality. Koziel & Michalewicz [10] added one func-
tion to the original benchmark. The main feature of this
new function is its disjoint feasible region. Runarsson &
Yao added another function to the benchmark [17]. This
function has three nonlinear equality constraints and the ob-
jective function is also nonlinear. Those two new functions
[10, 17] addressed two features that the original benchmark
lacked (disjoint feasible regions and a combination of linear
and nonlinear equality constraints). The goal of this bench-
mark is to have a reliable mean to test the quality and ro-
bustness of constraint-handling techniques used with evolu-
tionary algorithms.

Michalewicz also explored the idea of generating arti-
ficial constrained test functions [15]. He proposed a test
case generator which allows to generate problems by vary-
ing several features such as: dimensionality, multimodality,
number of constraints, connectivity of the feasible region,
size of the feasible region with respect to the whole search
space and ruggedness of the objective function. This first
version had some problems because the generated functions
were highly symmetric. Therefore, a new version called
TCG-2 was later proposed [18] to solve this drawback and
to improve its features. Both versions of the TCG were used
to test a constraint-handling mechanism based on a static
penalty function. They used a steady-state EA as a search
engine. The results obtained suggested that the sources of
difficulty for the penalty function approach were a high di-
mensionality and multimodality of the objective function.
For the first TCG, having a disconnected feasible region also
affected the performance of the approach. For the TCG-2,
the width of peaks of the objective function also decreased
the performance of the algorithm. The experiments also
showed that for both, TCG and TCG-2, the size of the feasi-
ble region with respect to the whole search had no negative
influence in the performance of the approach. In addition,
for the TCG, the number of constraints and the ruggedness
of the objective function did not affect the good quality of
the results provided by the approach. Finally, for the TCG-
2 the complexity of the function and the number of active
constraints caused little impact in the performance of the
approach.

3 Three Performance Measures

The first performance measure was used by Lampinen [11]
to count how many evaluations are required to find the first
feasible solution; we call it EVALS. The second one was
proposed by Bäck [1] to measure the progress ratio for
unconstrained optimization. We adapt it to measure the
progress ratio just inside the feasible region, because we
have detected that for constraint-handling algorithms solv-
ing constrained problems, is quite hard to improve solutions
once inside the feasible region. The original expression

taken from [1] is the following: �����
	 � ��
�� �������� 
�� � ����� where�����  "!$#&%
refers to the best objective function value occurring

at generation
#
. ' is the final generation of the process.

Prob. n Type of function ( LI NI LE NE

g01 13 quadratic
��) �*����+-,

9 0 0 0
g02 20 nonlinear .*. ) .�.*/ +�, 1 1 0 0
g03 10 nonlinear

��) �*�-0*1-,
0 0 0 1

g04 5 quadratic
0 / ) ��� /�. , 0 6 0 0

g05 4 nonlinear
��) �*���*�2,

2 0 0 3
g06 2 nonlinear

��) �*�-3 / , 0 2 0 0
g07 10 quadratic

��) �*���*�2,
3 5 0 0

g08 2 nonlinear
��) 4*3�4-5*,

0 2 0 0
g09 7 nonlinear

��) 3-5 .*. , 0 4 0 0
g10 8 linear

��) �*�-0��2,
3 3 0 0

g11 2 quadratic
��) � .�/ +-, 0 0 0 1

g12 3 quadratic 6 ) / 1 .*/ , 0 .�7 0 0
g13 5 nonlinear

��) �*���*�2,
0 0 0 3

Table 1: Details of the
���

well-known test problems. 8 is
the number of decision variables, 9 is the estimated ratio be-
tween the feasible region and the whole search space, LI is
the number of linear inequality constraints , NI the number
of nonlinear inequality constraints, LE is the number of lin-
ear equality constraints and NE is the number of nonlinear
equality constraints.

However, we are interested in measuring the progress once
the feasible region is reached. Therefore the modified ex-

pression that we use is the following: �:�<;;;; ��	
� �&
�� ����=

ff
�� 
�� � ����� ;;;;where
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refers to the objective function value of the
first feasible solution found and

� ���  ! ' % refers to the objec-
tive function value of the best feasible solution found in the
last generation. The third measure counts the number of
evaluations required by an algorithm to have its population
with only feasible solutions. We call it ALL-FEASIBLE.
This measure helps to understand the way of sampling the
search space and also the feasible region. The aim is to
analyze how the feasible region is sampled by each ap-
proach. Note that EVALS and ALL-FEASIBLE perfor-
mance measures return an integer value. If a technique ob-
tains a lower value than other one, it means that the first one
finds the feasible region faster than the second one. On the
other hand, the PROGRESS-RATIO performance measure
returns a real value. If an approach gets a higher value for
this performance measure, it means an improvement inside
the feasible region.

3.1 Experiments

For these experiments, we adopted the parameters used and
suggested by the authors of each approach when the set
of 13 well-known set of problems was solved (see Table
1 for details of each problem). We only modified the total
number of evaluations of the objective function ( @BADCDC�C�C in
our experiments). Also, because of the fact that the SMES
uses a dynamic adjustment for the allowable tolerance of
the equality constraints and SR does not, we decided for
the SMES to consider a feasible solution only when the
same value for tolerance used by SR ( EF�GC�H CDC�C � ) was
reached.

� C independent runs were performed for each ap-
proach for each test function for each performance measure.
The summary of the parameters adopted is the following:
(1) SMES:

! � CDC�I � CDC % -ES J�CDC generations ( @KALC�CDC�C evalua-
tions), MONP�QC"H RLS , Initial Stepsize �FALCLT , (2) SR:

! � C"U�@�C�C % -
ES

� @BCDC generations ( @BADC�CDC�C evaluations), � � �VC"H ALW ,



Sweeps for ranking �:@BCDC . The summary of results for the
three performance measures obtained by each approach for
each test problem is presented in Table 2.

P Evals Progress-Ratio All-feasible
Stat SR SMES SR SMES SR SMES

best 7YX[Z[X \^]*\^_ \�` a�b&c de` 7[fYf d$7[gY7[h a&i&b�b
g01 mean fed$jek l&a�_&_ de` g[ZYk \*` ]�l^a d$f[hYX[h m&b�_&b

worst d?XY7[XYg ]�a&a&a de` d?kYk \*` l&l^i gYX[kY7[h i*\eb�b
St. Dev g&` f E+ 7 _-` n E+ l X&` j E- g a-` \ E- l g&` f E+ 7 c-` l E+ l

best NA NA b2` l&c*\ h&` geo?k NA NA
g02 mean NA NA h&` g[kYh b2` l&m�l NA NA

worst NA NA h&` gYjYj b-` l&_�\ NA NA
St. Dev NA NA f�` h E- 7 c2` b E- ] NA NA

best d$Z[g[7 c&m&c peh&` 7Yj[k h&` 7[7YZ NA NA
g03 mean kYkeo?j l�n^a�_ peh&` 7[h[o h&` gYj^d NA NA

worst d$j[h[gYk n�_&_^a peh&` d?kYk h&` h[fYg NA NA
St. Dev 7&` 7 E+ 7 \�` n E+ ] _-` \ E- l k&` j E- g NA NA

best NA NA j�` 7[Z[o a-` ]&i&a Z[7[h a&b�b
g04 mean NA NA a-` \ec*l j�` h[Zed 7[Z[o[o _^a&b

worst NA NA ]2` _&c&c 7&` X[XY7 oYh[7Yh n^b�b
St. Dev NA NA \*` c E- \ g&` d E- d d^` f E+ 7 \*` _ E+ l

best l&a�n&l&n Xed[d?7Yf NA NA ]&b�l&]&b g?jehYh[h[h
g05 mean l�n^c&a&] d?g?j&d$g[h NA NA a&b&]�l&] gYjehYh[hYh

worst ]�\em&i&a gYj[h[hYh[h NA NA _^c&c�]&b g?jehYh[h[h
St. Dev \*` n E+ ] k&` f E+ j NA NA o&` k E+ 7 h

best l^m�l keo?j qrj*` gYZ[7 a-` ]�l^b a&c�]&b jef[hYh
g06 mean \&\ec*\ d$X[XYg qrj*` d$gYj j�` hYj[X d$h[Z[7?j[j _^c�_&b

worst \^n�\&\ gY7[fYX qs7�` o$jef 7&` g[gYX g?jeh[hYh[h n^m&b�b
St. Dev ]-` n E+ l j�` f E+ g \�` m E- \ g&` o E- d de` g E+ X n�` ] E+ l

best gYh[Zeo \&l�\&\ tLg�` h[7[Z l�` a&]&m XYje7Yh a&]&b�b
g07 mean 7Yh[f[7 l&b�l^a tsd^` jeh[h \*` i&i&c Z[7[XYh a&i�_&b

worst j[hYjef l�n&n&l tLh�` ZeoY7 \*` \^_^i 7Y7[gY7[h _^c&b�b
St. Dev j�` Z E+ g a2` _ E+ l l-` _ E- \ g&` f E- d j�` Z E+ 7 a-` l E+ l

best 7 \ h&` heo?f b-` b&c�n d?Z[7Yh \em&b�b
g08 mean dYd?h i*\ h&` hYj[g b-` b&a�_ g[7[ZY7 \ei�_&b

worst j[g[Z l^i�l b2` b�\^_ h&` h^duj 7[g[7Yh l^c&b�b
St. Dev de` d E+ g n-` a E+ \ \�` \ E- l de` g E- g ]2` l E+ l 7�` j E+ g

best k ] j�` X[k?j a-` n^]&c gYje7Yh \e]&b�b
g09 mean \^l&l d?7[g g&` 7[Z[o l�` n^a&i 7eoed?o \^_^c�b

worst 7[oYX ]�_^i b2` ]*_^i h&` g^d$g X[g[7Yh l&l^b�b
St. Dev de` d E+ g i2` \ E+ \ \�` l E+ b de` j E+ h k&` k E+ g l�` _ E+ l

best o?Z[kYj \�\^_&_ vuh�` j[X[f b-` m�l&_ d$fYj[7[h c�_^b�b
g10 mean o[o?g[gYg a�m&]&b vuh�` d$7[7 b-` a&i�n kYXeo?h[k \eb&a&a�b

worst gYj[h[h[hYh m�i&b�n vuh�` hYhYj b-` ]�l&_ g?jeh[hYh[h \ea&c&b�b
St. Dev f&` 7 E+ j \�` ] E+ ] de` j E- d n�` ] E- l o^` 7 E+ j \*` _ E+ ]

best XYh[7 ]&b wuh�` dujeg b-` \ea&a c&c�]&b g?jehYh[h[h
g11 mean g[k?jekY7 a*l^i&b wuh�` hYXYj b-` b&i&c ]�_^i�a&b g?jehYh[h[h

worst gYj[h[h[hYh \em*l^b&a wuh�` hYh[h b-` b&b&a g?jeh[hYh[h g?jehYh[h[h
St. Dev o^` g E+ j a2` ] E+ ] X&` g E- g a-` m E- l k&` f E+ j h

best NA NA b2` \^m*\ h&` d$jeo gYje7Yh \em&b�b
g12 mean NA NA b-` b&i�] h&` h[fYg 7[hYg[7 l&l^i&b

worst NA NA h&` h^d$7 b-` b&]�l 7[Z[7Yh ]&a&b�b
St. Dev NA NA j*` d E- g ]2` ] E- l ]-` \ E+ l j*` Z E+ g

best \^m�_&n^c g[hYfYj[g[f NA NA l&l^b�]&b ged?XYX[h[h
g13 mean \^c&i&a&i g^d$g[X[oYf NA NA l^i�n�\^b g^d?XYX[7Yh

worst l*\em*\em g^duj&d$g[X NA NA _&n^b�]&b ged?XYZ[h[h
St. Dev de` j E+ 7 i2` n E+ l NA NA Z�` 7 E+ 7 i-` l E+ \

Table 2: Statistics obtained for the three performance mea-
sures in

� C independent runs. A number in boldface indi-
cates the best result found. “NA” means: does Not Apply.
The symbols in column 5 mean that in only a fraction of the� C runs feasible solutions were found in the last generation.
“*”=

5�++*� , “#”=
5 /+*� , “&”=

0 .+*� , “ x ”=
0*3+�� and “ y ”=

0 /+*� .
3.1.1 EVALS performance measure

From the results obtained we can comment the following:
For functions g02 and g04 both approaches find feasible so-
lutions from the first population randomly generated. For
problem g12 both algorithms exhibit a very similar behav-
ior, although the SMES has “better” mean, median and stan-
dard deviation values and the SR has “better” min and max
values. For problem g09 there is an inverse behavior, the
SMES has “better” min and max values and the SR has
“better” mean and median values. The SMES consistently
provided “better” results for six functions: g01, g03, g07,
g08, g10 and g11. The SR obtained better results for three
problems: g05, g06 and g13.

The overall discussion of the results suggests that the
SMES finds the feasible region faster than the SR, except
in problems where there is more than one nonlinear equal-
ity constraint (g05 and g13). On the other hand, both ap-
proaches reach the feasible region almost at the same time

when the size of the feasible region is approximately more
than AsT of the whole search space (g02, g04 and g12).

3.1.2 PROGRESS-RATIO performance measure

From these results, we observe very “similar” values of im-
provement by both approaches in four problems (g02, g05,
g08, g12 and g13). It is important to assert that in functions
g05 and g13 none of the algorithms was capable of improv-
ing the feasible solutions found. Both problems have three
nonlinear equality constraints. For problems g08 and g12
both approaches could get a small improvement inside the
feasible region. This is because for these two functions fea-
sible solutions are found very quickly and, after that, the
global optimum is found quickly, as well. This is because
these two problems are “easy” to solve. The results also
show that SMES was able to get a “better” improvement in-
side the feasible region in seven problems: g01, g03, g06
g07, g09, g10 and g11. The SR presented some problems to
maintain the feasible solutions previously found. For exam-
ple, in function g03 only in

�z�
runs out of

� C , we were able
to find feasible solutions in the last generation. A similar
behavior was found in problems g06 (

� S�{ � C ), g07 ( @BRL{ � C ),
g10 (25/30) and g11 (27/30). Nevertheless, SR obtained
consistently “better” results in problem g04.

We can conclude that SMES is able to have a slightly
better improvement of the first feasible solution found than
SR. We can also conclude that in presence of more than
one nonlinear equality constraints, both approaches could
not improve significantly the first feasible solution found.
Finally it was observed that for problem g02, a high dimen-
sionality ( @�C decision variables) combined with a nonlinear
objective function generates a very rugged and complicated
feasible region to improve previously found feasible solu-
tions.

3.1.3 ALL-FEASIBLE performance measure

The SMES required less evaluations to get a fully feasible
population in eight functions (g01, g04, g06, g07, g08, g09,
g10 and g12). This is because the approach focuses on find-
ing the feasible region and after that, the diversity mecha-
nism allows the approach to return to its boundaries. The
SR provided “better” results in three problems (g05, g11
and g13). It is interesting to note that the mechanism to
maintain solutions with a good value of the objective func-
tion regardless of feasibility is suitable to solve these prob-
lems with a very small feasible region and in presence of
one up to three nonlinear equality constraints. In function
g02 both approaches got a fully feasible population in the
first generation because almost all the search space ( RDRLT ) is
feasible. For problem g03, none of the approaches could get
a fully feasible population. This problem has one nonlinear
inequality constraint,

� C decision variables and a very small
feasible region (approximately C�H CDCD@�|LT of the search space
is feasible).

The results clearly confirm the way of sampling the fea-
sible region of the problem: SMES concentrates on finding
it and, after that, it looks for the boundaries. On the other



hand, SR focuses on finding promising areas, regardless of
feasibility. When the problem has nonlinear equality con-
straints, the second approach seems to be more suitable.

3.2 Confidence intervals

In order to have more certainty about of results, we per-
formed a statistical test to estimate the confidence intervals
for the mean statistic. We used a Kolmogorov-Smirnovone-
sample test to verify closeness to a normal distribution of
our samples, which did not occur in all cases. Therefore,
we applied a Bootstrapping test in order to avoid assuming
normality. The results are presented in Table 3.

As it can be seen, the results of the statistical test con-
firm the discussed results based on the obtained samples. In
this way, we establish the following conclusions regarding
the behavior of each approach and also with respect to the
sources of difficulty found:} SMES is able to generate a feasible solution faster

than the SR except in problems with more than one
nonlinear equality constraint.} SMES seems to have a slightly better capability to im-
prove the results once the feasible region is reached.} In presence of more than one nonlinear equality con-
straint both approaches are unable to improve signifi-
cantly a feasible solution.} For problems with a low dimensionality (between @
and

�
decision variables) and a quadratic objective

function, the progress provided by both approaches
inside the feasible region is enough as to reach, rea-
sonably fast, the global optimum.} Due to its emphasis on reaching the feasible region,
SMES requires less evaluations to generate a fully
feasible population. Therefore, its diversity mecha-
nism is effective when active during most of the evo-
lutionary process, since such mechanism maintains a
few recently-generated infeasible solutions close to
the boundaries of the feasible region.} SR tends to have almost always a considerable num-
ber of infeasible solutions with a good value of the
objective function, regardless of how close they are
from the feasible region. In fact, this mechanism
seems to be more adequate when solving problems
with nonlinear equality constraints where the SR out-
performs SMES.} With a high dimensionality ( @BC decision variables),
both approaches could not improve as expected the
first feasible solution found.

4 A New Set of Test Functions

Based on the sources of difficulty detected on the previ-
ous study (high dimensionality and the number of nonlinear
equality constraints) we added other features not included
in the previous set of test problems (Table 1): more than ten
nonlinear inequality constraints, and a disjoint feasible re-
gion (only one function with this feature is included in the

Prob. n Type of function ( LI NI LE NE

g14 10 nonlinear
��) ���2,

0 0 3 0
g15 3 quadratic

��) ���2,
0 0 1 1

g16 5 nonlinear
��) ��0*� 6 , 4 34 0 0

g17 6 nonlinear
��) ���2,

0 0 0 4
g18 9 quadratic

��) ���2,
0 12 0 0

g19 15 nonlinear
+*+�) 6-/ 125�, 0 5 0 0

g20 24 linear
��) ���2,

0 6 2 12
g21 7 linear

��) ���2,
0 1 0 5

g22 22 linear
��) ���2,

0 1 8 11
g23 9 linear

��) ���2,
0 2 3 1

g24 2 linear /*. ) 1�3*3�1�, 0 2 0 0

Table 4: Details of the new
���

test problems. 8 is the num-
ber of decision variables, 9 is the estimated ratio between
the feasible region and the search space, LI is the number
of linear inequality constraints, NI the number of nonlinear
inequality constraints, LE is the number of linear equality
constraints and NE is the number of nonlinear equality con-
straints.

well-known benchmark).
Despite the fact that it is well known that in mathematical

programming, nonlinear equality constraints are sources of
difficulty [2], to the best of our knowledge, there are no em-
pirical studies that use performance measures to show that
the same could happen when using evolutionary algorithms.

Unlike the test case generators previously discussed, we
do not intend to provide the user with the best possible EA
to be used for a certain type of problem. Instead, we want to
detect features that keep an EA from reaching the feasible
region or the global optimum, so that we can gain a deeper
understanding of the sort of features that make difficult a
problem for the approaches compared in this paper.

Our experimental design was the following: First, we
selected test functions (either artificial or from real world
problems) that had at least one of the features mentioned be-
fore. We selected seven functions from Himmelblau’s book
[9] (g14, g15, g16, g17, g18, g19, g20), two are from heat
exchanger network problems detailed in [6] (g21, g22). One
more was proposed by Xia [21] (g23) and the last one was
taken from Floudas et al.’s Handbook [7] (g24). Selected
problems with high dimensionality are: g19, g20 and g22.
Test functions with more than three nonlinear equality con-
straints are: g17, g20, g21 and g22. For the secondary set of
features, we chose problems g16 and g18, which have more
than ten nonlinear inequality constraints. Problems having
a nonlinear objective function are g14, g16, g17 and g19.
Finally, a test function having a feasible region consisting
on two disconnected sub-regions is g24. For completeness,
we also included two functions that seemed to be easy to
solve because they have only one nonlinear equality con-
straint (g15) and a quadratic and linear objective function
(g23), respectively. The characteristics of each problem of
our new proposed benchmark are summarized in Table 4.
We also calculated the “ 9 ” metric [16] for this set of new
functions. The details of each functions are the following:~ g14 [9]:

Minimize:
���&�� �s��� d$h��� d � �����e�r���  � �� d?h�Y� d � ���subject to:� d �&�� �s� � ds� 0 � g���� 0 � 7�� � k�� � d?h � 0����� g �&�� �s� � j�� 0 � X�� � k�� � o � 5O���� 7 �&�� �s� � 7 � � o � � Z � 0 � f � � d?h � 5O���



Evals Progress-Ratio All-feasible
SR SMES SR SMES SR SMES

g01 � 425^�-+��&5^��5�4 .�� � ������� � �����K�2� � 52) 0 / ���e52) +-5 � � � ) �z����� � ) �z�z� � � 5&4*� 6 +��[0*�25�1 .&� �   ��� � � ��� �z� �
g02 � 52�e5 � � 52�e5 � � ��) 0*1*���?��) 0�1*� � � ��) 0*3 . �?��) 0�1�3 � � +����Y+*� � � 5&�*���e5�+�� �
g03 � 3�1�+���� / 4 .�.&� � ��� � � �$� ��  � � \^]]�b � �B) � �z�B�$��) � � � � � ��) 0-5 / �?��) 0�1�3 � � 0 6 �����*���[0 6 �����*� � � 0 6 �*���*���Y0 6 �����*� �
g04 � +�� 6*� � +��Y3 � � � ) ��� ��� � ) �z  � � � 6 ) �*� 6 � 6 ) 5�3�4 � � +�0�0*3�� 6 3*0�4 � � � �z�B�  �� � �
g05 � �z¡��z¡z� � � � �K z�2� � 5&� 6 0*��+��e5�3-5�5&0�1 � � ��) �*�����?��) ����� � � ��) �*�����?��) ����� � � � ¡z ���� � � � ���z 2� � 0 6 �*���*���Y0 6 �����*� �
g06 � � �z�z�B� � � �� 2� � 5�+�4 6 �e5 / +�3 � \&n]�b � � ) �   �B� � ) � �z� � � +�) .�6 4�� 6 ) 5 6 0 � � 1 . 0*3252�e5 6-/ 3���5 � �  z �� �B� �K� �z� �
g07 � 0 . 0����Y+�0*125 � � � � ¡�� � ��� �  2� gYf7Yh � 5-) +*�����e52) 3*�*� � � � ) � ��� � � ) � ����� � / +*4�+��e5&025�4*0 � � � ���z�B�  �� �z� �
g08 � 4*���e5&3 /�� � ��  � �z� � � � ��) � 6 ���?��) �-3*� � � ��) � 6 ���?��) � 6-.&� � 0�0�1*0��[0�3�� 6*� � � � � �B� � � ¡ � �
g09 � 4�+��e5&1�0 � � . 4��e5&1�3 � � 5-) . 1��Y0�) 4 6*� � � ) � �   �$�B) ��� � � � + 6-/ 1��[+ . 3�4 � � ���z� �B� ���z¡ � �
g10 � 6-.*6 1�4��&5*5�+�3*4�3 � � �K���z� �  �������� gYX7Yh � ��) �-4*���?��) 5 . � � � �B) �K¡ ���$�B)  z����� � 6 0�+�1*1�� . 0 6 3�3 � � �z�z¡ ��� � � ��� � �
g11 � 5^� 6 1*0��Y1�3*4�0 .�� � ��� ��� � �K��� � � g[o7Yh � ��) �-+�3��?��) � /�6*� � �B) �z� � �$�B) �z����� � � � ����� � ¡z����¡ � � � 0 6 �*���*���Y0 6 �����*� �
g12 � 5 / �Y+�3 � � 5&3��Y+25 � � ��) � /�/ �?��) 5&� /&� � ��) � /�. �?��) 5&� 6�� � 0 . 0*0��[+25&0 .�� � ����� �B� ���z� � �
g13 � � � �B��� � ����� � ��� � 025&025 /�6 �Y025&0�4 /*6*� � ��) �*�����?��) ����� � � ��) �*�����?��) ����� � � �z¡z  �z�B�$� �z���z��� � 025�3*3*�*���Y025&3�3�1�� �

Table 3: Confidence intervals for the mean statistics for the three measures (95% level of confidence). A number in boldface
means a better result. The fraction in the PROGRESS-RATIO measure for the SR indicates the number of independent
runs (out of 30) in which feasible solutions were found in the population of the last generation. In the remaining runs, no
feasible solutions were found at the end of the process.
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Table 5: Data set for test problem g19

where the bounds are
�¨§ � � §©5^� ( ª �«52�&)&)&)*�e5&� ), and � d �� 1�) �-4 . , � g � � 5 / ) 5&1 6 , � 7 � � + 6 ) �-3 6 , � j � � 3�) . 5 6 , � X �� 0 6 ) / 025 , � k � � 5 6 ) . 4*1 , � o � � 0 6 ) 5 , � Z � � 5^��) / ��4 , � f �� 0*1�) 1*1�0 , � d?h � � 0*0�) 5 /*. ,. The best known solution is at � p ��¬��) �-+*3*���Y��) 5�5 6 0��?��) 4�+*��1��?��) �*��5&0��?��) 6 4�4 / �[��) ���*�-3��?��) �-0*� . �?��) �25�3 / ���) ��0�4 . �?��) � / 325&� where
�B� � p �s� � 6�/ ) / 325 .~ g15 [9]:

Minimize:
���&�� �s�­5&���*� � � g d � 0 � gg � � g7 � � d � g � � d � 7

subject to:� d �&�� �s� � g d � � gg �®� � g7 � 0�3����� g �&�� �s�¯4 � d"� 5 6 � g�� / � 7 � 3�1����
where the bounds are

�°§ � � §±5&� ( ª �²52�&)&)&)&�^5^� ). The best known
solution is at � p �³��+�) 325�0�� ��) 0-5 / � +�) 3�3*0�� where

��� � p �s� . 1252) / 5�3 .~ g16 [9]:
Maximize:

���&�� ���±��) �����*���*�-3�4 6 +*´ dYo � ��) �*����5*5 / ´ d$j � ��) 5&+�1*3 ���) �*������0�+*3�4�´ d?7� ��) �*���*����5*5�3��-0�´ d?k � ��) �-+�0-5�´ d$g � ��) �*� 6 +�0 6 ´ X � ��) �����25 ¤ d?X¤ d?k �+ / ) 6 4�µ g¤ d?g
subject to:¶ d �&�� �s�¯´ j � h�` gYZh�` o?g ´ X¸· �¶ g �&�� �s�­5-) 3 � g � � 7¸· �¶ 7 �&�� �s�¯0-5 � + 6-. 1 µ g¤ d?g · �¶ j �&�� �s� kYg�¹ ged?g¤ dYo � 5�5^��) 1 � ´ d · �¶ X �&�� �s�¯´ d � 025�+�) 5 · �¶ k �&�� �s� 6 �-3�) 0*+ � ´ d · �¶ o �&�� �s�¯´ g � 5 / ) 3��-3 · �¶ Z �&�� �s�­5^�-3�+�) 1�1*1 / � ´ g¸· �¶ f �&�� �s�¯´ 7 � 5�52) 0 / 3 · �¶ d$h �&�� �s�¯+�3�) ��+ � ´ 7 · �¶ dYd �&�� �s�¯´ j � 025 6 ) 0*0�4 · �¶ d$g �&�� �s�¯1�1�3�) 3�4*3 � ´ j�· �¶ d$7 �&�� �s�¯´ X � / ) 6 3�4 · �¶ duj �&�� �s�¯3�4 6 ) 6 1*+ � ´ X · �¶ d$X �&�� �s�¯´ k � ��) . 125 · �

¶ d$k �&�� �s�º0�1�3�) . 5&1 � ´ k�· �¶ d?o �&�� �s�º´ o � 52) 1-5�0 · �¶ d$Z �&�� �s� / ) � 6 1 � ´ o · �¶ d$f �&�� �s�º´ Z � ��) 5 6 1 · �¶ gYh �&�� �s�»��) 0�0*0 � ´ Z · �¶ ged �&�� �s�º´ f � 5&� / ) .�. · �¶ gYg �&�� �s�º0 / +�) +�1*1 � ´ f · �¶ gY7 �&�� �s�º´ d?h � . 0�0�) 1 . + · �¶ g?j �&�� �s�¯5�0�4*1�) 5^�-3 � ´ d?h · �¶ gYX �&�� �s�º´ d[d � . 0�1�) 4*+�0 · �¶ gYk �&�� �s�¯5 6�6*6 ) � 6 1 � ´ d[d¼· �¶ g[o �&�� �s�º´ d?g � 5&4�) / 1*1 · �¶ gYZ �&�� �s�º3�+ / ) 5 6 5 � ´ d?g · �¶ gYf �&�� �s�º´ d?7 � 5^� / 0�) 5�1*+ · �¶ 7Yh �&�� �s�º+�0 6�/ ) ��+ . � ´ d?7¸· �¶ 7ed �&�� �s�º´ d$j � 4 . 125-) 6�6 4 · �¶ 7Yg �&�� �s�º0�1�4 6�6 ) �-4�1 � ´ duj · �¶ 7Y7 �&�� �s�º´ d?X � ��) �-1�+ · �¶ 7?j �&�� �s�»��) +�4*1 � ´ d?X¸· �¶ 7YX �&�� �s�º´ d?k � / 5&�-4 6 ) +*+ · �¶ 7Yk �&�� �s�¯5 6 �*���*� � ´ d?k · �¶ 7[o �&�� �s�º´ dYo � 0*4*�-0 / 5&+ · �¶ 7YZ �&�� �s�¯5�025 6 1-5&�-4 � ´ d?o · �
where:´ d � � g � � 7 � 6 52) 1� d ����) �-0 6 � j � 6 ) 1*0´ g � d?g&` X¤ d � 5�0� g ����) ���*�-+*3�+�3 � g d � ��) 3�+-5�5 � d"� ��) �-4 / �-3*´ g � d� 7 ����) �-3*0 � d"� / 4 � ��) ����0�+ /*/ ´ g � d´ 7 � ¤ g¤ 7´ j �­5 . ´ 7� j ����) � 6�/ 4*0�� � d � ´ 7 � � h�` d$f[X[ke½ � d £ µ 7*¾ g� g� X �­5&��� � g� k � � d � ´ 7 � ´ j� o ����) . 3�� � ¤ j¤ X´ X � � k � o´ k � � d � ´ X � ´ j � ´ 7� Z �³�
´ X�� ´ j �u��) .�. 3´ o � ¤ Zµ d´ Z � ¤ Z7eo?f[Z� f �¯´ o � h�` h[k[kY7 µ oµ Z � ��) +-5�3*+´ f � f[k&` Z[g¤ f � ��) +�025&´ d´ d?h �­5-) 0 . ´ X�� 52) 0*3�4*´ j¿� 0�) 0 . ´ 7�� 52) / 5�´ k´ d[d �­5-) / 5 � d � ��) 6 3�0*´ j¿� ��) 3*4*��´ 7� d?h � d$g�` 7oYXYg�` 7� d[d �³�À52) / 3�´ g �e����) .�. 3 � d �� d?g ����) .*. 3*´ d?h�� 5 .�. 4´ d?g � � d$h � d � ¤ dYd¤ d$g´ d?7 � � d$g � 52) / 3*´ g´ d$j �¯+*1�0�+ � 1 6 ) 6 � g � 3*4�) 6 � 7 � dujek&` 7^d$gµ f-Á � X� d?7 ����) .*. 3*´ d?h�� 1���) 4 � g�� 6 4 � j � ��) 5*5�025&´ d$j � 3�� . 3´ d?X � µ d$7¤ d$7´ d?k �­5 6 4*�*��� � +�+-5&�*���-´ d?X�� 6 �-´ d$7 � 125�´ d?X ´ d?7� d$j �¯0�+*0 6 ´ d?h � 0*4 /*6 ���*���-´ g´ dYo �­5 6 5�+����*��� � 5�+*0�4�´ d?h � 3�+-5�´ dYd � ¤ d$j¤ d?g� d?X �Âµ d?7µ d?X � µ d?7h&` X[g� d?k �­52) 5^� 6 � ��) / 0�´ d?X� dYo �¯´ f � � X



and where the bounds are / � 6 ) 6 5 6 4Ã§ � d § . ��1�) +*4�3�3 ,1�4�) 1P§ � g §³0�4*4�) 4*4 , �P§ � 7 §Ä5�+ 6 ) / 3 , 5 . +Å§ � j §Æ0*4 / ) � . 1*1
and
0�3V§ � X § 4 6 ) 5 . 4�4 . The best known solution is

at � p � � / �-3�) �-1��Y1*4�) 1��e5^�-0�) . �Y0�4�0�) + 6 52�[+�3�) 1*0 / � where��� � p �s�¯52) . ��3 .~ g17 [9]:
Minimize:

���&�� �s����� � d � � ��� � g �
subject to:� d � � d �s�ÈÇ +�� � d �É§ � d¼Ê +����+-5 � d +*���Ë§ � d¼Ê 6 �*�� g � � g �s�©ÌÍ Î 0�4 � g �É§ � g�Ê 5^���0 . � g 5&�*�É§ � g Ê 0*�*�+*� � g 0*�*�É§ � g Ê 5&�*���� d �&�� �Ï� � d � +*�*� � � 7 � jd$7^d^` heoYZOÐ^Ñ*Ò �À52) 6 4 6�/�/ � � k � �h�` fYheo?f[Z � g7d$7^de` heo?ZÓÐ^Ñ�Ò �À52) 6-/ 3�4*4��� g �&�� � � � g � � � 7 � jd$7^d^` heoYZOÐ^Ñ*Ò �$�À52) 6 4 6-/*/ � � k � �h�` fYheo?f[Z � gjd$7^de` heo?ZÓÐ^Ñ�Ò �À52) 6-/ 3�4*4��� 7 �&�� � � � X � � � 7 � jd?7ed^` h[oYZ¿Ò �  �$�À52) 6 4 6-/*/ � � k � �h�` fYheo?f[Z � gjd$7^de` heo?ZÓÒ �  �À52) 6�/ 3*4�4��� j �&�� � � 0*��� � � 7 � jd?7ed^` h[oYZOÒ �  �$�À52) 6 4 6�/�/ � � k � �h�` fYheo?f[Z � g7d$7^de` heo?ZÓÒ �  �À52) 6�/ 3*4�4��
where the bounds are

�<§ � d § 6 �*� , �<§ � g §Ô5^�����
,+ 6 �Õ§ � 7 § 6 0�� , + 6 �Ö§ � j § 6 0�� , � 5&�*���×§ � X §5&�*���

and
�Ø§ � k §Ù��) 3�0*+�1

. The best known solution is at� p �Ú�À5&� / ) 4-52�e5 . 1�) +�0��Y+ / +�) 4�+�� 6 0*���e0-52) +25-�?��) 5�3*+�� where
�B� � p �Û�4 . 0 / ) 3*4�4*4 .~ g18 [9]:

Maximize:
�B�&�� �r����) 3�� � d � j � � g � 7�� � 7 � f � � X � f�� � X � Z � � k � o �

subject to:¶ d �&�� �s�­5 � � g7 � � gj · �¶ g �&�� �s�­5 � � gf · �¶ 7 �&�� �s�­5 � � gX � � gk · �¶ j �&�� �s�­5 � � g d � � � g � � f � g · �¶ X �&�� �s�­5 � � � d � � X � g � � � g � � k � g · �¶ k �&�� �s�­5 � � � d � � o � g � � � g � � Z � g · �¶ o �&�� �s�­5 � � � 7 � � X � g � � � j � � k � g · �¶ Z �&�� �s�­5 � � � 7 � � o � g � � � j � � Z � g · �¶ f �&�� �s�­5 � � g o � � � Z � � f � g · �¶ f �&�� �s� � d � j � � g � 7 · �¶ d$h �&�� �s� � 7 � f · �¶ dYd �&�� �s� � � X � f · �¶ d$g �&�� �s� � X � Z � � k � o¸· �
where the bounds are � 5^�Ô§ � � §Ü5&�

( ª �Ý52�&)&)&)&�[4
)

and
�Þ§ � f §ß0��

. The best known solution is at � p ��¬��) .�.*/ 5-� � ��) � / 3*4��?��) 3*3�+*���?��) 4�+*+25-�Y��) .�. 4252� � ��) �-1*0�+����) 3*1 6 0��?��) 4�0*3�1��Y��) ���*������0 6 � where
�B� � p �s�º��) 4*1�1*� .~ g19 [9]:

Maximize:
�B�&�� �r�­� d?h�
� dLà � � ��� � X�Y� d � X�
� d �e�¬� � ½�d$h Á � ¾ � ½¬d?h Á � ¾ �0 � X�Y� dLá � � 7 ½�d$h Á � ¾

subject to:¶ � �&�� �L�¯0�� X�
� d �e�â� � ½�d$h Á � ¾ � + á � � g ½¬d?h Á � ¾ �äã �¿� � d$h��� dDå �â� � � ·� æ��­5-�&)�)&)��Y3
where

�à � � � 6 ��� � 0�� � ) 0�3�� � 6 � � 6 � � 5-� � 6 ��� � 1����[3��e5 � and the
remaining data is on Table 5. The bounds are

�G§ � � §5&�
( ª � 52�&)&)&)&�^5&3

). The best known solution is at � p ��¬���?���Y3�) 5 /*6 ���?���Y+�) ��125*52�e5�5-) 4�+ . 3��Y���?���?��) 5&�-+ . �?���?��) +��?��) +*+�+�3��[��) 6 ���) 6 0�4�+��?��) 0�0 6 ��� where
�B� � p �s� � +*0�) +*4�1 .~ g20 [9]:

Minimize:
���&�� �s�ç� g?j��� d å � � �

subject to:� � �&�� �Ú� � ½ � Á d$g ¾è ½ � Á d?g ¾ � gYj� Á d?7 � �è � � ¤ � � �jeh è � � d?g�Y� d � �è � �Ù� ª �52�&)&)&)��e5&0� d?7 �&�� �s� � g?j��� d � �r� 5O���� d$j �&�� �s� � d$g��� d � �¥ � � � � gYj�
� d?7 � �è � � 52) 1 / 5O���¶ � �&�� �s� £ ½ � � Á � ½ � Á d?g ¾ ¾� g?j�Y� d � � Á ¢ � · � ª �­5-�Y0��Y+

¶ � �&�� �s� £ ½ � ½ � Á 7 ¾ Á � ½ � Á d$X ¾ ¾� gYj�[� d � � Á ¢ � · � ª � 6 �[3��Y1
where

�é�È�¬��) / +��-0*�^��3*+*�-�e� d$j�` ojeh � and the data set is detailed on Table 6.
The bounds are

�é§ � � §­5^� ( ª �³52�&)�)�)&�Y0 6 ). The best known solution
is at � p �³� . ) 3�+*ê � / �?��� 6 ) 0-5 ã ê � +��e52) ��+ . ê � 6 �Y���?���[0�) � / 0�ê �52�Y3�) .*/�. ê � 52�e5-) 0 . 4*ê � 5-�[+�) +�3*ê � 0��e5-) / 5�5&ê � 0��[4�) 4�0 / ê �+�� 6 ) 1*3 / ê � 5^���?���?���?���Y���?���[0�) 4�1*4�ê � 6 �e5-) 5 . +*ê � +��Y4�) +*+�0�ê �3��e52) 0*+ . ê � 6 �[0�) � / ê � 3��^5-) 4�0 . ê � 3*� where

�B� � p �s����) � . 1 / � .~ g21 [6]:
Minimize:

���&�� �s� � d
subject to:¶ d �&�� �s� � � ds� +�3 � h�` kg � +�3 � h�` k7 §®�� d �&�� �s� � +���� � 7�� / 3���� � X � / 3���� � k � 0*3 � j � X�� 0�3 � j � k�� � 7 � j �� � g �&�� �°�ë5&��� � g�� 5&3�3�) +*1�3 � jË� 0�3���� � o � � g � j � 0*3 � j � o �5�3*3�+�1�) 3¼���� 7 �&�� �s� � � X � �  � � � j � . �*�-�s���� j �&�� �s� � � k�� �  � � j�� +������s���� X �&�� �s� � � o�� �  � � 0 � j�� / �����s���
where the bounds are

�ì§ � d §í5^���*�
,
�×§ � g � � 7 § 6 � ,5&�*�Õ§ � j §î+*�*� , 1�) +ï§ � X §ð1�) / , 3�) . § � k §î1�) 6

and 6 ) 3ì§ � o §Þ1�) 0�3
. The best known solution is at � p ��À5 . +�) /�/ 4�+ 6�. +��[���^5 / ) +*0 / 0-5�5&1��^5&����) ��5&3�1�3*4�1��[1�) 1�4 6 3 . 025&3 6 �3�) .*. 5�3��-+*1 . +��e1�) 025 6 3 6 3 6 1�0�� where

��� � p �L�­5 . +�) /�/ 4�+ 6�. + .~ g22 [6]:
Minimize:

���&�� �s� � d
subject to:¶ d �&�� �s� � � d � � h�` kg � � h&` k7 � � h�` kj §��� d �&�� �s� � X � 5^���*����� � Z � 5¼ñÅ5^� o ���� g �&�� �s� � k�� 5&���*���*� � Z � 5^���*����� � f ���� 7 �&�� �s� � o"� 5&���*���*� � f � 3¸ñÅ5^� o ���� j �&�� �s� � X � 5&���*���*� � d$h � +�) +¸ñÅ5^� o ���� X �&�� �s� � k�� 5&���*���*� � dYd � 6 ) 6 ñÅ5^� o ���� k �&�� �s� � o"� 5&���*���*� � d$g � 1�) 1¸ñÅ5^� o ���� o �&�� �s� � X � 5&0*� � g � d?7 ���� Z �&�� �s� � k � 4�� � 7 � d$j ���� f �&�� �s� � o � 6 � � j � d?X ���� d?h �&�� �s� � Z � � dYd�� � d$k ���� d[d �&�� �s� � f � � d$g � � d?o ���� d?g �&�� �s� � � d$Z�� �  � � d?h � 5^�������»�� d?7 �&�� �s� � � d$f�� �  � � � Z�� +*�*�-�s���� d$j �&�� �s� � � gYh � �  � � d?k �s���� d?X �&�� �s� � � ged � �  � � � f � 6 �*�-�s���� d?k �&�� �s� � � gYg�� �  � � dYo �s���� dYo �&�� �s� � � Z � � d?h�� � d?7 � d$Z � � d$7 � d$f�� 6 ���¼���� d?Z �&�� �s� � Z � � f � � d[d � � d$j � gYh � � d$j � ged � 6 ���¼���� d?f �&�� �s� � f � � d$g � 6 ) 1*��325 / � d$X�� � d?X � g[g�� 5&���¼���
where the bounds are

�ò§ � d §ç0*���*��� , �Å§ � g � � 7 � � j §È5Ëñä5^� k ,�ó§ � X � � k � � o § 6 ñÚ5&� o , 5^���ó§ � Z §ô0 .*. ) .�. ,5&�*��§ � f §õ+ .*. ) .�. , 5&�*��) ��5Å§ � d?h §õ+*�*� , 5^���°§ � dYd § 6 ��� ,5&�*�ö§ � d?g § 1*���
,
�ö§ � d$7 � � duj � � d$X § 3*���

,��) �25�§ � d$k §Ã+*���
,
��) ��5Þ§ � dYo § 6 �*� , � 6 ) / §� d$Z � � d$f � � gYh � � g^d � � g[g §±1�) 0*3 . The best known solution is at � p ��À5�0�4-5�0�) 3�� / 0*0�) 5�1��-0 6-.*6 �e4*1�0*4�) + / 5 / 3�3��[025 . +�) /*6-. 4�3-52� .�. 3-5�+ . 1�) 6 +�1��5�4*4 6 1*3�1*+�) 5�1��&5*5�0��-0*� 6 ��) 6 �e5 .*. ) 325&+ . 1 6�6 �e+*4 / ) .�/�. 3 . 1��^5�5 6 ) 4�+*+�1�3*4 / �0 / ) +*�-+-5�4*1*� / �&5&0 / ) 1�3�4*3�4*4 / �[3�0�) �-0�� 6 � 6 �e5�1���� 6 ) 4 / 5&0�1�1*025 6 �6 ) 1-5&���25�4 / 1 . �e+�) . 3-5�1�+*1*��0�1��[0�) 6 4�1*1*�-3*3�+ . �Y3�) � / 325 / +*425�3*� where��� � p �s�­5&0�4-5�0�) 3 .~ g23 [21]:

Minimize:
���&�� �s� � . � X � 5�3 � Z�� 1 � ds� 5�1 � g�� 5&��� � k�� � o �

subject to:� d �&�� �s� � ds� � g � � 7 � � j ���� g �&�� �s����) ��+ � ds� ��) �25 � g � � f � � 7�� � j �s���� 7 �&�� �s� � 7 � � k � � X ���� j �&�� �s� � j � � o � � Z ���¶ d �&�� �s� � f � 7�� ��) ��0 � k � ��) �-0*3 � X §��¶ g �&�� �s� � f � j�� ��) ��0 � o � ��) ��5&3 � Z §��
where the bounds are

�ò§ � d � � g � � k §­+*�*� , �÷§ � 7 � � X � � o §³5&��� ,��§ � j � � Z §³0*�*� and
��) �25÷§ � f §³��) �-+ . The best known solution

has a objective function value of
��� � p �s� � 6 ����) �-3�3-5



i ¦ � è � ¤ � ¥ � ¢ �d h�` h[k[fY7 jYj*` hYfYj d$g[7&` o 7ed^` g?j[j h&` dg h�` h[XeoYo XYZ�` d$g 7^d^` o 7Yk�` d$g h&` 77 h&` h[X XYZ�` d$g jeX�` o 7?j*` o?ZYj h&` jj h�` g d$7eo^` j d$j*` o fYg�` o h&` 7X h&` g[k d$g[h&` f ZYj*` o ZYg�` o h&` kk h&` X[X d?oYh&` f geo&` o fed^` k h&` 7o h&` h[k kYg�` XYh^d jef�` o XYk�` o?h[ZZ h�` d Z?j*` f?j o&` d ZYg�` of h&` d?g d?7Y7�` j[g[X g�` d ZYh�` Zd$h h&` d?Z ZYg�` XYheo dYo&` o k?j*` XedYodYd h�` d j[k�` h[o h�` ZYX j[f�` jd$g h�` f kYh�` hYfeo h�` k?j j[f�` dd$7 h�` h[k[fY7 jYj*` hYfYjduj h�` h[XeoYo XYZ�` d$gd$X h&` h[X XYZ�` d$gd$k h�` g d$7eo^` jd?o h&` g[k d$g[h&` fd$Z h&` X[X d?oYh&` fd$f h&` h[k kYg�` XYh^dgYh h�` d Z?j*` f?jged h&` d?g d?7Y7�` j[g[XgYg h&` d?Z ZYg�` XYheogY7 h�` d j[k�` h[og?j h&` h[f kYh�` hYfeo
Table 6: Data set for test problem g20

~ g24 [7]:
Minimize:

���&�� �s� � � d � � g
subject to:¶ d �&�� �s� � 0 � j d � 4 � 7 d � 4 � g d � � g §®�¶ g �&�� �s� � 6 � j d � +�0 � 7 d � 4*4 � g d � . 1 � d � � g � +�1�§®�
where the bounds are

�é§ � d §�+ and
�é§ � g § 6 . The feasible global

minimum is at � p �³�
0�) +�0 . 3��Y+�) 5 / 4 6 1*� where
�B� � p �s� � 3�) 3*� /�. 1 .

Our next step was to solve the new set of 11 problems
using SMES and SR, adopting the exact same parameters
previously defined to solve the

���
test functions taken from

[17].
Most of the previous work on constraint-handling tech-

niques relates to the benchmark proposed in [17]. However,
we know (from the No Free Lunch Theorems for search
[20]) that using such a limited set of functions does not guar-
antee, in any way, that an algorithm that performs well on
them will necessarily be competitive in a different set of
problems. This motivated us to identify, based on a study
of the on-line behavior of competitive approaches, new test
functions in which these two approaches did not exhibit a
good performance. In this way, we will show empirically
that the performance measures help to compare different al-
gorithms and also help to detect sources of difficulty.

We performed
� C independent runs for each test func-

tion. In the experimentation process we used the same pa-
rameters reported in Section 3.1 for each approach.

5 Results and Discussion

The statistical results for the new set of
���

functions are
summarized in Table 7 for both approaches.

Both approaches had no difficulties to solve problem g16
despite its low value of 9 . g16 involves a considerable num-
ber of nonlinear inequalities (34) combined with 4 linear in-
equality constraints and a nonlinear objective function. The
problem has a low dimensionality (5 decision variables).
SMES and SR also solved considerably well problems g14,
g15, g18 and g19. Problems g14, g18 and g19 have not non-
linear equality constraints; g14 and g19 have a nonlinear ob-
jective function and g18 have a quadratic objective function

Problem &
Best Known Sol. Stats SR [17] SMES [12]

best � ��¡ ) ¡��z� � 6�/ ) 3�+*3
g14 (min) mean � ��¡ ) ����� � 6�/ ) +�1 /� 6�/ ) 1*3�1 worst � 6 1�) 4 . 4 � �K¡ ) �   �

St. Dev
0�) 5

E-
5 � ) ��� E- �

best . 125-) / 5&3 ���K� ) �z� �
g15 (min) mean ���K� ) � �K� . 1*+�) . 0*0. 1-52) / 5&3 worst ����  ) ����� . 1 / ) / 4 /

St. Dev
1�) 025

E-
5 � ) ¡�� E- �

best � ) � �   � ) � �  
g16 (max) mean � ) � �   � ) � �  5-) . �-3 worst � ) � �   � ) � �  

St. Dev
� �

best
�z�   �B)  z �� �

g17 (min) mean
�z�  �� ) �z z� �4 . 0 / ) 3�4*4�4 worst
�z� ��  )   � � �

St. Dev � ) ��� E+ � �
best

��) 4*1�1 ��) 4�1�1
g18 (max) mean

��) � ��� ��) / 5�1��) 4�1�1
worst

��) �z¡ � ��) 1 6 4
St. Dev   ) � E- � 4�) 5 . E-

0
best � ����) � ��� � + 6 ) 0�0*+

g19 (max) mean � � � ) � ��  � + / ) 0*��4� +*0�) +*4�1 worst � � � ) � ��� � 6 52) 0�3-5
St. Dev

��) � E- � 0�) 5^�
E+
�

best � �
g20 (min) mean � ���) � . 1 / worst � �

St. Dev � �
best � �

g21 (min) mean � �5 . +�) /�/ 4 worst � �
St. Dev � �

best � �
g22 (min) mean � �5�0*425�0�) 3

worst � �
St. Dev � �

best � �
g23 (min) mean � �� 6 �*��) ��3�325 worst � �

St. Dev � �
best � 3�) 3*��4*�25�+ � 3�) 3��-4*�25�+

g24 (min) mean � 3�) 6 4 / 0*+�3 �   )   �z��� �z�� 3�) 3�� /*. 1*� worst � 3�) +�4��-1 /*6 �   )   � ¡��� ��
St. Dev

+�) 4�0
E-
0 � ) � E-  

Table 7: Statistical results obtained by the SR and SMES on
the new set of test functions. A number in boldface means
a better result. “-” means no feasible solutions found.

like g15, but g15 has only one nonlinear equality constraint.
The dimensionality of these problems varies from 3 to 15
decision variables.

Problems g17, g20, g21 and g22 have one common as-
pect: they have more nonlinear equality constraints than any
other problem (4, 12, 5 and 11, respectively). In those prob-
lems, only the SR found competitive results in problem g17.
In all the remaining functions, none of the approaches could
find feasible solutions. The dimensionality is different for
each of these four problems (6, 24, 7 and 22, respectively).
For three problems, the objective function is linear (g20,
g21 and g22). Only g17 has a nonlinear objective function.
All that suggests that the difficulty comes from the number
of nonlinear equality constraints. It is worth reminding that
none of the

���
original test functions has more than

�
non-

linear equality constraints. The obtained results suggest that
the combination of an increasing dimensionality and a high
number of nonlinear equality constraints make a problem
more difficult to solve by the compared approaches. The
exception is problem g23, which has only one nonlinear
equality constraint, a moderate dimensionality (9 decision
variables) and a linear objective function. None of the ap-



proaches could find feasible solutions. The possible source
of difficulty may come from the combination of linear and
nonlinear inequality constraints (3 and 1, respectively) with
a moderate dimensionality. However, this case deserves a
more in-depth analysis. Finally, Problem g24 with a disjoint
and a very large feasible region but with a low dimensional-
ity of @ represented no problem for SMES and SR.

To summarize, the overall results suggest that the two
main factors that affect the performance of the two EAs are
the dimensionality (like Michalewicz & Schmidt concluded
for the static penalty function approach [15, 18]) and the
increasing number of nonlinear equality constraints. The
factors that do not seem to decrease the performance of our
EA are a high number of inequality constraints (even non-
linear), and, remarkably, the type of objective function. For
some problems, including a linear objective function, the
problems resulted difficult to solve (even reaching the feasi-
ble region). Finally, disjoint feasible regions with a consid-
erable large size with respect to the search space and a low
dimensionality do not seem to be difficult to reach for the
compared EAs.

These conclusions seem to agree with those obtained in
our analysis based on our performance measures. This study
is far from being conclusive, but it provides some insights
in order to design more competitive EA-based approaches
to solve constrained optimization problems and to improve
the way constraint-handling techniques are compared.

6 Conclusions and Future Work

We have presented an empirical study of the on-line behav-
ior of two state-of-the-art algorithms to solve constrained
optimization problems. We measured how fast they reach
the feasible region, how capable they are of improving
feasible solutions and how fast the population becomes
completely feasible. Based on the obtained results, we
detected sources of difficulty which were emphasized
on
���

new test problems which were solved using both
analyzed approaches. The performance provided by the
approaches confirmed the increasing number of nonlinear
equality constraints and a high dimensionality as sources of
difficulty even for very competitive approaches. As future
work we will analyze each new test function more in-depth
and we will also apply the performance measures in this
new set of problems. Finally, we will work in an improved
technique capable of solving this new set of test functions.
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