
Useful Infeasible Solutions in Engineering Optimization
with Evolutionary Algorithms

Efrén Mezura-Montes and Carlos A. Coello Coello

CINVESTAV-IPN
Evolutionary Computation Group (EVOCINV)

Computer Science Section. Electrical Engineering Department
Av. IPN No. 2508 Col. San Pedro Zacatenco México D.F. 07300, MÉXICO

emezura@computacion.cs.cinvestav.mx
ccoello@cs.cinvestav.mx

Abstract. We propose an evolutionary-based approach to solve engineering de-
sign problems without using penalty functions. The aim is to identify and main-
tain infeasible solutions close to the feasible region located in promising areas.
In this way, using the genetic operators, more solutions will be generated inside
the feasible region and also near its boundaries. As a result, the feasible region
will be sampled well-enough as to reach better feasible solutions. The proposed
approach, which is simple to implement, is tested with respect to typical penalty
function techniques as well as against state-of-the-art approaches using four me-
chanical design problems. The results obtained are discussed and some conclu-
sions are provided.

1 Introduction

Evolutionary Algorithms (EAs) have been widely used to solve optimization problems
[1]. We are interested in the general non linear programming problem in which we want
to:Find x which optimizes f(x) subject to: gi(x) ≤ 0, i = 1, . . . ,m hj(x) = 0, j =
1, . . . , p where x ∈ IRn is the vector of solutions x = [x1, x2, . . . , xn]T , where each
xi, i = 1, . . . , n is bounded by lower and upper limits Li ≤ xi ≤ Ui; m is the number
of inequality constraints and p is the number of equality constraints (in both cases,
constraints could be linear or nonlinear). If we denote with F to the feasible region and
with S to the whole search space, then it should be clear that F ⊆ S. It is well-known
that, in their original versions, EAs lack a mechanism to deal with constrained search
spaces. Hence, a considerable amount of research have been focused on incorporating
the constraints of the problem into the fitness function of an EA. The most common
approach is the use of a penalty function [2], whose aim is to decrease the fitness of
infeasible solutions in order to favor the selection of the feasible ones (the fitness of a
solution is calculated by merging the objective function value and the sum of constraint
violation multiplied by a penalty factor). However, its main drawback is the careful fine-
tuning required by the penalty factors, whose values indicate the degree of penalization
[2]. In this paper, we propose to avoid the use of penalty functions; instead, we propose
to handle the objective function value and the constraints of the problem separately and
to use a mechanism to keep a few infeasible solutions with the lowest sum of constraint

violation in the population for the next generation. These infeasible solutions must have
the best objective function value among infeasible solutions. The aim is to promote the
generation of solutions close to the boundaries of the feasible region in order to reach
a better solution, despite its location inside or in the boundaries of the feasible set. The
paper is organized as follows: Section 2 summarizes some approaches found in the
literature of engineering design with evolutionary algorithms. In Section 3 we present
details of the proposed approach, including a simple example to show its behavior. The
experimental design, the results obtained and a discussion about them are provided in
Section 4. Finally, in Section 5 we present our conclusions and future work.

Begin
Create a random initial population of µ solutions
For G=1 to MAX GENERATIONS Do

For i=1 to |λ| Do
Choose randomly one parent from the µ available plus n other parents (one per variable)
Generate one offspring by panmictic discrete/intermediate recombination
Mutate the offspring

End For
Sort the (µ+ λ) solutions using the three criteria based on feasibility
For i=1 to |µ| Do

⇒ If flip(Sr) Then
Move the solution at the top of the sorted (µ+ λ) to the population for the next generation

Else
⇒ Copy the best infeasible solution (from parents or offspring) to the population for the next generation

End If
End For
G = G+ 1

End For
End

Fig. 1. Our approach. flip(W) returns 1 with probability W . Arrows indicate the steps
added to maintain infeasible solutions.

2 Related Work

Many successful applications of EAs to solve engineering design problems have been
reported. Ray & Liew [3] used a swarm-like based approach to solve engineering op-
timization problems. In their approach, a civilization was conformed by several soci-
eties, whose leaders guide the members of each society. Besides, there is a leaders’
society which contains all the leaders of each society. Constraints are handled using
a dominance-based approach in the constraints space [3]. To maintain diversity, the
authors propose a mechanism to allow an individual not to follow its leader. The main
advantage of the approach is that it requires a low number of evaluations of the objective
function to obtain competitive results. However, the computational cost is increased by
the ranking process and the clustering algorithm that the approach requires to initialize
the societies. Hernández et al. [4] proposed PASSSS, an approach based on a multi-
objective optimization algorithm called PAES [4] to solve some benchmark problems
and also some structural design problems. The approach uses an external memory to

store the best set of solutions found. Furthermore, PASSSS requires a shrinking mech-
anism to reduce the search space. Pareto dominance is used only to decide whether or
not a new solution is inserted in the external memory. The authors acknowledge that the
most important mechanisms of IS-PAES are its shrinking procedure and the information
provided by the external memory which is used to decide the shrinking of the search
space. Furthermore, despite its good performance as a global optimizer, PASSSS is an
approach far from being simple to implement. An improved particle swarm optimiza-
tion was proposed by He et al. [5] to solve mechanical design optimization problems.
The idea is to let the particles fly only inside the feasible region. Therefore, an initial
feasible population is required, which is the main disadvantage of the approach, be-
cause for some problems, even generating one single feasible solution is very difficult.
Its main advantage is that its computational cost is relatively low compared with the
approaches mentioned before.

3 Our approach

The main motivation of this work is to avoid the use of a penalty function to handle the
constraints of the problems and to provide a simple mechanism capable of boosting the
generation of solutions close to the boundaries of the feasible region of the search space.
Our proposed approach works in the following way: At each generation, the solutions
are ranked based on three criteria:

1. Between 2 feasible solutions, the one with the highest fitness value wins (assuming
a maximization problem/task).

2. If one solution is feasible and the other one is infeasible, the feasible solution wins.
3. If both solutions are infeasible, the one with the lowest sum of constraint violation

is preferred (
∑m
i=1 max(0, gi(x))).

After the ranking process, the selected individuals for the next generation will be
(1) those feasible solutions with a more promising value of the objective function and
(2) infeasible solutions with the lowest value of the sum of constraint violation. As
the population evolves, this selection process will lead the search to reach faster the
feasible region (like a severe penalty function). However, in order to maintain infeasible
solutions close to the the feasible region, at each generation, the infeasible solution with
the lowest sum of constraint violation and with the best value of the objective function
(taken from the µ parents or the λ offspring, each one with 50% probability) will be
included in the population for the next generation. This mechanism is controlled by a
user-defined parameter. Therefore, more than one copy of the same infeasible solution
will be in the same population. However, it is a desired behavior because this solution
will have more probabilities to generate more individuals close to it and this promising
area will be explored more in-depth. As a result, the population will have, most of
the time, a few infeasible solutions located in promising areas of the boundaries of
the feasible region. If all the population is feasible, a random solution will be copied
in the population. The parameter which controls this mechanism was called by us as
Selection ratio: (0 ≤ Sr ≤ 1). We used a (µ+ λ) evolution strategy as a search engine,
because its selection mechanism fits with our proposal (the selection is made to create

the population for the next generation). We used typical genetic operators: self-adaptive
Gaussian mutation [6] and we combined panmictic discrete/intermediate recombination
for the decision variables and control variables (encoded mutation values) as well [6].
A pseudocode of the approach is provided in Figure 1.

Generation 1 Generation 3 Generation 6

x1

x2

0 0.5 1 1.5 2 2.5 3
1

2

3

4

5

6

7

8

9

x1

x2

0 0.5 1 1.5 2 2.5 3
1

2

3

4

5

6

7

8

9

x1

x2

0 0.5 1 1.5 2 2.5 3
1

2

3

4

5

6

7

8

9

Generation 10 Generation 13

x1

x2

0 0.5 1 1.5 2 2.5 3
1

2

3

4

5

6

7

8

9

x1

x2

0 0.5 1 1.5 2 2.5 3
1

2

3

4

5

6

7

8

9

Fig. 2. Graphs showing the population behavior using our proposed mechanism. “3” points are
feasible solutions, “+” points are infeasible ones. The dashed line represents constraint g1(x) of
the problem and the dotted line represents constraint g2(x).

A graphical example of the expected behavior of the approach can be found in
Figure 2. We used a 2-dimensional test problem, which is a problem easy to solve by
the approach; it requires about 5400 evaluations of the objective function to reach the
global optimum, but it helps to visualize how our approach works. The definition of this
problem is the following:
Maximize: f(x) = sin3(2πx1) sin(2πx2)

x3
1(x1+x2)

subject to: g1(x) = x2
1 − x2 + 1 ≤ 0 g2(x) = 1− x1 + (x2 − 4)2 ≤ 0

where 0 ≤ x1 ≤ 10 and 0 ≤ x2 ≤ 10. The global optimum is located at x∗ =
(1.2279713, 4.2453733) where f(x∗) = 0.095825. As it can be observed, in generation
1 there are a few feasible as well as several infeasible solutions. The behavior of the
approach can be observed in generation 3, where there are more feasible solutions than
those in generation 1 and also there are infeasible solutions surrounding the feasible
region. In this way, the feasible region is sampled well-enough as to find promising
areas (three areas in the example). This is shown in generation 6, where there is still an
infeasible solution in the population. It is worth noticing that this infeasible solution is
close to the area where the global optimum is located; this can be seen in generation 10
where the infeasible solution has disappeared but the approach has found the vicinity of
the constrained global optimum. Our algorithm has converged to the constrained global
optimum in generation 18.

4 Experiments and Discussion

Our experimental design has two parts: (1) to compare our approach against different
types of penalty function approaches and (2) to compare our results against state-of-the-
art approaches. We selected four well known engineering design problems to use them
in the experiments. The full description of each of them is provided in the appendix at
the end of this paper.

a) Beam b) Pressure vessel c) Spring

R

Th

R

sTL

P P

d

D

Fig. 3. Figures of the design problems adopted.

In the first part of our experiments, we decided to implement four penalty-based
approaches: Death penalty (to assign a zero fitness to infeasible solutions) [7], a static
penalty (fixed penalty factor during all the process) [8], a dynamic penalty (the penalty
factor is initialized with a low value and it is increased as the process evolves) [9] and
an adaptive penalty (the penalty factor is adapted according to the number of feasible
solutions in the population) [10]. A total of 30 runs per technique per problem were
performed. The number of evaluations of the objective function was fixed to 30, 000
for the four penalty-based approaches and also for our approach. For the penalty-based
approaches we used a gray-coded genetic algorithm with roulette wheel selection, one
point crossover and uniform mutation. The population size was 100 individuals and
the number of generations 360. The rate of crossover was 0.6 and the mutation rate
was 0.01. The parameters for the static, dynamic and adaptive approaches were defined
after a trial-and-error process. The reported parameters were those which provided the
best results and they are the following: Static approach: fixed penalty factor = 1000.
Dynamic approach: α = 2, β = 2, C = 0.5. Adaptive approach: β1 = 2.0, β2 = 4.0,
k = 50, δinitial = 5000 For our approach we used a (15 + 100)-ES with the following
initial parameters: generations = 300, Sr = 0.97 (which means that 3 times every 100
selections, the best infeasible solution will be copied into the population for the next
generation). This small value was chosen based on conclusions found in the literature
which show that only a few infeasible solutions are enough to improve performance
[11]. The learning rates values were calculated using [6] (where n is the number of
decision variables of the problem): τ = (

√
2
√
n)−1 and τ ′ = (

√
2n)−1. In order to

favor finer movements in the search space, we initialized the mutation stepsizes for
all the individuals in the initial population with only a 40% of the value obtained by
the following formula (where n is the number of decision variables): σi(0) = 0.4 ×
(∆xi/

√
n) where ∆xi is approximated as follows, ∆xi ≈ xui − xli, where xui − xli are

the upper and lower limits of the decision variable i. Discrete variables were handled
by just truncating the real value to its closest integer value. The statistical results of the
30 independent runs are shown in Table 1.

a) Welded beam design
Death Penalty Static Dynamic * Adaptive ** Our approach

Best 1.747810 1.734624 1.793387 1.776909 1.724852
Mean 2.021429 1.925931 2.182719 2.043387 1.777692
Worst 2.710572 2.320612 3.731899 3.807526 2.074562

St. Dev 2.3E-1 1.6E-1 4.5E-1 4.1E-1 8.8E-2

b) Pressure vessel design
Death Penalty Static Dynamic Adaptive ** Our approach

Best 6171.813965 − 6162.862793 6242.527124 6059.701610
Mean 7429.709001 − 7042.828564 7241.953700 6379.938037
Worst 9763.333984 − 7798.198242 12142.707901 6820.397461

St. Dev 7.9E+2 − 5.3E+2 1.2E+3 2.1E+2

c) Ten./Comp. spring design
Death Penalty Static Dynamic Adaptive Our approach

Best 0.012727 0.012716 0.012690 0.012684 0.012689
Mean 0.014870 0.014319 0.013589 0.013406 0.013165
Worst 0.018671 0.017603 0.016827 0.015420 0.014078

St. Dev 1.7E-3 1.4E-3 1.0E-3 7.5E-4 3.9E-4

d) Speed reducer design
Death Penalty Static Dynamic Adaptive Our approach

Best − − − − 2996.348094
Mean − − − − 2996.348094
Worst − − − − 2996.348094

St. Dev − − − − 0

Table 1. Statistical values obtained with each approach for the four design problem.
“-” means no feasible solutions found. A result in boldface means a better result. “*”
and “**”mean that only in 28 and 27 runs (out of 30) feasible solutions were found,
respectively.

As it can be seen, our approach was the only to find feasible solutions in all runs
for the four problems. No penalty function was able to find feasible solutions for prob-
lem 4, the static approach could not find feasible solutions for problem 2, the dynamic
approach failed to reach the feasible region in two runs for problem 1 and the adaptive
approach found feasible solutions in only 27 runs for problems 1 and 2. The results in
Table 1 also reflect how our approach outperforms the four penalty-based approaches in
quality (best solution found) and robustness (“best” mean, worst and standard deviation
values) in all problems. The only exception was problem 3, where the adaptive penalty
approach found a slightly “better” best solution. In order to analyze the convergence be-
havior, in Figure 4 we show the convergence graph obtained by each penalty approach
and by our approach as well, for the first three test problems (the speed reducer is omit-
ted because none penalty approach reached the feasible region). Our approach (line with
black points) seems to converge really fast to a promising area (before generation 50)
and the remainder of the process, this solution is slightly improved (this is truth for the
three graphs). On the other hand, for problem 1 (welded beam) and problem 2 (pressure
vessel), the penalty approaches got trapped in local optima or had either a very irregu-
lar convergence or did not converge at all. Finally, in problem 3 (spring) the compared
techniques had problems to reach promising areas at the beginning, and at the end, they
could not reach equally good solutions as those found by our algorithm.

The overall results suggest that the proposed approach was able to provide a con-
sistent performance, while the penalty-based approaches sometimes were competitive

0

1

2

3

4

5

6

0 50 100 150 200 250 300

B
es

t f
(x

)

Generation

Beam design
Death penalty
Static penalty

Dynamic penalty
Adaptive penalty

Our approach

0

5000

10000

15000

20000

25000

30000

0 50 100 150 200 250 300

B
es

t f
(x

)

Generation

Pressure vessel design
Death penalty
Static penalty

Dynamic penalty
Adaptive penalty

Our approach

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0 50 100 150 200 250 300

B
es

t f
(x

)

Generation

Spring design
Death penalty
Static penalty

Dynamic penalty
Adaptive penalty

Our approach

Fig. 4. Convergence graphs for three problems using the four penalty functions and our approach.

but in other cases, their results were poor. This is due to the fact that the penalty factors
must be updated according to the problem to be solved, and our approach seems to be
more stable using the same set of parameters for all test problems.

The statistical results of the second part of our experiments are summarized in Table
2, where we compared our obtained solutions against those provided by the Particle
Swarm Optimizer of He et al. [5] and with respect to the Civilization simulation of Ray
& Liew [3]. The number of evaluations required by each approach is included. Also, in
Table 3 we provide the details of the best solution found by each technique.

Problem Stats Ray & Liew [3] He et al. [5] Our approach

best 2.385435 2.380957 1.724852
Welded beam mean 3.255137 2.381932 1.777692

St. Dev 9.6E-1 5.2E-3 8.8E-2
evaluations 33000 30000 30000

best 6171.00 6059.7143 6059.701610
Pressure vessel mean 6335.05 6289.92881 6379.938037

St. Dev NA 3.1E+2 2.1E+2
evaluations 20000 30000 30000

best 0.012669 0.012665 0.012689
Ten/Comp. spring mean 0.012923 0.012702 0.013165

St. Dev 5.9E-4 4.1E-5 3.9E-4
evaluations 25167 15000 30000

best 2994.744241 NA 2996.348094
Speed reducer mean 3001.758264 NA 2996.348094

St. Dev 4.0E+0 NA 0
evaluations 54456 NA 30000

Table 2. Comparison of results with respect to two state-of-the-art approaches. A result
in boldface means a better result.

Based on the information in Table 2, our approach provided the best performance
in problem 1 (beam design), “better” best, and mean result using a lower number of
evaluations. For problem 2 (vessel design), none of the approaches was a clear win-
ner. Ray’s approach used the lowest number of evaluations of the objective function,
the “best” mean value was provided by He’s approach and our approach obtained the
“best” best solution and the lowest standard deviation value. For problem 3 (spring de-
sign), He’s approach was the most competitive. Finally, for problem 4 (speed reducer
design), the best result was found by Ray’s technique, but the most robust performance
(“better” mean, worst and standard deviation value) and the lowest number of evalua-

tions required was provided by our approach. He’s results were not available for this
problem.

From the details of the best solution found by each approach (Table 3) we empha-
size the following: In the beam design problem, our approach was able to find a better
result, which is located in the boundaries of the feasible region (see the values close
to zero for constraints 1 and 7) and the compared approaches could not do that. For
the vessel and the spring design problems, the results obtained by the compared algo-
rithms are very similar. In the first case (vessel) our approach was able to provide the
best of them. However, for the second case (spring), our approach provided the worst
of them. We argue that the approach requires (at least for this problem) more infeasible
solutions in the population. This issue is part of our future work. For the last problem,
our approach was able to explore the boundaries of the feasible region, but again, it
did not find a better result than that found by Ray’s technique. It is important to high-
light that He’s approach is designed to move only inside the feasible region of a given
problem. Therefore, it requires a feasible initial population (which, for some problems
could be very difficult to get). Ray’s approach adds extra computational cost derived of
clustering routines. On the other hand, our approach is based on a simple modification
(to maintain the lowest infeasible solution in the population) to an EA and, therefore it
is easy to implement. Besides, it does not add considerable extra computational cost.
Furthermore, our approach does not require to have feasible solutions at the beginning.

We can conclude for this second part of the experiments that our approach is able to
explore the boundaries of the feasible region as to reach very robust and “high” quality
results. However, for some problems in some runs, the approach was trapped in local
optima solutions.

Welded Problem 1
beam Ray & Liew [3] He et al. [5] Our approach
x1 0.244438 0.244369 0.205730
x2 6.237967 6.217520 3.470489
x3 8.288576 8.291471 9.036624
x4 0.244566 0.244369 0.205729
g1(x) −5760.110471 −5741.176933 0.000000
g2(x) −3.245428 0.000001 0.000002
g3(x) −0.000128 0.000000 0.000000
g4(x) −3.020055 −3.022955 −3.432984
g5(x) −0.119438 −0.119369 −0.080730
g6(x) −0.234237 −0.234241 −0.235540
g7(x) −13.079305 −0.000309 0.000001
f(x) 2.38119 2.380956 1.724852

Pressure Problem 2
vessel Ray & Liew [3] He et al. [5] Our approach
x1 0.8125 0.8125 0.8125
x2 0.4375 0.4375 0.4375
x3 41.9768 42.098446 42.098446
x4 182.2845 176.636052 176.636596
g1(x) −0.0023 −0.000000 0.000000
g2(x) −0.0370 −0.035881 −0.035880
g3(x) −23420.5966 −0.000000 0.000000
g4(x) −57.7155 −63.363948 −63.363404
f(x) 6171.0 6059.701610 6059.7143

Ten./Comp. Problem 3
spring Ray & Liew [3] He et al. [5] Our approach
x1 0.0521602 0.051690 0.052836
x2 0.368159 0.356750 0.384942
x3 10.648442 11.287126 9.807729
g1(x) −0.000000 −0.000000 −0.000001
g2(x) −0.000000 0.000000 −0.000000
g3(x) −4.075805 −4.053827 −4.106146
g4(x) −0.719787 −0.727706 −0.708148
f(x) 0.012669 0.012665 0.012689

Speed Problem 4
reducer Ray & Liew [3] Our approach
x1 3.500000 3.499999
x2 0.700000 0.699999
x3 17 17
x4 7.327602 7.300000
x5 7.715321 7.800000
x6 3.350267 3.350215
x7 5.286655 5.286683
g1(x) NA −0.073915
g2(x) NA −0.197998
g3(x) NA −0.499172
g4(x) NA −0.901472
g5(x) NA −0.000000
g6(x) NA −0.000000
g7(x) NA −0.702500
g8(x) NA 0.000000
g9(x) NA −0.583333
g10(x) NA −0.051325
g11(x) NA −0.010852
f(x) 2994.744241 2996.348094

Table 3. Details of the best solution found by each compared state-of-the-art technique.

5 Conclusions and Future Work

We have presented a novel approach to solve engineering design problems using evolu-
tionary algorithms. The approach does not use a penalty function to handle constraints.
Instead, it has a mechanism to allow the closest solutions to the feasible region located
in promising areas of the search space to remain in the population. The selection is
based on feasibility criteria and closeness to the feasible region. This mechanism does
not add significant extra computational cost and it is very simple to implement. The
approach was compared against penalty-function-based approaches and also against
two state-of-the-art techniques providing a very competitive performance. Our future
work consists on designing a mechanism to improve the local search capabilities of the
approach in order to provide better results and also to apply it in the solution of dy-
namic/noisy optimization problems.

Acknowledgments: The first author acknowledges support from the Mexican Con-
sejo Nacional de Ciencia y Tecnologı́a (CONACyT) through a postdoctoral position
at CINVESTAV-IPN’s Electrical Engineering Department. The second author acknowl-
edges support from (CONACyT) through project number 45683.

References

1. Michalewicz, Z., Fogel, D.B.: How to Solve It: Modern Heuristics. Springer (2004)
2. Miettinen, K., Makela, M., Toivanen, J.: Numerical comparison of some penalty-based con-

straint handling techniques in genetic algorithms. Journal of Global Optimization 27 (2003)
427–446

3. Ray, T., Liew, K.: Society and Civilization: An Optimization Algorithm Based on the Simula-
tion of Social Behavior. IEEE Transactions on Evolutionary Computation 7 (2003) 386–396

4. Hernández-Aguirre, A., Botello-Rionda, S., Coello Coello, C.A.: PASSSS: An Implementa-
tion of a Novel Diversity Strategy for Handling Constraints. In: Proceedings of the Congress
on Evolutionary Computation 2004 (CEC’2004). Volume 1., Piscataway, New Jersey, Port-
land, Oregon, USA, IEEE Service Center (2004) 403–410

5. He, S., Prempain, E., Q.H.Wu: An Improved Particle Swarm Optimizer for Mechanical
Design Optimization Problems. Engineering Optimization 36 (2004) 585–605

6. Bäck, T.: Evolutionary Algorithms in Theory and Practice. Oxford University Press, New
York (1996)

7. Schwefel, H.P.: Numerical Optimization of Computer Models. Wiley, England (1981)
8. Hoffmeister, F., Sprave, J.: Problem-independent handling of constraints by use of metric

penalty functions. In Fogel, L.J., et al., eds.: Proceedings of the Fifth Annual Conference on
Evolutionary Programming (EP’96), San Diego, California, The MIT Press (1996) 289–294

9. Joines, J., Houck, C.: On the use of non-stationary penalty functions to solve nonlinear
constrained optimization problems with GAs. In Fogel, D., ed.: Proceedings of the first IEEE
Conference on Evolutionary Computation, Orlando, Florida, IEEE Press (1994) 579–584

10. Hadj-Alouane, A.B., Bean, J.C.: A Genetic Algorithm for the Multiple-Choice Integer Pro-
gram. Operations Research 45 (1997) 92–101

11. Mezura-Montes, E., Coello Coello, C.A.: Adding a Diversity Mechanism to a Simple Evolu-
tion Strategy to Solve Constrained Optimization Problems. In: Proceedings of the Congress
on Evolutionary Computation 2003 (CEC’2003). Volume 1., Piscataway, New Jersey, Can-
berra, Australia, IEEE Service Center (2003) 6–13

Appendix

Full description of the four problems used in the experiments:
Problem 1: (Design of a Welded Beam) A welded beam is designed for minimum cost subject to constraints on shear stress
(τ), bending stress in the beam (σ), buckling load on the bar (Pc), end deflection of the beam (δ), and side constraints. There
are four design variables as shown in Figure 3a: h (x1), l (x2), t (x3) and b (x4). The problem can be stated as follows:
Minimize: f(x) = 1.10471x2

1x2 + 0.04811x3x4(14.0 + x2)
Subject to:

g1(x) = τ(x)− τmax ≤ 0 g2(x) = σ(x)− σmax ≤ 0 g3(x) = x1 − x4 ≤ 0
g4(x) = 0.10471x2

1 + 0.04811x3x4(14.0 + x2)− 5.0 ≤ 0 g5(x) = 0.125− x1 ≤ 0
g6(x) = δ(x)− δmax ≤ 0 g7(x) = P − Pc(x) ≤ 0

where τ(x) =
√

(τ ′)2 + 2τ ′τ ′′ x2
2R + (τ ′′)2 τ ′ = P√

2x1x2
, τ ′′ = MR

J ,M = P
(
L+

x2
2

)

R =

√
x2
2
4 +

(
x1+x3

2

)2
J = 2

{√
2x1x2

[
x2
2

12 +
(
x1+x3

2

)2
]}

σ(x) = 6PL

x4x
2
3
, δ(X) = 4PL3

Ex3
3x4

Pc(x) =
4.013E

√
x2
3x

6
4

36

L2

(
1− x3

2L

√
E
4G

)
P = 6000 lb, L = 14 in, E = 30× 106 psi, G = 12× 106 psi

τmax = 13, 600 psi, σmax = 30, 000 psi, δmax = 0.25 in where 0.1 ≤ x1 ≤ 2.0, 0.1 ≤ x2 ≤ 10.0,
0.1 ≤ x3 ≤ 10.0 y 0.1 ≤ x4 ≤ 2.0.
Problem 2: (Design of a Pressure Vessel)

A cylindrical vessel is capped at both ends by hemispherical heads as shown in Figure 3b. The objective is to minimize
the total cost, including the cost of the material, forming and welding. There are four design variables: Ts (thickness of the
shell), Th (thickness of the head), R (inner radius) and L (length of the cylindrical section of the vessel, not including the
head). Ts and Th are integer multiples of 0.0625 inch, which are the available thicknesses of rolled steel plates, and R and
L are continuous. The problem can be stated as follows:
Minimize : f(x) = 0.6224x1x3x4 + 1.7781x2x

2
3 + 3.1661x2

1x4 + 19.84x2
1x3

Subject to :
g1(x) = −x1 + 0.0193x3 ≤ 0 g2(x) = −x2 + 0.00954x3 ≤ 0
g3(x) = −πx2

3x4 − 4
3πx

3
3 + 1, 296, 000 ≤ 0 g4(x) = x4 − 240 ≤ 0

where 1 ≤ x1 ≤ 99, 1 ≤ x2 ≤ 99, 10 ≤ x3 ≤ 200 y 10 ≤ x4 ≤ 200.
Problem 3: (Minimization of the Weight of a Tension/Compression String)

This problem consists of minimizing the weight of a tension/compression spring (see Figure 3c) subject to constraints on
minimum deflection, shear stress, surge frequency, limits on outside diameter and on design variables. The design variables
are the mean coil diameter D (x2), the wire diameter d (x1) and the number of active coils N (x3). Formally, the problem
can be expressed as:
Minimize: (N + 2)Dd2

Subject to:

g1(x) = 1− D3N
71785d4 ≤ 0 g2(x) = 4D2−dD

12566(Dd3−d4)
+ 1

5108d2 − 1 ≤ 0

g3(x) = 1− 140.45d
D2N

≤ 0 g4(x) = D+d
1.5 − 1 ≤ 0

where 0.05 ≤ x1 ≤ 2, 0.25 ≤ x2 ≤ 1.3 y 2 ≤ x3 ≤ 15.
Problem 4: (Minimization of the Weight of a Speed Reducer)

The weight of the speed reducer is to be minimized subject to constraints on bending stress of the gear teeth, surfaces
stress, transverse deflections of the shafts and stresses in the shafts. The variables x1, x2, · · · , x7 are the face width,
module of teeth, number of teeth in the pinion, length of the first shaft between bearings, length of the second shaft between
bearings and the diameter of the first and second shafts. The third variable is integer, the rest of them are continuous.
Minimize : f(x) = 0.7854x1x

2
2(3.3333x2

3 +14.9334x3−43.0934)−1.508x1(x2
6 +x2

7)+7.4777(x3
6 +x3

7)+

0.7854(x4x
2
6 + x5x

2
7)

Subject to :

g1(x) = 27

x1x
2
2x3
− 1 ≤ 0 g2(x) = 397.5

x1x
2
2x

2
3
− 1 ≤ 0 g3(x) =

1.93x3
4

x2x3x
4
6
− 1 ≤ 0

g4(x) =
1.93x3

5
x2x3x

4
7
− 1 ≤ 0 g5(x) =

((
745x4
x2x3

)2
+16.9×106

)1/2

110.0x3
6

− 1 ≤ 0

g6(x) =

((
745x5
x2x3

)2
+157.5×106

)1/2

85.0x3
7

− 1 ≤ 0 g7(x) =
x2x3

40 − 1 ≤ 0 g8(x) =
5x2
x1
− 1 ≤ 0

g9(x) =
x1

12x2
− 1 ≤ 0 g10(x) =

1.5x6+1.9
x4

− 1 ≤ 0 g11(x) =
1.1x7+1.9

x5
− 1 ≤ 0

where 2.6 ≤ x1 ≤ 3.6, 0.7 ≤ x2 ≤ 0.8, 17 ≤ x3 ≤ 28, 7.3 ≤ x4 ≤ 8.3, 7.8 ≤ x5 ≤ 8.3,

2.9 ≤ x6 ≤ 3.9 and 5.0 ≤ x7 ≤ 5.5.

