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ABSTRACT 
      This paper presents a new multi-objective evolutionary algorithm based on 
differential evolution. The proposed approach adopts a secondary population in 
order to retain the non-dominated solutions found during the evolutionary 
process. Additionally, the approach also incorporates the concept of                  
ε-dominance to get a good distribution of the solutions retained. The main goal 
of this work was to keep the fast convergence exhibited by Differential 
Evolution in global optimization when extending this heuristic to multi-
objective optimization. We adopted standard test functions and performance 
measures reported in the specialized literature to validate our proposal. Our 
results are compared with respect to another multi-objective evolutionary 
algorithm based on differential evolution (Pareto Differential Evolution) and 
with respect to two approaches that are representative of the state-of-the-art in 
the area: the NSGA-II and ε-MOEA.   

1    INTRODUCTION 
 
Most real-world problems involve the simultaneous optimization of two or more 
(often conflicting) objectives. The solution of such problems (called “multi-
objective”) is different from that of a single-objective optimization problem. The 
main difference is that multi-objective optimization problems normally have not 
one but a set of solutions which are all equally good. In the past, a wide variety 
of evolutionary algorithms (EAs) have been used to solve multi-objective 
optimization problems [4]. However, from the several types of EAs available, 
very few researchers have attempted to extend Differential Evolution (DE) [18] 
to solve multi-objective optimization problems. DE has been very successful in 
the solution of a variety of continuous (single-objective) optimization problems 
in which it has shown a great robustness and a very fast convergence. These are 
precisely the characteristics of DE that make it attractive to extend it to solve 
multi-objective optimization problems.  

2    DIFFERENTIAL EVOLUTION 
 
Differential Evolution [17, 18] is a relatively recent heuristic designed to 
optimize problems over continuous domains. In DE, each decision variable is 
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represented in the chromosome by a real number. As in any other evolutionary 
algorithm, the initial population of DE is randomly generated, and then 
evaluated. After that, the selection process takes place. During the selection 
stage, three parents are chosen and they generate a single offspring which 
competes with a parent to determine who passes to the following generation. DE 
generates a single offspring (instead of two as the genetic algorithm) by adding 
the weighted difference vector between two parents to a third parent. In the 
context of single-objective optimization, if the resulting vector yields a lower 
objective function value than a predetermined population member, the newly 
generated vector replaces the vector with respect to which it was compared. In 
addition, the best parameter vector XBbest,GB is evaluated for every generation G in 
order to keep track of the progress that is made during the minimization process. 
More formally, the process is described as follows:  
 For each vector Gix ,

r ; i = 0, 1, 2,…, N-1 , a trial vector vr generated 
according to:  

)( ,3,2,1 GrGrGr xxFxv rrrr −⋅+=  
with rB1B, rB2B, rB3B ∈[0, N-1], integer and mutually different, and F > 0. 

The integers rB1B, rB2B and rB3B are chosen randomly from the interval [0, N-1] and 
are different from i. F is a real and constant factor which controls the 
amplification of the differential variation )( ,3,2 GrGr xx rr − .  

3    RELATED WORK  

There have been several recent proposals to extend Differential Evolution to 
multi-objective optimization. 
We will review next the most important of them:  

- PDE by Abbass in 2002 [1]: It handles only one population, reproduction 
is undertaken only among non-dominated solutions, offspring are placed 
into the population if they dominate the main parent and a distance metric 
relation is used to maintain diversity. 

- PDEA by Madavan in 2002 [12]: It combines the robust and effective DE 
strategy with key elements of the NSGA-II algorithm. 

- MODE by Xue in 2003 [22]: in order to apply multi-objective 
optimization, the Pareto-based assignment and selection of the NSGA-II 
[5] is incorporated. 

- DE for Multi-Objective Optimization by Babu in 2003 [3]: uses a 
penalty function and applies a weighting factor method to maintain 
diversity. 

- VEDE by Parsopoulus in 2004 [13]: it is a parallel, multipopulation 
Differential Evolution algorithm, which is inspired by the Vector Evaluated 
Genetic Algorithm (VEGA) [15] approach. 

- GDE by Kukkonnen in 2004 [9]: is an extension of Generalized 
Differential Evolution for constrained multi-objective optimization. 
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- NSDE by Iorio in 2004 [7]: it is a simple modification to the NSGA-II [5] 
where the real-coded crossover and mutation rates have been replaced with 
a Differential Evolution scheme. 

- DEMO by Robic in 2005 [14]: Combines the advantages of DE with the 
mechanisms of Pareto-based ranking and crowding distances sorting. In 
DEMO, the newly created candidates take part immediately in the creation 
of the subsequent candidates. 

 
Algorithm 1  Proposed Algorithm:  ε- MyDE 
  1:  Initialize vector of the population P 
  2:  Evaluate the cost of each vector 
  3:  for i = 0 to G  do 
  4:       repeat 
  5:              Select three distinct vectors randomly 
  6:              Perform crossover using DE scheme 
  7:              Perform mutation 
  8:              Evaluate objective values 
  9:              if   offspring is better than main parent   then 
10:                   replace it on population  
11:             end if  
12:      until population is completed 
13:      Identify nondominated solutions in population 
14:      Add nondominated solutions into secondary population   
15:  end for 

 
 

4    OUR PROPOSED APPROACH  

The pseudo-code of our proposed approach (called ε-MyDE) is shown in 
Algorithm 1. Our approach keeps two populations: the main population (which 
is used to select the parents) and a secondary (external) population, in which we 
adopt the concept of ε-dominance to retain the non-dominated solutions found 
and to distribute them in a uniform way.  

ε-MyDE uses real numbers representation, where each chromosome is a 
vector of real numbers (each number corresponds to a decision variable of the 
problem). We also incorporate a constraint-handling mechanism that allows 
infeasible solutions to intervene during recombination. This helps to solve in a 
more efficient way highly constrained multiobjective optimization problems.  

Our approach has two selection mechanisms that are activated based on the 
total number of generations and a parameter called selB2B ∈  (0.2 - 1), which 
regulates the selection pressure. For example, if selB2B = 0.6 and the total number 
of generation is GBmaxB = 200, this means that during the first 120 generations 
(60% of GBmaxB), a random selection will be adopted, and during the last 80 
generations an elitist selection will be adopted. In both selections (random and 
elitist), a single parent is selected as reference. This parent is used to compare 
the offspring generated by three different parents. This mechanism guarantees 
that all the parents of the main population will be reference parents for only one 
time during the generating process. Both types of selection are described next: 
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1 Random Selection. - 3 different parents are randomly selected from the 
main population. 
2 Elitist Selection. - 3 different parents are selected from the secondary 
population. It is required that these 3 parents are close from each other. If no 
set of 3 individuals exists that fulfills this requirement, then a set of 3 
individuals is randomly selected from the secondary population. The 
expression adopted to determine closeness is the following: 

 
where: 
FUN = number of objective functions 
XBi,maxB = upper bound of the i-th objective function in the secondary population 
XBi,minB = lower bound of the i-th objective function in the secondary population 

 
Recombination in our approach is performed using the following procedure. For 
each parent vector ipr ; i = 0, 1, 2,…, P – 1 (P = population), the offspring vector 

 is generated as: h
r

 
where: j = 0, 1, 2,…, var – 1. (var = number of variables for each solution 
vector) pBr1B, pBr2B, pBr3B ∈  [0, P – 1], are integers and mutually different, F > 0. The 
integers rB1B, rB2B and rB3B are the indices of the selected parents randomly chosen 
from the interval [0, N – 1] and ref is the index of the reference parent. F is a 
real and constant factor which controls the amplification of the differential 
variation (pBr2, jB – pBr3, jB). 
 

Differential evolution doesn't use a specific mutation operator, since such 
operator is somehow embedded in its recombination. However, in multi-
objective optimization problems, we found it necessary to provide an additional 
mutation operator to allow a better exploration of the search space (mainly in 
constrained problems). We adopted uniform mutation for that sake.  

Once a child has been generated, it is compared with respect to the 
reference parent, against which it competes to determine who passes to the 
following generation. The rules of comparison between a child and its parent are 
the following: 
 
UVersion for unconstrained problems 
 

 If parent dominates child, the parent is chosen 

 If child dominates parent, the parent is chosen 

 If both are nondominated with respect to each other, perform a 
flip(0.5) to determine who passes to the following generation. 

 
 



 5 

UVersion for constrained problems 
 

 If parent is infeasible and child is infeasible, the solution that is closest 
to the feasible region is selected. 

 
 If parent is feasible and child is infeasible, the child is chosen if and 

only if the child is at least at a distance of 0.1 of the feasible region 
and a flip (0.5) returns true.  Otherwise, the father is chosen. 

 
 If parent is infeasible and child is feasible, the parent is chosen if and 

only if the parent is at least at a distance of 0.1 of the feasible region 
and a flip (0.5) returns true.  Otherwise, the child is chosen. 

 
 If parent is feasible and child is feasible, Pareto dominance is verified 

between them. 
 

Note that the scheme previously described allows some infeasible solutions 
to intervene during recombination. We found that this sort of scheme is 
particularly useful when dealing with highly constrained problems. 

For producing a well-distributed set of non-dominated solutions, we 
adopted a relaxed form of dominance called ε-dominance, which is defined as 
follows [11]: 

Let f, g ∈  RP

m
P, then f

r
 is said to ε-dominate gr  for some  ε > 0, denoted as 

f   g, if and only if for all i  εp ∈  {1, . . . , m}. 
(1 – ε) · fBiB ≤   gBiB 

As indicated before, our proposed approach uses an external archive (also 
called secondary population). In order to include a solution into this archive, it is 
compared with respect to each member already contained in the archive using ε-
dominance. The procedure is described next.  

Every solution in the archive is assigned an identification array (B = (BB1, 
BBB2B,…,BBMB)P

T
P , where M is the total number of objectives) as follows:  

 
where: is the minimum possible value of the j-th objective and εBjB is the 
allowable tolerance in the j-th objective [11]. The identification array divides the 
whole objective space into hyper-boxes, each having εBjB size in the j-th objective. 
With the identification arrays calculated for the offspring cB1B and each archive 
member a, we use the procedure illustrated in Figure 1 and described next: 

min
jf

 
1.- If the identification array BBaB of any archive member a dominates that of 
the offspring cBiB, then it means that the offspring is ε-dominated by this 
archive member and so the offspring is not accepted. Case (a) in Figure 1. 
 
2.- If BBCiB of the offspring dominates the BBaB of any archive member a, the 
archive member is deleted and the offspring accepted. Case (b) in Figure 1. 
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If neither of the above two cases occur, then it means that the offspring is 
ε-non-dominated with respect to the archive contents. There are two further 
possibilities in this case: 
 

(a) If the offspring shares the same B vector with an archive member 
(meaning that they belong to the same hyper-box), then they are 
first checked for the usual non-domination.  If the offspring 
dominates the archive member or the offspring is non-dominated 
with respect to the archive member but is closer to the B vector (in 
terms of the Euclidian distance) than the archive member, then the 
offspring is retained. This is case (c) in Figure 1. 

 
(b) In the event of an offspring not sharing the same B vector with any 

archive member, the offspring is accepted. Case (d) in Figure 1. 
 
Using the above procedure, we can guarantee the generation of a well-
distributed set of non-dominated solutions. Also, the value of ε regulates the size 
of the external archive. Thus, there is no need to pre-fix an upper limit on the 
size of the archive as done in most traditional multi-objective evolutionary 
algorithms. 
 

 
Figure 1: Four cases of inserting a child into the external archive 

 

5    COMPARISON OF RESULTS 

In order to validate our proposed approach, our results are compared with 
respect to those generated by another multi-objective evolutionary algorithm 
based on Differential Evolution: PDE [2]. Additionally, we also compared 
results with respect to two approaches representative of the state-of-the-art in the 
area: the NSGA-II [5] and ε-MOEA [6]. The parameters adopted for all 
algorithms compared are presented in Table 1.  Also, we adopted 4 metrics 
reported in the specialized literature:  Error Ratio (ER)  [19],  Generational  
Distance  (GD)  [20, 21], Spacing (S) [16] and Set Coverage (SC) [23].  
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Parameter ε-MyDE NSGA-II PDE ε-MOEA 
Population 100 100 100 100 
External Pop. 100 (aprox.) 100 100 100 (aprox.) 

GBmaxB 50 or 250 50 or 250 50 or 250 50 or 250 
PBcB 0.95 0.8 Nr 1.0 
PBmB 1 / N 1 / N Nr 1/N 
F 0.5 Nr N(0, 1) Nr 

where: N = variable number ,  d = objective number, nr = not required 
GBmaxB = 50 for unconstrained problems,  GBmaxB = 250 for constrained problems 

 
Table 1: Parameters adopted for all algorithms compared 

 
[MOP1] Proposed by Kursawe [10].  Minimize: 

 
with a = 0.8, b = 3; n = 3 and:  -5 ≤ xB1B, xB2B, xB3B ≤ 5 

Graphically, in MOP1 we can observe that ε-MyDE and ε-MOEA are the 
only approaches able to reach the true Pareto front of the problem (the NSGA-II 
cannot generate the extremes of the front). Regarding spacing, all the 
approaches seem to have a good distribution of solutions. When comparing the 
values of the performance metrics, it is clear that our ε-MyDE obtained the best 
results with respect to both Error Ratio and Generational Distance. Regarding 
Spacing, the NSGA-II was slightly better than the other approaches. With 
respect to Set Coverage, our ε-MyDE had the best results, which indicates that it 
is the approach that dominates more solutions from the other algorithms and it is 
(at the same time) less dominated by the others. 
 
[MOP2] Proposed by Kita [8].   Maximize:  

  
subject to: 

 
Metric – Algorithm average Best worst St. Dev 

ε – MyDE 0.157920 0.06542 0.23301 0.0428870 
NSGA-II 0.4575 0.31 0.64 0.090728 

PDE 0.5085 0.25 0.64 0.095821 ER 

ε – MOEA 0.2820835 0.16326 1 0.177830 
ε – MyDE 0.003270 0.002888 0.003744 0.000258 
NSGA-II 0.004166 0.003080 0.006163 0.000861 

PDE 0.004675 0.003668 0.006670 0.000966 GD 

ε – MOEA 0.09699 0.003047 1.87613 0.418764 
ε – MyDE 0.094489 0.054854 0.109133 0.012435 
NSGA-II 0.061808 0.047978 0.11722 0.016637 

PDE 0.105224 0.068795 0.145438 0.224935 S 

ε – MOEA 0.101133 0.0564897 0.126934 0.013587 
SC ε – MyDE NSGA-II PDE ε – MOEA Dominates 

ε – MyDE  0.824752 0.825743 0.615924 0.755473 
NSGA-II 0.234375  0.633663 0.375063 0.414367 

PDE 0.238511 0.676733  0.408112 0.4411186 
ε – MOEA 0.323529 0.712871 0.729703  0.588701 

They are dominated 0.26547167 0.73811867 0.729703 0.46636633  
Table 2: Statistical results corresponding to the metrics adopted for MOP1: Error Ratio(ER), 

Generational Distance (GD), Spacing (S) and Set Coverage (SC). 
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Figure 2: Pareto fronts generated by ε-MyDE (top-left), NSGA-II (top-right), 

PDE (bottom-left) and ε-MOEA (bottom-right) for MOP1. 
Graphically, in MOP2 we can observe that all the algorithms get a reasonably 
good approximation of the true Pareto front. However, our ε-MyDE was the 
only approach able to cover the entire Pareto front and of obtaining a good 
distribution of solutions. When comparing the values of the performance 
metrics, our ε-MyDE obtained the best results with respect to Error Ratio and 
Generational Distance. Regarding Spacing, ε-MOEA obtained the best results. 
However, regarding Set Coverage, our ε-MyDE obtained again the best results. 
This means that our approach dominated the larger number of solutions 
produced by the other algorithms and, at the same time, its solutions were the 
least dominated by the other algorithms. 

Metric – Algorithm average best worst St. Dev 
ε – MyDE 0.016406 0 0.055045 0.016353 
NSGA-II 0.316 0.19 0.53 0.093942 

PDE 0.8395 0.35 1 0.212119 ER 

ε – MOEA 0.250085 0.15625 0.333333 0.044541 
ε – MyDE 0.004912 0.001457 0.046416 0.009799 
NSGA-II 0.014703 0.001367 0.090251 0.027298 

PDE 0.005768 0.000387 0.032941 0.0076951 
GD 

ε – MOEA 0.006311 0.002205 0.047624 0.010411 
ε – MyDE 0.073633 0.039430 0.492726 0.099053 
NSGA-II 0.092523 0.007056 0.56773 0.168849 

PDE 0.017289 3.606E-05 0.2736 0.061153 
S 

ε – MOEA 0.077128 0.045864 0.492715 0.099079 
SC ε – MyDE NSGA-II PDE ε – MOEA Dominates 

ε – MyDE  0.806436 0.928498 0.879053 0.871329 
NSGA-II 0.042775  0.666667 0.62069 0.443377 

PDE 0.005228 0.096534  0.076170 0.059311 
ε – MOEA 0.039924 0.55099 0.951132  0.514015 

They are dominated 0.029309 0.484653 0.848765 0.525304  
Table 3: Statistical results corresponding to the metrics adopted for MOP2: Error Ratio(ER), 

Generational Distance (GD), Spacing (S) and Set Coverage (SC) 
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Figure 3: Pareto fronts generated by ε-MyDE (top-left), NSGA-II (top-right), 

PDE (bottom-left) and ε-MOEA (bottom-right) for MOP2. 

6    CONCLUSIONS AND FUTURE WORK 
We have introduced an approach that uses Differential Evolution to solve both 
unconstrained and constrained multi-objective optimization problems. The high 
convergence rate (which can produce premature convergence) that characterizes 
the Differential Evolution algorithm was controlled using two forms of elitist 
selection.  Our approach also adopts the concept of ε-dominance to produce 
well-distributed sets of non-dominated solutions. Additionally, our approach 
incorporates a novel constraint-handling mechanism that allows some infeasible 
solutions to intervene in the selection process. Our proposed approach was 
validated using standard test functions and performance metrics reported in the 
specialized literature. In our study, we compared results with respect to the 
NSGA-II, to Pareto Differential Evolution (PDE) and with respect to ε-MOEA.  
As part of our future work, we intend to develop a self-adaptation scheme that 
makes unnecessary the manual fine-tuning of parameters for our approach and 
we also intend to devise a self-adaptive mechanism to calculate the value of the 
vector ε used to generate a specific number of nondominated solutions. 
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