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Motivation

Most problems in nature have several (possibly conflicting)
objectives to be satisfied. Many of these problems are frequently
treated as single-objective optimization problems by transforming
all but one objective into constraints.
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What is a multiobjective optimization problem?

The Multiobjective Optimization Problem (MOP) (also
called multicriteria optimization, multiperformance or vector
optimization problem) can be defined (in words) as the problem of
finding (Osyczka, 1985):

a vector of decision variables which satisfies constraints and
optimizes a vector function whose elements represent the
objective functions. These functions form a mathematical
description of performance criteria which are usually in
conflict with each other. Hence, the term “optimize” means
finding such a solution which would give the values of all
the objective functions acceptable to the decision maker.

3



A Formal Definition

The general Multiobjective Optimization Problem (MOP) can be
formally defined as:

Find the vector ~x∗ = [x∗1, x
∗
2, . . . , x

∗
n]T which will satisfy the m

inequality constraints:

gi(~x) ≥ 0 i = 1, 2, . . . ,m (1)

the p equality constraints

hi(~x) = 0 i = 1, 2, . . . , p (2)

and will optimize the vector function

~f(~x) = [f1(~x), f2(~x), . . . , fk(~x)]T (3)
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What is the notion of optimum

in multiobjective optimization?

Having several objective functions, the notion of “optimum”
changes, because in MOPs, we are really trying to find good
compromises (or “trade-offs”) rather than a single solution as in
global optimization. The notion of “optimum” that is most
commonly adopted is that originally proposed by Francis Ysidro
Edgeworth in 1881.
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What is the notion of optimum

in multiobjective optimization?

This notion was later generalized by Vilfredo Pareto (in 1896).
Although some authors call Edgeworth-Pareto optimum to this
notion, we will use the most commonly accepted term: Pareto
optimum.
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Definition of Pareto Optimality

We say that a vector of decision variables ~x∗ ∈ F is Pareto optimal
if there does not exist another ~x ∈ F such that fi(~x) ≤ fi(~x∗) for
all i = 1, . . . , k and fj(~x) < fj(~x∗) for at least one j.
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Definition of Pareto Optimality

In words, this definition says that ~x∗ is Pareto optimal if there
exists no feasible vector of decision variables ~x ∈ F which would
decrease some criterion without causing a simultaneous increase in
at least one other criterion. Unfortunately, this concept almost
always gives not a single solution, but rather a set of solutions
called the Pareto optimal set. The vectors ~x∗ correspoding to the
solutions included in the Pareto optimal set are called
nondominated. The plot of the objective functions whose
nondominated vectors are in the Pareto optimal set is called the
Pareto front.
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Sample Pareto Front
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Some Historical Highlights

As early as 1944, John von Neumann and Oskar Morgenstern
mentioned that an optimization problem in the context of a social
exchange economy was “a peculiar and disconcerting mixture of
several conflicting problems” that was “nowhere dealt with in
classical mathematics”.
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Some Historical Highlights

In 1951 Tjalling C. Koopmans edited a book called Activity
Analysis of Production and Allocation, where the concept of
“efficient” vector was first used in a significant way.
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Some Historical Highlights

The origins of the mathematical foundations of multiobjective
optimization can be traced back to the period that goes from 1895
to 1906. During that period, Georg Cantor and Felix Hausdorff laid
the foundations of infinite dimensional ordered spaces.
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Some Historical Highlights

Cantor also introduced equivalence classes and stated the first
sufficient conditions for the existence of a utility function.
Hausdorff also gave the first example of a complete ordering.
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Some Historical Highlights

However, it was the concept of vector maximum problem introduced
by Harold W. Kuhn and Albert W. Tucker (1951) which made
multiobjective optimization a mathematical discipline on its own.
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Some Historical Highlights

However, multiobjective optimization theory remained relatively
undeveloped during the 1950s. It was until the 1960s that the
foundations of multiobjective optimization were consolidated and
taken seriously by pure mathematicians when Leonid Hurwicz
generalized the results of Kuhn & Tucker to topological vector
spaces.
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Some Historical Highlights

The application of multiobjective optimization to domains outside
economics began with the work by Koopmans (1951) in production
theory and with the work of Marglin (1967) in water resources
planning.
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Some Historical Highlights

The first engineering application reported in the literature was a
paper by Zadeh in the early 1960s. However, the use of
multiobjective optimization became generalized until the 1970s.
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Current State of the Area

Currently, there are over 30 mathematical programming techniques
for multiobjective optimization. However, these techniques tend to
generate elements of the Pareto optimal set one at a time.
Additionally, most of them are very sensitive to the shape of the
Pareto front (e.g., they do not work when the Pareto front is
concave or when the front is disconnected).
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Why Evolutionary Algorithms?

Evolutionary algorithms seem particularly suitable to solve
multiobjective optimization problems, because they deal
simultaneously with a set of possible solutions (the so-called
population). This allows us to find several members of the Pareto
optimal set in a single run of the algorithm, instead of having to
perform a series of separate runs as in the case of the traditional
mathematical programming techniques. Additionally, evolutionary
algorithms are less susceptible to the shape or continuity of the
Pareto front (e.g., they can easily deal with discontinuous or
concave Pareto fronts), whereas these two issues are a real concern
for mathematical programming techniques.
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How popular are evolutionary

algorithms in multiobjective optimization?

The potential of evolutionary algorithms in multiobjective
optimization was hinted by Rosenberg in the 1960s, but the first
actual implementation was produced in the mid-1980s (Schaffer,
1984). During ten years, the field remain practically inactive, but it
started growing in the mid-1990s, in which several techniques and
applications were developed.
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How popular are evolutionary

algorithms in multiobjective optimization?
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Figure 1: Citations by Year (up to year 2001)
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Classifying Techniques

We will use the following simple classification of Evolutionary
Multi-Objective Optimization (EMOO) approaches:

• First Generation Techniques

– Non-Pareto approaches

– Pareto-based approaches

• Second Generation Techniques
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First Generation Techniques

Non-Pareto Techniques include the following:

• Aggregating approaches

• VEGA

• Lexicographic ordering

• The ε-constraint Method

• Target-vector approaches
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First Generation Techniques

Pareto-based Techniques include the following:

• Pure Pareto ranking

• MOGA

• NSGA

• NPGA and NPGA2
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Second Generation Techniques

• PAES, PESA and PESA II

• SPEA and SPEA 2

• NSGA-II

• MOMGA and MOMGA-II

• micro-GA
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Non-Pareto Techniques

• Approaches that do not incorporate directly the concept of
Pareto optimum.

• Incapable of producing certain portions of the Pareto front.

• Efficient and easy to implement, but appropriate to handle
only a few objectives.
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Aggregation Functions

• These techniques are called “aggregating functions” because
they combine (or “aggregate”) all the objectives into a single
one. We can use addition, multiplication or any other
combination of arithmetical operations.

• Oldest mathematical programming method, since aggregating
functions can be derived from the Kuhn-Tucker conditions for
nondominated solutions.
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Aggregation Functions

An example of this approach is a sum of weights of the form:

min
k
∑

i=1

wifi(~x) (4)

where wi ≥ 0 are the weighting coefficients representing the relative importance

of the k objective functions of our problem. It is usually assumed that

k
∑

i=1

wi = 1 (5)
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Advantages and Disadvantages

• Easy to implement

• Efficient

• Linear combinations of weights do not work when the Pareto
front is concave, regardless of the weights used (Das, 1997).
Note however, that the weights can be generated in such a way
the the Pareto front is rotated (Jin et al., 2001). In this last
case, concave Pareto fronts can be efficiently generated.
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Sample Applications

• Design of DSP systems (Arslan, 1996).

• Water quality control (Garrett, 1999).

• System-level synthesis (Blickle, 1996).

• Design of optical filters for lamps (Eklund, 1999).
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Vector Evaluated Genetic Algorithm (VEGA)

• Proposed by Schaffer in the mid-1980s (1984,1985).

• It uses subpopulations that optimize each objective separately.
The concept of Pareto optimum is not directly incorporated
into the selection mechanism of the GA.
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Figure 2: Schematic of VEGA selection.
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Advantages and Disadvantages

• Efficient and easy to implement.

• It doesn’t have an explicit mechanism to maintain diversity. It
doesn’t necessarily produce nondominated vectors.

33



Sample Applications

• Aerodynamic optimization (Rogers, 2000).

• Combinational circuit design at the gate-level (Coello, 2000).

• Design multiplierless IIR filters (Wilson, 1993).

• Groundwater pollution containment (Ritzel, 1994).
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Lexicographic Ordering

In this method, the user is asked to rank the objectives in order of
importance. The optimum solution is then obtained by minimizing
the objective functions, starting with the most important one and
proceeding according to the assigned order of importance of the
objectives.

It is also possible to select randomly a single objective to optimize
at each run of a GA.
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Advantages and Disadvantages

• Efficient and easy to implement.

• Requires a pre-defined ordering of objectives and its
performance will be affected by it.

• Inappropriate when there is a large number of objectives.
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Sample Applications

• Symbolic layout compaction (Fourman, 1985).

• Robot path planning (Gacôgne, 1999).

• Personnel scheduling (El Moudani et al., 2001).
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The ε-Constraint Method

This method is based on minimization of one (the most preferred
or primary) objective function, and considering the other objectives
as constraints bound by some allowable levels εi. Hence, a single
objective minimization is carried out for the most relevant
objective function subject to additional constraints on the other
objective functions. The levels εi are then altered to generate the
entire Pareto optimal set.
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Advantages and Disadvantages

• Easy to implement.

• Potentially high computational cost (many runs may be
required).
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Sample Applications

• Preliminary design of a marine vehicle (Lee, 1997).

• Groundwater pollution containment problems (Ranjithan,
1992).

• Fault tolerant system design (Schott, 1995).
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Target-Vector Approaches

• Definition of a set of goals (or targets) that we wish to achieve
for each objective function. EA minimizes differences between
the current solution and these goals.

• Can also be considered aggregating approaches, but in this
case, concave portions of the Pareto front could be obtained.

• Examples: Goal Programming, Goal Attainment, min-max
method.
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Advantages and Disadvantages

• Efficient and easy to implement.

• Definition of goals may be difficult in some cases and may
imply an extra computational cost.

• Some of them (e.g., goal attainment) may introduce a
misleading selection pressure under certain circumstances.

• Goals must lie in the feasible region so that the solutions
generated are members of the Pareto optimal set.
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Sample Applications

• Intensities of emission lines of trace elements (Wienke, 1992).

• Optimization of a fishery bioeconomic model (Mardle et al.,
2000).

• Optimization of the counterweight balancing of a robot arm
(Coello, 1998).
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Pareto-based Techniques

• Suggested by Goldberg (1989) to solve the problems with
Schaffer’s VEGA.

• Use of nondominated ranking and selection to move the
population towards the Pareto front.

• Requires a ranking procedure and a technique to maintain
diversity in the population (otherwise, the GA will tend to
converge to a single solution, because of the stochastic noise
involved in the process).
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Pure Pareto Ranking

Although several variations of Goldberg’s proposal have been
proposed in the literature (see the following subsections), several
authors have used what we call “pure Pareto ranking”. The idea in
this case is to follow Goldberg’s proposal as stated in his book
(1989).
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Advantages and Disadvantages

• Relatively easy to implement.

• Problem to scale the approach, because checking for
nondominance is O(kM2), where k is the amount of objectives
and M is the population size.

• Fitness sharing is O(M2).

• The approach is less susceptible to the shape or continuity of
the Pareto front.
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Sample Applications

• Water distribution network (Halhal et al., 1997)

• Design of DSP systems (Bright, 1999).

• Design of electromagnetic devices (Weile et al., 1996).

• Optimal planning of an electrical power distribution system
(Ramı́rez, 2001).
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Multi-Objective Genetic Algorithm (MOGA)

• Proposed by Fonseca and Fleming (1993).

• The approach consists of a scheme in which the rank of a
certain individual corresponds to the number of individuals in
the current population by which it is dominated.

• It uses fitness sharing and mating restrictions.
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Advantages and Disadvantages

• Efficient and relatively easy to implement.

• Its performance depends on the appropriate selection of the
sharing factor.

• MOGA was the most popular first-generation MOEA and it
normally outperformed all of its contemporary competitors.
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Some Applications

• Fault diagnosis (Marcu, 1997).

• Control system design (Chipperfield 1995; Whidborne, 1995;
Duarte, 2000).

• Design of antennas (Thompson, 2001).

• System-level synthesis (Dick, 1998).
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Nondominated Sorting Genetic Algorithm

(NSGA)

• Proposed by Srinivas and Deb (1994).

• It is based on several layers of classifications of the individuals.
Nondominated individuals get a certain dummy fitness value
and then are removed from the population. The process is
repeated until the entire population has been classified.

• To maintain the diversity of the population, classified
individuals are shared (in decision variable space) with their
dummy fitness values.
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Figure 3: Flowchart of the Nondominated Sorting Genetic Algorithm (NSGA).
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Advantages and Disadvantages

• Relatively easy to implement.

• Seems to be very sensitive to the value of the sharing factor.
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Sample Applications

• Water quality control (Reed et al., 2001).

• Design of control systems (Blumel, 2001).

• Constellation design (Mason, 1999).

• Computational fluid dynamics (Marco, 1999).
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Niched-Pareto Genetic Algorithm (NPGA)

• Proposed by Horn et al. (1993,1994).

• It uses a tournament selection scheme based on Pareto
dominance. Two individuals randomly chosen are compared
against a subset from the entire population (typically, around
10% of the population). When both competitors are either
dominated or nondominated (i.e., when there is a tie), the
result of the tournament is decided through fitness sharing in
the objective domain (a technique called equivalent class
sharing was used in this case).
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Advantages and Disadvantages

• Easy to implement.

• Efficient because does not apply Pareto ranking to the entire
population.

• It seems to have a good overall performance.

• Besides requiring a sharing factor, it requires another
parameter (tournament size).
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Sample Applications

• Analysis of experimental spectra (Golovkin, 2000).

• Feature selection (Emmanouilidis, 2000).

• Fault-tolerant systems design (Schott, 1995).

• Road systems design (Haastrup & Pereira, 1997).
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NPGA 2

Erickson et al. (2001) proposed the NPGA 2, which uses Pareto
ranking but keeps tournament selection (solving ties through fitness
sharing as in the original NPGA).

Niche counts in the NPGA 2 are calculated using individuals in the
partially filled next generation, rather than using the current
generation. This is called continuously updated fitness sharing, and
was proposed by Oei et al. (1991).
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Sample Applications

• Design of groundwater remediation systems (Erickson et al.,
2001).
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Second Generation Techniques

The second generation in evolutionary multiobjective optimization
emphasizes efficiency. Secondary (external) populations become
common and clever ways are devised to generate solutions that are
both nondominated and uniformly distributed.

Ways around two problems: fitness sharing is O(N2), and checking
for Pareto dominance is O(kM2) per generation.
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The Pareto Archived Evolution Strategy (PAES)

PAES was introduced by Knowles & Corne (2000).

It uses a (1+1) evolution strategy together with an external archive
that records all the nondominated vectors previously found.

It uses an adaptive grid to maintain diversity.
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Sample Applications

• Off-line routing problem (Knowles, 1999)

• Adaptive distributed database management problem (Knowles,
2000)
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The Pareto Envelope-based Selection Algorithm

(PESA)

PESA was proposed by Corne et al. (2000). This approach uses a
small internal population and a larger external (or secondary)
population. PESA uses the same hyper-grid division of phenotype
(i.e., objective funcion) space adopted by PAES to maintain
diversity. However, its selection mechanism is based on the
crowding measure used by the hyper-grid previously mentioned.
This same crowding measure is used to decide what solutions to
introduce into the external population (i.e., the archive of
nondominated vectors found along the evolutionary process).
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Sample Applications

• Telecommunications problems (Corne et al., 2000).
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The Pareto Envelope-based Selection

Algorithm-II (PESA-II)

PESA-II (Corne et al., 2001) is a revised version of PESA in which
region-based selection is adopted. In region-based selection, the
unit of selection is a hyperbox rather than an individual. The
procedure consists of selecting (using any of the traditional
selection techniques) a hyperbox and then randomly select an
individual within such hyperbox.
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Sample Applications

• Telecommunications problems (Corne et al., 2001).
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The Strength Pareto Evolutionary Algorithm

(SPEA)

SPEA was introduced by Zitzler & Thiele (1999).

It uses an external archive containing nondominated solutions
previously found.

It computers a strength value similar to the ranking value used by
MOGA.

A clustering technique called “average linkage method” is used to
keep diversity.
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Sample Applications

• Exploration of trade-offs of software implementations for DSP
algorithms (Zitzler, 1999)

• Treatment planning (Petrovski, 2001)

• Allocation in radiological facilities (Lahanas, 2001)
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SPEA2

A revised version of SPEA has been recently proposed: SPEA2
(Zitzler, 2001). SPEA2 has three main differences with respect to
its predecessor: (1) it incorporates a fine-grained fitness assignment
strategy which takes into account for each individual the number of
individuals that dominate it and the number of individuals by
which it is dominated; (2) it uses a nearest neighbor density
estimation technique which guides the search more efficiently, and
(3) it has an enhanced archive truncation method that guarantees
the preservation of boundary solutions.
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Sample Applications

• Control code size and reduce bloat in genetic programming
(Bleuler, 2001).
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NSGA-II

Deb et al. (2000,2002) proposed a new version of the
Nondominated Sorting Genetic Algorithm (NSGA), called
NSGA-II, which is more efficient (computationally speaking), uses
elitism and a crowded comparison operator that keeps diversity
without specifying any additional parameters.
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Sample Applications

• Forest management (Ducheyne, 2001).

• Shape optimization (Deb, 2001)
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The Multi-Objective Messy Genetic Algorithm

(MOMGA)

MOMGA was proposed by Van Veldhuizen and Lamont (2000).
This is an attempt to extend the messy GA to solve multiobjective
optimization problems.

MOMGA consists of three phases: (1) Initialization Phase, (2)
Primordial Phase, and (3) Juxtapositional Phase. In the
Initialization Phase, MOMGA produces all building blocks of a
certain specified size through a deterministic process known as
partially enumerative initialization. The Primordial Phase
performs tournament selection on the population and reduces the
population size if necessary. In the Juxtapositional Phase, the
messy GA proceeds by building up the population through the use
of the cut and splice recombination operator.
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Sample Applications

• Design of controllers (Herreros, 2000).

• Traditional benchmarks (Van Veldhuizen & Lamont, 2000).
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The Multi-Objective Messy Genetic Algorithm-II

(MOMGA-II)

Zydallis et al. (2001) proposed MOMGA-II. In this case, the
authors extended the fast-messy GA, which consists of three
phases: (1) Initialization Phase, (2) Building Block Filtering, and
(3) Juxtapositional Phase. Its main difference with respect to the
original messy GA is in the two first phases. The Initialization
Phase utilizes probabilistic complete initialization which creates a
controlled number of building block clones of a specified size. The
Building Block Filtering Phase reduces the number of building
blocks through a filtering process and stores the best building
blocks found. The Juxtapositional Phase is the same as in the
MOMGA.
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Sample Applications

• Traditional benchmarks (Zydallis et al., 2001).
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The Micro Genetic Algorithm

for Multiobjective Optimization
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Sample Applications

• It has been used only with traditional benchmarks (Coello,
2001)
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Some Interesting Statistics
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Figure 4: Lex = Lexicographic, Lin = Linear Fitness Combination, NLin =

Nonlinear Fitness Combination, Prg = Progressive, Smp = Independent Sam-

pling, Crt = Criterion Selection, Agg = Aggregation Selection, Rnk = Pareto

Ranking, R&N = Pareto Rank- and Niche-Based Selection, Dme = Pareto Deme-

Based Selection, Elit = Pareto Elitist-Based, Hybr = Hybrid Selection, Cmp =

Technique Comparisons, Theo = Theory and Reviews.
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Some Interesting Statistics
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Figure 5: MOEA citations by type of technique (up to year 2001)
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Some Interesting Statistics
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Figure 6: Number of objective functions reported in the literature (up to year

2001)
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Theory

The most important theoretical work related to EMOO has
concentrated on the following issues:

• Studies of convergence towards the Pareto optimum set
(Rudolph, 1998, 2000, 2001; Hanne 2000,2000a; Veldhuizen,
1998).

• Ways to compute appropriate sharing factors (or niche sizes)
(Horn, 1997, Fonseca, 1993).
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Theory

Much more work is needed. For example:

• To study the structure of fitness landscapes (Kaufmann, 1989)
in multiobjective optimization problems.

• Convergence of parallel MOEAs.

• Theoretical limit to the number of objective functions that can
be used in practice.
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Theory

• Formal models of alternative heuristics used for multiobjective
optimization (e.g., ant system, particle swarm optimization,
etc.).

• Complexity analysis of MOEAs and running time analysis.

• Study of population dynamics for an MOEA.

84



Test Functions

• Good benchmarks were disregarded for many years.

• Recently, there have been several proposals to design test
functions suitable to evaluate EMOO approaches.

• Constrained test functions are of particular interest.

• Multiobjective combinatorial optimization problems have also
been proposed.
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Test Functions

• After using biobjective test functions for a few years, test
functions with three objectives and higher numbers of decision
variables are becoming popular.

• What about dynamic test functions, uncertainty and real-world
applications?
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Sample Test Functions
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Figure 7: Ptrue of one of Deb’s test functions.

87



Sample Test Functions
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Figure 8: PFtrue of one of Deb’s test functions.
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Sample Test Functions
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Figure 9: Ptrue of Osyczka’s function.
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Sample Test Functions
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Metrics

Three are normally the issues to take into consideration to design a
good metric in this domain (Zitzler, 2000):

1. Minimize the distance of the Pareto front produced by our
algorithm with respect to the true Pareto front (assuming we
know its location).

2. Maximize the spread of solutions found, so that we can have a
distribution of vectors as smooth and uniform as possible.

3. Maximize the amount of elements of the Pareto optimal set
found.
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Sample Metrics

Error rate: Enumerate the entire intrinsic search space explored
by an evolutionary algorithm and then compare the true Pareto
front obtained against those fronts produced by any MOEA.

Obviously, this metric has some serious scalability problems.
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Sample Metrics

Spread: Use of a statistical metric such as the chi-square
distribution to measure “spread” along the Pareto front.

This metric assumes that we know the true Pareto front of the
problem.
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Sample Metrics

Attainment Surfaces: Draw a boundary in objective space that
separates those points which are dominated from those which are
not (this boundary is called “attainment surface”).

Perform several runs and apply standard non-parametric statistical
procedures to evaluate the quality of the nondominated vectors
found.

It is unclear how can we really assess how much better is a certain
approach with respect to others.
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Sample Metrics

Generational Distance: Estimates how far is our current Pareto
front from the true Pareto front of a problem using the Euclidean
distance (measured in objective space) between each vector and the
nearest member of the true Pareto front.

The problem with this metric is that only distance to the true
Pareto front is considered and not uniform spread along the Pareto
front.
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Sample Metrics

Coverage: Measure the size of the objective value space area
which is covered by a set of nondominated solutions.

It combines the three issues previously mentioned (distance, spread
and amount of elements of the Pareto optimal set found) into a
single value. Therefore, sets differing in more than one criterion
cannot be distinguished.
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Promising areas of future research

• Incorporation of preferences.

• Emphasis on efficiency (alternative data structures and clever
algorithms that minimize Pareto dominance checkings).

• More test functions and metrics.
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Promising areas of future research

• More theoretical studies.

• New approaches (hybrids with other heuristics) and extensions
of alternative heuristics (e.g., particle swarm optimization, the
ant system, cultural algorithms, etc.).

• New applications.

• What to expect for the third generation?
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Promising areas of future research

• Tackling dynamic (multiobjective) test functions, handling
uncertainty and high epistasis.

• Answering fundamental questions such as: what makes difficult
a multiobjective optimization problem for an EA? Can we
really produce reliable metrics for multiobjective optimization?
Can we design robust MOEAs? Is there a way around the
dimensionality curse in multiobjective optimization? Can we
benefit from coevolutionary schemes?
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To know more about evolutionary

multiobjective optimization

Please visit our EMOO repository located at:

http://delta.cs.cinvestav.mx/˜ccoello/EMOO

with mirrors at:

http://www.jeo.org/emo

and:

http://www.lania.mx/˜ccoello/EMOO
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To know more about evolutionary

multiobjective optimization
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To know more about evolutionary

multiobjective optimization

The EMOO repository currently contains:

• Over 940 bibliographic references including 36 PhD theses

• Contact info of about 50 EMOO researchers

• Public domain implementations of SPEA, NSGA, NSGA-II,
the microGA, and PAES, among others.
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To know more about evolutionary

multiobjective optimization

You can consult the following book recently published:

Carlos A. Coello Coello, David A. Van Veldhuizen and Gary B.
Lamont, Evolutionary Algorithms for Solving
Multi-Objective Problems, Kluwer Academic Publishers, New
York, May 2002, ISBN 0-3064-6762-3.
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