
Extraction and reuse of design patterns from genetic algorithms
using case-based reasoning

E. I. Pérez, C. A. C. Coello, A. H. Aguirre

Abstract. In this paper, we propose a case-based reason-
ing scheme in which we extract domain knowledge (in the
form of design patterns) from a genetic algorithm used to
optimize combinational logic circuits at the gate level.
Such information is used in two ways: first, we show how
the selection pressure of the genetic algorithm is biased by
Boolean simplification rules that are normally adopted by
human designers, including some which are not com-
pletely straightforward. Secondly, we reuse some of these
design patterns extracted from the evolutionary process to
reduce convergence times of a genetic algorithm using
previously found solutions as cases to solve similar
problems.

Keywords Genetic algorithms, Case-based-reasoning,
Circuit design

1
Introduction
The use of evolutionary algorithms for design task has
been subject of a considerable amount of research in the
last few years. However, the attempt to extract design
patterns from an evolutionary algorithm used for a design
task is less common in the literature, mainly because of the
difficulty of this problem. In general, it is considerably
difficult for an evolutionary algorithm to suggest directly
new design principles or to be able to extract such
principles from the search performed by an evolutionary

algorithm, Nevertheless, in this paper we suggest that the
careful study of the behavior of an evolutionary algorithm
when solving a design problem could help us to infer the
design principles that are actually guiding the evolutionary
process.

We believe that a well-suited domain to test our
hypothesis is precisely the field of combinational circuit
design, since in this area human designers have well-
defined design principles and simplification rules. The
objective is also well-defined: to produce an electronic or
algebraic machine that carries out a definite function (e.g.,
addition) on a number of input variables. Additionally, we
want this design to be optimum in a sense. For the pur-
poses of this paper, optimality will be defined in terms of
the number of gates employed by a function circuit (i.e.,
we wish to produce a circuit that matches all the outputs of
the truth table and, at the same time, we want such a
circuit to use as few gates as possible). In this paper, we
will show how an evolutionary algorithm can produce
(through an emergent process) simplification rules that
human designers can use.

Another interesting aspect of this work is that we show
how case-based reasoning can be used to perform modular
design of circuits. The idea is to use small components as
building blocks to produce more complex circuits. This
idea, although intuitive, is not completely straightforward
in practice, since the selection pressure of an evolutionary
algorithm may destroy partial solutions to a problem.
Our approach is therefore, to use a database of solutions
previously found that have some (potentially) useful
information. Then, using techniques from case-based
reasoning, we retrieve this information when designing
similar circuits (similarity has to be defined according to
certain criteria in this context) and incorporate it in the
population of another evolutionary algorithm, as to reduce
convergence times and to encourage modular design. The
system will be illustrated with the design of a full adder.

2
Related work
This paper extends our previous work in combinational
circuit design using genetic algorithms (GAs) [1, 2], and it
attempts to show the potential of incorporating domain-
specific knowledge generated by the GA itself into other
GAs used to solve similar problems.

Apparently, the first attempt to combine case-based
reasoning (CBR) and GAs was done by Louis et al. [12].
In this paper, the authors use CBR-principles to explain
solutions found by a GA. This same idea was also

Focus Soft Computing 9 (2005) 44–53 � Springer-Verlag 2003

DOI 10.1007/s00500-003-0333-8

Published online: 13 October 2003

E. I. Pérez (&)
Instituto de Investigaciones Eléctricas Av. Reforma
#113 Col. Palmira 62490 Temixco Morelos,
MEXICO e-mail: eislas@iie.org.mx

C. A. C. Coello
CINVESTAV-IPN Departamento de Ingenierı́a Eléctrica Sección
de Computación Av. Instituto Politécnico Nacional
No. 2508 Col. San Pedro Zacatenco México,
D.F. 07300, MEXICO

A. H. Aguirre
Centro de Investigación en Matemáticas Área Computación
Callejón Jalisco s/n Mineral de Valenciana Guanajuato,
Guanajuato 36240, MEXICO

The second author acknowledges support from CONACyT
through project No. 32999-A. The third author acknowledges
partial support for this work through CONACyT Project No.
I-39324-A.

44

discussed in Louis’ dissertation [10], where he proposed a
system that combined CBR with GAs to improve perfor-
mance of the GA. These ideas were further developed by
Louis and Johnson [11] and by Liu [9]. Although Louis
[10] and Louis and Johnson [11] used a few examples from
circuit design (mainly parity checkers) to illustrate their
principles, they did not focus their work specifically on the
design of combinational circuits as in our case. Never-
theless, our current proposal has been influenced by this
prior work.

Gómez de Silva Garza and Maher [4, 5] proposed a case
adaptation method based on genetic algorithms. Their
approach, which was implemented in a computational
system called GENCAD, uses domain knowledge to help
the genetic algorithm decide which solutions generated
through the evolutionary process can be useful in the fu-
ture. The main idea is to establish a set of cases previously
identified that will be used to feed the initial population of
a genetic algorithm. Then, they use the search engine of
the genetic algorithm to adapt such cases until a suitable
solution is found.

Several other researchers have proposed approaches
that combine CBR and GAs. See for example [20, 16, 17].
However, the emphasis of these papers has been to illus-
trate the benefits of this sort of hybrid scheme rather than
emphasizing a certain application domain like in our case.

Also, some researchers in evolvable hardware have
pointed out the potential benefits of using GAs as a
discovery engine capable of producing novel and even
inspirational designs. Miller et al. [15], for example,
showed that through the evolution of a hierarchical series
of examples, it was possible to rediscover the well-known
ripple-carry principle for building adder circuits of any
size. However, no CBR is used in this work. The possibility
of seeing the extraction of design rules from an
evolutionary algorithm as a form of data mining is also
suggested by [13]. Finally, in [14], the techniques for
landscape analysis developed in [19] are studied. Also, the
authors discuss the use of case-based reasoning techniques
to extract and reuse rules implicitly used by an evolu-
tionary algorithm [14]. In this case, a nearest neighbor
matching function is used to rank cases in the case-base.

Recently, Thomson [18] explored the potential of
evolving larger systems more quickly via a method of
visualizing the subcomponents of the final solution when
they appear. Taking these partially evolved solutions from
short runs and feeding them to another GA, the conver-
gence time of the GA can be improved. This work is closer
to our own, but unlike our proposal, Thomson does not
use CBR in his system.

The problem the evolvable hardware community faces
is to find building blocks suitable for evolution. Gero and
Kazakov [3] have also studied this problem but in the
architectural design domain. Their method works in two
stages: first, the building blocks that produce designs with
desired characteristics are evolved; then these building
blocks are used to seed the initial population for evolving
the final design.

Our approach does not need to evolve suitable build-
ing blocks since the evolving set of logic gates is known
in advance. The set is sound and complete in Boolean

logic (a design issue that Gero and Kazakov cannot prove
for their problem domain), thus our goal is to assist the
evolutionary process by providing it with simplification
rules previously used in the evolution of related
problems.

Our work aims then to explore the potential of CBR
combined with GAs to design combinational circuits
which can be optimized according to a certain metric
(number of gates, in our case).

3
Case-based reasoning
Case-Based Reasoning (CBR) is a problem-solving para-
digm that in many respects is fundamentally different
from other major AI approaches [8]. Instead of relying
solely on general knowledge of a problem domain, or
making associations along generalized relationships be-
tween problem descriptors and conclusions, CBR is able to
utilize the specific knowledge of previously experienced,
concrete problem situations (cases). Finding a similar past
case, and reusing it in the new problem situation helps to
solve a new problem. A second important difference is that
CBR is also an approach to incremental, sustained learn-
ing, since a new experience is retained each time a prob-
lem has been solved, making it immediately available for
future problems.

Human knowledge is based on how a previous problem
was solved instead of applying abstract and specific rules
about a possible solution to that problem. In CBR if the
same situation is presented many times, the solution does
not always has to be found by returning to the beginning.

A CBR system can be divided in the following main
stages (see Fig. 1):

1. Identifying the new problem: The system receives the
input case (new problem) and analyzes its most important
attributes and characteristics in order to search amongst
the cases that are most similar to the cases in the case base.

Fig. 1. General structure of a CBR system

45

The attributes used to measure the similarity between the
cases are called indexes.

2. Finding cases with similarities to the new case: The
following step is to find the cases that have more attributes
in common with the attributes of the new case using the
indexes found in the previous step. Sometimes it is nec-
essary to reduce the subset in order to find the most rel-
evant cases. The algorithm should be fast and efficient and
the design is a critical and important aspect when the case
base is sufficiently large. The selection of cases from the
case base could be considered as analogous to natural
selection due to the fact that it is based only on the
distance measure (similarity rather than fitness) between
the new case and each case in the case base.

3. Arriving at the Solution: Once we have the most similar
cases, the system starts the adaptation process, which
consists of the combination and modification of the most
similar cases to form a new solution, and additionally an
interpretation or an explanation depending on the appli-
cation of the system. In most applications it is better if the
system explains how it finds the new case.

4. Evaluating the solution: The solution obtained in the
previous stage is a tentative or potential solution. It is
necessary to do an evaluation of the proposed solution
before giving it to the final user. This evaluation should
show the qualities and weaknesses of the solution for the
evaluation of its usefulness.

5. Assignment and storing of the new case: Once the
solution has been created and evaluated, it is given to the
user and then it is possible to create a new case. This new
case is formed from the solution found and the original
case (problem). Indexes are assigned to the new case and it
is stored in the case base.

6. Explaining, repairing and testing: If the solution fails, it
is important that the system obtains and analyzes the

information in order to avoid making the same mistakes.
If something unusual happens, the system should try to
explain it. Subsequently, the system repairs the solution
based on the explanation and returns to the evaluation
stage.

4
Statement of the problem
We propose an approach to extract design patterns from a
genetic algorithm used to design combinational circuits.
We will extract knowledge at two stages of the evolution-
ary process: at the end of a run and during a run. In the
first case, the knowledge to be extracted will be the Bool-
ean laws used by the evolutionary algorithm to design a
circuit. These laws will be obtained after comparing the
results produced from two or more runs of the GA (with
different parameters) with the solution produced by a
human expert.

In the second case (extraction during a run), the
knowledge extracted will be the building blocks that the
circuit structurally maintains during its evolutionary
process. When some individuals arrive at a certain (pre-
defined) threshold in their fitness value during the evo-
lutionary process, it means that these circuits have evolved
long enough to contain good building blocks and we can
then extract the knowledge that they contain and store it in
a case base for further use.

We are interested in showing the potential of combining
GAs with case-based reasoning to improve performance of
the GA used to solve similar problems. The idea is to store
solutions that were previously generated by the same GA
and use them as a memory of ‘‘past experiences’’. Then, we
can use a mechanism to detect cases similar to the one
being solved and retrieve from this ‘‘memory’’ some
solutions (or past experiences) that can be useful to solve
the problem at hand.

For the experiments described next, we use the genetic
algorithm with integer representation and matrix repre-
sentation (encoded as fixed-length linear chromosomes)
that we have adopted in previous work [1, 2] (see Fig 2).

Fig. 2. Matrix used to rep-
resent a circuit. Each gate
gets its inputs from either
of the gates in the previous
column. Note the encoding
adopted for each element of
the matrix as well as the set
of available gates used

46

Our GA uses a fitness function that works in two stages:
first, it tries to reach the feasible region (i.e., it tries to
produce circuits which match all the outputs of the truth
table) and then, once feasible circuits are available, it tries
to maximize the number of WIRE gates (WIRE means no
gate; this type of gate is used to allow variable-length
Boolean expressions within our fixed-length representa-
tion); this aims to produce feasible circuits that have as
few gates as possible.

5
Proposed system
The proposed system that combines a GA with CBR is
depicted in Fig 5.

To understand better the way in which our system
works, we will describe in more detail the process of
extracting knowledge in the two situations previously
mentioned:

1. At the end of the evolutionary process: In this case, we
perform complete runs of a GA solving a certain circuit.
Once a solution is found, a new case is formed with such a
solution and the original problem. The original problem
will be considered as the attributes in the case base and the
solution will be the output of the case. The system will
assign other attributes, in order to have indexes that help
in retrieving the most similar cases in a more efficient way.

2. During the evolutionary process: In this case, our work
is inspired on the research of Louis [10]. The GA records
data for each individual in the population as it is created
and evaluated. Such data includes a fitness measure, the
genotype and chronological data, as well as some infor-

mation on the individual’s parents. This collection of data
is the initial case data. Though normally discarded by the
time an individual is replaced, all of the case data collected
is usually contained in the genetic algorithm’s population
at some point and it is easy to extract. When a sufficient
number of individuals have been created over a number of
generations, the initial case data is sent to a clustering
program. A hierarchical clustering program clusters the
individuals according to both, the fitness and the alleles of
the genotype. This clustering constructs a binary tree in
which each leaf includes the data of a specific individual.
The binary tree structure provides an index for the initial
case base. The numbers at the leaves of the tree corre-
spond to the case number (an identification number) of an
individual created by the GA. An abstract case is computed
for each internal node based on the information contained
in the leaves and nodes beneath. The final case base in-
cludes: 1) cases corresponding directly to GA individuals
(at the leaves) and 2) more abstract cases made up of
information generalized from the leaves.

5.1
Representing circuits as strings
Figure 4 shows an example of the three different repre-
sentations of a logic circuit that we normally adopt in the
system proposed in this paper: (1) a graphical represen-
tation using two-input gates (used to illustrate the final
solutions produced by our system), (2) a symbolic two-
dimensional matrix (used by our system to represent the
solutions found during the evolutionary process) and (3) a
string of integers (the genotypes manipulated by our
evolutionary algorithm to perform the search). The integer
representation adopted for the genotypes is composed of

Fig. 3. Proposed system to
optimize combinational
logic circuits using GAs and
CBR

47

triplets representing the two inputs and the gate type. All
the gates and possible inputs available are encoded by an
integer. For example, the triplet (0 2 0) represents that the
gate AND (encoded in the string by number zero) receives
its first input from element zero (assuming the matrix
representation described in Fig. 4) and its second input
from element two.

5.2
Representing circuits in the case base
Depending on the stage at which knowledge is extracted,
the representation adopted to store it in the case base can
vary:

1. At the end of the evolutionary process: The cases will
be stored from problems that have been solved previously
and they will be used for seeding the initial population of a
GA. The attributes contained in this part of the case base
are the following1 :

– Case ID
– Number of Inputs
– Number of Outputs
– Output Values
– Fitness
– Genotype

Some examples of this sort of cases stored in the case base
are shown in Table 1. The attribute output values is used
to verify that the outputs indicated in the truth table are
satisfied. All those individuals matching the desired output
values are selected as ‘‘cases’’ to be stored in the case base.
Upon their storage, these cases are sorted according to
their fitness (from largest to smallest fitness value). The
idea is that the cases with the highest fitness can be used in
the future to seed the initial population of another genetic
algorithm.

2. During the evolutionary process: The best individuals
are recognized during early generations of the evolution-
ary process. Afterwards they are stored as cases in the case
base and retrieved in later generations. Some of the
attributes that are contained in this part of the case base
are the following:

– Case ID
– Distance from the root of the tree to the level of the case
– Schema for the case
– Schema order
– Average fitness
– Weight: Number of leaves (individuals) below
– Generation information: the earliest and latest leaf

occurrence as well as the average in the subtree

Some examples of this sort of cases stored in the case base
are shown in Table 2.

Additionally, we also perform some analysis by hand to
try to understand the way in which the GA performs the
simplification of a circuit. As we will show in the examples
presented next, the GA is able to rediscover several of the
simplification rules commonly used in Boolean algebra
and, furthermore, was able to discover ‘‘new’’ simplifica-
tion laws that are stored in the case base and can also be
used by human designers.

6
Examples
Next, we provide an example of how is the knowledge
extracted both at the end and during the evolutionary
process of a GA with integer representation used to design
combinational logic circuits at the gate-level.

6.1
An example
In this case, the aim is to find the Boolean expression that
corresponds to the circuit whose truth table is provided in
Table 3. We will start by providing the steps followed to
extract knowledge at the end of the evolutionary process.
First, we performed 10 runs using integer representation

Fig. 4. Three different ways of representing the same circuit:
a a graphical representation using two-input gates, b a symbolic
matrix, and c a string of integers

1 This scheme presents certain resemblance with the one
proposed by Louis [10].

48

and the following parameters2: population size = 600,
maximum number of generations = 200, crossover rate =
0.6, mutation rate = 0.001. The best solution found from
these runs has 9 gates and its corresponding Boolean
expression is shown (under ‘‘GA Setup 1’’) in Table 4. This
Boolean expression is not better than the best solution found
by a Human Designer using Karnaugh maps (this solution
has 6 gates). However, we additionally performed 10 more
runs using a population size of 3000 and a maximum
number of generations of 120. The best solution found from
these runs has 4 gates (i.e., it is better than the solution
produced by a human expert) and its corresponding Bool-
ean expression is shown (under ‘‘GA Setup 2’’) in Table 4.

6.1.1
Analysis
The next step was to analyze (by hand) the solutions
produced by our GA with respect to those generated by the
human designer:

X ¼ ððA� BÞ0 � ðC � DÞ0Þ0 ¼ ððA� BÞ � ðC � DÞ0Þ
ð1Þ

We have discovered a ‘‘new’’ DeMorgan’s theorem3 for
XOR gates of the type:

ðS0 � T0Þ0 ¼ ðS� TÞ0 ð2Þ
A case stored in the case base as a product of the
analysis at the end of the evolutionary process is shown
in Table 5.

Then, we performed an analysis during the evolutionary
process, trying to detect the basic building blocks used by
the evolutionary algorithm to generate the best solutions
produced. Figures 5, 6 and 7 show several snapshots of the
solutions produced by our GA with the second set of
parameters previously described (population size = 3000,
maximum number of generations = 120). From these
pictures, we can see that the circuit has a fitness value of 17
at generation 9 and we were able to recognize the building
blocks used by the GA (such building blocks are indicated
with a thicker box). At generation 67, the maximum fitness

Table 1. Cases for knowledge
extraction at the end of the
evolutionary process

Case ID Num
Inputs

Num.
Outputs

Output
Values

Fitness Genotype

1 3 2 00000000000100111 39 3230132431232134103231
2 3 2 01101001000010100 38 3230132431232144133204
3 3 2 00000000000100111 39 0200234133241431231130
4 2 2 00000001000011001 31 0100142134131433134130
5 3 2 00000000000000011 36 0100142134131433134130
6 2 2 00000001000011001 31 0200234133241431231130

Table 2. Cases for knowledge
extraction during the evolu-
tionary process

CaseID Distance Schema Order Fitness Weight Generation

1 5 710*13*2* 6 30 6 50
2 2 **4*50*2* 4 60 8 30
3 8 163*14*41 7 15 4 67
4 8 350610*7* 7 65 4 32
5 7 214*16169 8 30 6 50
6 4 **3*10*2* 4 60 8 26

Table 3. Truth table for the circuit of the example

A B C D X

0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 0 1 1 1
0 1 0 0 0
0 1 0 1 1
0 1 1 0 1
0 1 1 1 0
1 0 0 0 0
1 0 0 1 1
1 0 1 0 1
1 0 1 1 0
1 1 0 0 1
1 1 0 1 0
1 1 1 0 0
1 1 1 1 1

Table 4. Comparison of results between a human designer and
two setups of our GA for the example

Human Designer
X ¼ ððA� BÞ0 � ðC � DÞ0Þ0
6 gates
3 XORs, 3 NOTs
GA Setup 1
X ¼ ððA� CÞ � BÞ0 � ððB0BÞ þ D0Þ0
9 gates
1 AND, 1 OR, 3 XORs, 4 NOTs
GA Setup 2
X ¼ ððA� BÞ � ðC � DÞÞ0
4 gates
1 NOT, 3 XORs

2 The parameters indicated were empirically derived after
performing a set of experiments.

3 By ‘‘new’’ we mean that this DeMorgan theorem is not part of
the basic set of Boolean algebra simplification rules normally
adopted for circuit design.

49

has increased, reaching 27, and we can observe that the
building blocks previously mentioned have moved to a
different position. Finally, when reaching generation 101,
we have a fitness of 37 (i.e., a feasible circuit with only 4

gates). Although the building blocks are in a different
position, the circuit has the same behavior as in earlier
stages of the design. For this reason, we proceed to store it
in our case base.

This same process was applied to several other circuits,
including a 2-bit magnitude comparator, a half-adder and
a full adder. The details of these experiments are available
at [7].

6.2
A Case Study: Use of CBR to Design a 2�2 bit Adder
To provide an insight into some of the possible applica-
tions of our work, we chose a second example in which we
want to illustrate how can we use previously acquired
knowledge (derived from the design of a half 2�2 adder)
to produce a full 2�2 adder.

We were interested in analyzing different possibilities
regarding the use of CBR to improve the performance
of the GA. Therefore, we decided to perform three
experiments:

First Experiment: Only previous solutions to the full
adder circuit with different fitness values were stored in a
case base and some of these individuals were retrieved to
seed a percentage of the initial population of a GA before
running it. The individuals were taken from different
generations with different fitness values in a previous run
for the full adder circuit. The initial population was a
mixture of previous solutions (10%) and random solutions
(90%). This mixture is necessary to avoid an excessive
selection pressure that would cause premature conver-
gence. However, the issue of finding the proper number of
cases to be injected in the population of a GA is still an
open research area [11]. There is, however, previous
empirical evidence that indicates that the use of the best
previously found solutions are not necessarily good cases
and that injecting a large number of cases does not always
lead to a better performance of the GA [9]. The best known
solution to this circuit has a fitness of 36 (i.e., a feasible
circuit with five gates), and we stored solutions with a
fitness value of up to 22.

Second Experiment: Some solutions to different logic
circuits including the full adder, the half-adder, the com-
parator and other circuits were stored in a case base. The
most similar cases would then be used to seed a portion of
the initial population of a GA before running it. The same
mixture of individuals as before was adopted in this case.

Table 5. Case stored in the
case base at the end of the
evolutionary process for the
circuit whose truth table is
shown in Table 3

Original case Solution Description Number of gates
eliminated

Case 1 ðS0 � T0Þ0 ðS� TÞ0 DeMorgan’s theorem
applied to XOR obtained
from the comparison
between the solution by
the second run of the
GA and the solution
obtained by a human
designer

4) 2 = 2

Fig. 5. Solution obtained at generation 9 for the circuit whose
truth table is shown in Table 3

Fig. 6. Solution obtained at generation 67 for the circuit whose
truth table is shown in Table 3

Fig. 7. Solution obtained at generation 101 for the circuit whose
truth table is shown in Table 3

50

Third Experiment: Some solutions to different logic
circuits including all the circuits as in step 2, but without
including the full adder circuit were stored in a case base.
The most similar cases would then seed a part of the initial
population of a GA were retrieved before running it. The
same mixture of individuals as before was adopted in this
case.

The results produced from the three experiments are
shown in Figs 8, 9 and 10. As we expected, when previous
knowledge is used, the GA arrives more rapidly to the best
known solution to this circuit. In the first experiment, our
GA converges, on average, at generation 87, whereas the
GA without knowledge required almost 100 generations to
converge (on average). In the second experiment, the GA
arrived to the best known solution to this circuit slightly
faster when introducing feasible solutions previously
found (as compared to the GA without knowledge). We
observed that the GA retrieved from the case base the
previous solution to the full adder (with fitness of 22),
instead of the solution to the half adder. This is explained
by the fact that the full adder (being the same circuit to be
solved) presents a greater resemblance with the circuit
being designed. The experiment showed us the capability
of our system to discriminate among several circuits until
it finds one the presents the greatest resemblance with the
circuit to be designed. In our third experiment, we can
observe that the GA begins to evolve from a fitness value of
14 in generation one, analogously to the GA with its initial

population randomly generated. However, the circuit
evolves in a completely different way due to the fact that
the system retrieves as the most similar case the previous
solution found for the half adder circuit. Note how the GA
that uses the case base finds a valid circuit at generation
34, whereas the conventional GA finds a valid circuit at
generation 45. This illustrates how the use of case base
reasoning can actually help the GA to explore the search
space in a more efficient way.

7
Conclusions and future work
We have presented an approach in which previous
‘‘experience’’ (in the form of examples) is exploited by a
genetic algorithm in order to improve its performance.
The introduction of domain-specific knowledge within a
GA is not straightforward, and care must be taken of not
biasing the search too strongly as to produce premature
convergence. The mixture of individuals proposed in this
work (10% of the population were taken from the case
base and 90% were randomly generated) seems to be a
good choice, at least for the small and medium size circuits
used in our experiments [7]. However, more experi-
mentation in this direction is still necessary. We are also
currently extending our system to use it with genetic
programming [6], as well as with more complex circuits.

Our approach extends some of the previous efforts to
extract design patterns from a GA used to design circuits

Fig. 8. Convergence graph corresponding to the first experiment
performed. The label ‘‘experiment 1’’ indicates the runs in which
we used cases previously generated by other runs of our GA (i.e.,
use of the case base)

Fig. 9. Convergence graph corresponding to the second experi-
ment performed. The label ‘‘experiment 2’’ indicates the runs in
which we used cases previously generated by other runs of our
GA (i.e., use of the case base)

51

[15, 18], since we show not only how these patterns can
be extracted, but also how can they be reused by a GA to
design other circuits.

The use of previous experiences can improve the con-
vergence of a GA used to solve similar problems, as we
illustrated with the full adder problem. More important
yet, is the fact that this sort of system can be applied to
other domains, and that is precisely one of the future
research paths that we would like to explore.

We are also interested in analyzing the schema
processing performed by the GA when trying to solve a
circuit, as to identify potentially difficult problems. This
could provide us with some important information
regarding the limitations of GAs in this domain and it is
certainly a future research path that is worth exploring.

References
1. Carlos A. Coello C, Christiansen AD, Aguirre AH (1997)

Automated Design of Combinational Logic Circuits using
Genetic Algorithms. In: DG Smith, NC Steele, RF Albrecht
(eds) Proceedings of the International Conference on Artifi-
cial Neural Nets and Genetic Algorithms, pp. 335–338.
Springer-Verlag, University of East Anglia England

2. Carlos A. Coello C, Alan D Christiansen, A. H. Aguirre (2000)
Use of Evolutionary Techniques to Automate the Design
of Combinational Circuits International Journal of Smart
Engineering System Design 2(4): 299–314

3. Gero JS, Kazakov VA (1995) Evolving Building Blocks
for Design using Genetic Engineering: A Formal Approach.
In: JS Gero, F Sudweeks (eds) Advances in Formal Design
Methods for CAD, pp. 29–48. University of Sydney, Sydney
Australia

4. de Silva Garza AG, Maher ML (1999) An Evolutionary
Approach to Case Adaptation. In: Case-Based Reasoning
Research and Applications: Proceedings of the Third Inter-
national Conference on Case-Based Reasoning ICCBR-99,
pp. 162–172, Monastery Seeon, Munich Germany, Springer-
Verlag

5. de Silva Garza AG, Maher ML (2000) A Process Model for
Evolutionary Design Case Adaptation. In: John Gero (ed.)
Proceedings of the Sixth International Conference on
Artificial Intelligence in Design, pp. 393–412, Worcester,
Massachusetts, Kluwer Academic Publishers

6. Aguirre AH, Coello CAC, Buckles BP (1999) A Genetic Pro-
gramming Approach to Logic Function Synthesis by means of
Multiplexers. In: D Keymeulen A. Stoica, J. Lohn (eds) The
First NASA/DoD Workshop on Evolutionable Hardware,
pp. 46–53. IEEE Computer Society

7. Pérez EI (2000) Development of a Learning Platform using
Case Based Reasoning and Genetic Algorithms. Case Study:
Optimization of Combinational Logic Circuits. Master’s
thesis, Maestrı́a en Inteligencia Artificial Facultad de Fı́sica e
Inteligencia Artificial Universidad Veracruzana, (Available
at: http://delta.cs.cinvestav.mx/�ccoello/)

8. Kolodner J (1993) Case-Based Reasoning. Morgan Kaufmann
Publishers, San Mateo California

9. Liu X (1996) Combining Genetic Algorithms and Case-based
Reasoning for Structure Design. Master’s thesis, Department
of Computer Science, University of Nevada

10. Sushil J. Louis (1993) Genetic Algorithms as a Computational
Tool for Design. PhD thesis, Department of Computer
Science, Indiana University

11. Louis SJ, Johnson J (1997) Solving Similar Problems using
Genètic Algorithms Case-Based Memory. In: Thomas Bäck
(ed) Proceedings of the Seventh International Conference on
Genetic Algorithms, pp. 283–290, San Francisco, California,
Morgan Kaufmann Publishers

12. Louis SJ, McGraw G, Wyckoff R (1993) Case-based reasoning
assisted explanation of genetic algorithm results. J. Exper.
Theor. Artifi. Intel. 5: 21–37

13. Miller JF, Job D, Vassilev VK (2000) Principles in the
Evolutionary Design of Digital Circuits—Part I. Genetic
Programming and Evolvable Machines 1(1/2): 7–35

14. Miller JF, Job D, Vassilev VK (2000) Principles in the
Evolutionary Design of Digital Circuits—Part II Genetic
Programming and Evolvable Machines 1(3): 259–288

15. Miller JF, Kalganova T, Lipnitskaya N, Job D (1999) The
Genetic Algorithm as a Discovery Engine: Strange Circuits
and New Principles. In: Proceedings of the AISB Symposium
on Creative Evolutionary Systems (CES’99). pp. 65–74,
Edinburgh UK

16. Ramsey CL, Grefenstette JJ (1993) Case-Based Initialization
of Genetic Algorithms. In: Stephanie Forrest (ed) Proceedings
of the Fifth International Conference on Genetic Algorithms.
pp. 84–91, San Mateo, California, Morgan Kauffman
Publishers

17. Sheppard JW, Salzberg SL (1995) Combining Genetic Algo-
rithms with Memory Based Reasoning. In: Larry Eshelman
(ed) Proceedings of the Sixth International Conference on
Genetic Algorithms. pp. 452–459, San Francisco, California,
Morgan Kaufmann

18. Thomson P (2000) Circuit Evolution and Visualisation. In:
Julian Miller, Adrian Thompson, Peter Thomson, Terence C.
Fogarty (eds) Evolvable System: From Biology to Hardware.
pp. 229–240 Springer-Verlag, Edinburg, Scotland

Fig. 10. Convergence graph corresponding to the third experi-
ment performed. The label ‘‘experiment 3’’ indicates the runs in
which we used cases previously generated by other runs of our
GA (i.e., use of the case base)

52

19. Vassilev VK, Fogarty TC, Miller JF (2000) Information
Characteristics and the Structure of Landscapes. Evolutionary
Computation 8(1): 31–60

20. Zhang Z, Liao TW (1999) Combining Case-Based
Reasoning with Genetic Algorithms. In: Scott Brave,

Anies S. Wu, (eds) Late Breaking Papers at the 1999
Genetic and Evolutionary Computation Conference
pp. 305–310, Orlando, Florida

53

