
Boundary Search for Constrained Numerical
Optimization Problems in ACO Algorithms

Guillermo Leguizamón
�

and Carlos A. Coello Coello
�

�

LIDIC - Universidad Nacional de San Luis, Ejército de los Andes 950
(5700) San Luis, ARGENTINA

legui@unsl.edu.ar
�

Evolutionary Computation Group (EVOCINV) at CINVESTAV-IPN
Electrical Engineering Department, Computer Science Section

Av. IPN No. 2508 Col. San Pedro Zacatenco México D.F. 07300,MÉXICO
ccoello@cs.cinvestav.mx

Abstract. This paper presents a novel boundary approach which is included
as a constraint-handling technique in an ant colony algorithm. The necessity
of approaching the boundary between the feasible and infeasible search space
for many constrained optimization problems is a paramount challenge for ev-
ery constraint-handling technique. Our proposed technique precisely focuses the
search on the boundary region and can be either used alone or in combination
with other constraint-handling techniques depending on the type and number of
problem constraints. For validation purposes, an ant algorithm is adopted as our
search engine. We compare our proposed approach with respect to constraint-
handling techniques that are representative of the state-of-the-art in constrained
evolutionary optimization using a set of standard test functions.

1 Introduction

One of the first ACO extensions to operate on continuous spaces can be found in Bilchev
et al. [1] in which the whole search space is discretized in order to represent a finite num-
ber of search directions. This approach was validated usinga small set of constrained
problems. Since then, several other researchers have proposed schemes to apply the
ACO algorithm to continuous search spaces (see for example [2–4]). However, all of
these approaches only deal with unconstrained optimization problems.

In this paper we introduce a boundary approach for solving nonlinear constrained
problems, which is presented as a possible extension of ACO algorithms in continuous
search spaces. It is worth noting, however, that our proposal can be coupled to other
metaheuristics (e.g., particle swarm optimization or an evolutionary algorithm), and
it is expected to be highly competitive in problems with active constraints. Our ACO
approach is mainly based on the work of Bilchev et al. [1]. Thereason for not adopting
one of the more recent ACO extensions for continuous search spaces is that, as indicated
before, none of them deals with constrained optimization problems.

2 Constraint-Handling and Boundary Search

Michalewicz et al. [5] is one of the first papers on boundary search through the use of
evolutionary algorithms. The efficiency of this approach was shown by using two con-
strained optimization problems: Keane’s function (also known as

���
) [6] and another

function with one equality constraint (also known as
���

). For solving
���

the authors
proposed two genetic operators: thegeometrical crossover and a special mutation oper-
ator. Both operators generate offspring lying on the boundary between the feasible and
infeasible search space. Similarly for

���
, they proposed thespherical crossover which

only generates points on the surface of the sphere given as the only constraint. Schoe-
nauer et al. [7] proposed several evolutionary operators capable of exploring a general
surface of dimension� � � (� is the number of variables). The design of these opera-
tors depends on the surface representation: curves-based,plane-based, and parametric
representation. Wu et al. [8] proposed a GA for the optimization of a water distribution
system, which is a highly constrained optimization problem. The proposed approach
co-evolves and self-adapts two penalty factors in order to guide and preserve the search
towards the boundary of the feasible search space. The reduction of the search space
is one of the most relevant characteristics of the boundary search approach since the
exploration considers only the boundary of the feasible search space. However, many
of the test cases considered so far by other researchers onlyinclude problems with one
or two constraints (e.g.,

���
and

���3, respectively). In these cases, it is possible to
definead hoc genetic operators that fit perfectly the boundary of the feasible region.
However, this sort of approach is impractical in an arbitrary problem with many con-
straints, and it is therefore necessary to define a more general approach for boundary
search which can be as robust as possible to deal with different types of constraints.
This was precisely the motivation for the research reportedin this paper.

3 An Alternative Boundary Search Approach

We are interested in solving the general nonlinear programming problem whose aim is
to find � so as to optimize:� 	�
 � � 	� �
 � �
 ���
 ��
 � �� where� � � � � .
The set� � � defines the search space and sets� � � and� � � � � define the
feasible andinfeasible search spaces, respectively. The search space� is defined as an
n-dimensional rectangle in�� (domains of variables defined by their lower and upper
bounds):� 	�
 � � � � � 	�
 for � � � � � whereas the feasible set� is defined by the
intersection of� and a set of additional� � �

constraints:� � � �
, for � �
 � � �
 !

and"# � �
for � ! $ �
 � � �
 � . At any point� � � , the constraints�% that satisfy

�% 	�
 � �
are called the active constraints at�. Equality constraints"# are active at all

points of� .

3.1 The boundary operators

We propose here a general boundary operator which is based onthe notion that each
point & of the boundary region can be represented by means of two different points

3 Keane’s function can be considered as having one constraintsince one of them is ignored
focusing the search only on the active constraint.

� and� where� is some feasible point and� is some infeasible one, i.e.,	�
 �
 can
represent one point lying on the boundary by applying a “binary search” on the straight
line connecting the points� and� . Figure 1 shows a hypothetical search space including
the feasible and infeasible (shadowed area) regions. We canidentify four points lying
on the boundary& �, & � , & �, and& � which are respectively obtained from	� �
 � �
,
	� �
� �
, 	� �
 ��
, and	� �
��
.

��� � ��

��

�	
�

��

��

�	
�

��

��

�	
�

��� �
�	

��

�	

�

�

�

Fig. 1. Given one feasible and one infeasible point, the respectivepoint lying on the boundary
can be easily reached by using a simple binary search. .

The binary search applied to each pair of points	�
 �
 is achieved following the
steps described in function BS (see Figure 2). For example, apossible application of
this process can be seen in Figure 1 where we adopt the pair of points 	� �
��
 from
which we obtain the point& �, which lies on the boundary. The first step (labeled	�
)
indicates that the first mid point found is infeasible. Consequently, the left side of the
straight line (� �) is moved to point� �. In the next step (�
) we consider the points
� � and�� as extreme points for which the mid point is the feasible point � � . Thus,
the new feasible point or right extreme of the line is now the point � � . Finally, the last
point generated is& � which can be either lying on or close to the boundary. Condition
(dist to boundary(�) � �) defines a threshold to stop the process of approaching the
boundary. It is worth noticing that parameters� and� are local to BS, i.e., function
BS behaves as a decoder of the pair of feasible and infeasiblepoints passed as param-
eters. Therefore, the number of “midpointsbetween”� and� before approaching the
boundary within a distance less that� is given by��� � 	�
 where� � 	���� 	�
 �

�� .
Thus, the closer to the boundary, the larger��� � 	�
.

So far, we have shown how a point lying on the boundary can be represented through
a pair of points. Now we need to consider the exploration of the search space. For
example, from the perspective of evolutionary algorithms,the candidate operators are
crossover and mutation. However, for the ACO approach we only adopt a mutation-
like operator. Here, a pair of points is considered (one feasible and one infeasible).
Alternatively, any of these two points could be modified. Forexample, we can consider
the pair of points	� �
��
 in Figure 1 which represents point& � on the boundary. In this
case, the feasible point�� can be modified giving as a result a point� �� in the feasible

function BS(� ,� : real vector): int
begin

do�
= mid point between(� � �);

if (Is on Boundary(
�

)) return
�

; /*
�

is a point lying on the boundary */
if (Feasible(

�
)) � � �

; else� � �
;

while (dist to boundary(
�

)� �);
return midpoint between(� � �); /* The closest point to the boundary */

end

Fig. 2. Given one feasible and one infeasible point, function BS returns either a point on the
boundary or one which is close enough to the boundary according to a parameter� .

search space. After this process, the new point lying on the boundary is obtained by
decoding	� �
� ��
, which gives us& �� .

3.2 The proposed method

The simplest case to apply the boundary approach is when the problem has only one
constraint which could be either an equality or an inequality constraint. For the last
case, it is important to remember that we are assuming activeconstraints at the global
optimum to proceed with this method where the search is always performed on the
boundary of the space defined by any of the constraints.

g
2

g
1

g
3�

�

Fig. 3. Feasible search space defined by� inequality constraints.

For facing the typical situation in which we have more than one constraint, it is nec-
essary to define an appropriate policy to explore the boundary as efficiently as possible.
One possibility is to explore in turn the boundary of each constraint. The selection of
the constraints to search for can be determined using different methods. If the problem
includes at least one equality constraint, such equality constraints are the most appro-
priate candidates to be selected first. In order to show the robustness of our method in
the absence of information about the active constraints of aproblem, we will show in
our experimental study (see Section 5) a more general approach to apply the boundary
operators. As an illustrative example, Figure 3 shows a hypothetical search space de-
termined by three inequality constraints. Let’s suppose that the search proceeds starting

on constraint� � by using the boundary operator�� � (filled line in Figure 3). The ap-
plication of this operator will eventually produce points violating constraints� � and� �
(dotted line in Figure 3). One of the simplest methods to dealwith this situation is the
application of a penalty function for the infeasible solutions. In addition, if� � is active
at the global optimum, the method will focus the search on theboundary in order to
restrict the explored regions of the whole search space. Note however, that other (more
sophisticated) constraint-handling techniques can also be adopted.

4 Boundary Approach in ACO algorithms

A possible design to apply the ACO approach in continuous search problems is by
discretizing the continuous search space in some way. In this work we use a discrete
structure to represent a set of different points spread on the search space. These points
are calleddirections, following Bilchev et al.’s proposal. The discrete structure can be
seen as a set�� �
 ��
 ���
 �% �, where� is a parameter for the number of directions, i.e.,
the population size. Each direction� � is represented as a real�-dimensional vector. A
general outline of the ACO algorithm is shown in Figure 4. It is worth remarking that
the original proposal [1] for ACO in continuous domains is used to proceed with the
local exploration after a genetic algorithm has finished with the global search. However,
the algorithm proposed here, is in charge of performing the entire search process. More
precisely, our ACO algorithm starts with a set of� pairs of points	�
�
 randomly
generated with� � � �� � � � (when considering an equality constraint,� � �
iff " 	�
 � �

; otherwise,� � �) . In addition, a value
� � � � � is considered to define

the extent of the search interval with respect to each variable. Parameter� starting at
value� will vary down to

�
on each iteration as described later in this section.

ACO algorithm
begin

t = 0; initialize� 	
�; evaluate� 	
�;
while (stop condition not met) do
begin

t = t + 1
updatetrail; reallocateants� 	
�;
evaluate� 	
�;

end
end

Fig. 4. General outline of the ACO algorithm for continuous problems adopted in this paper.

The ACO algorithm displayed in Figure 4 works as follows:initialize A(t)
“distributes” �
 ants on the� directions, where�
 � � in order to allocate one or
more ants to the same direction. Each ant randomly generatesone possible solution, i.e.
a pair 	�
�
 with � � � and� � � ; evaluate A(t) obtains the objective value
for the new points generated;update trail is in charge of accumulating pheromone trial

in each direction proportionally to the quality of the objective function values found
in the corresponding direction, i.e.,�� � 	� � �
 � �� $ ��� where��� is a value
proportional to the best objective value on direction� and

� � � � � is the pheromone
trail evaporation rate;reallocate ants A(t) redistributes the population of ants on the
� directions, proportionally to the accumulated pheromone trail values. Thus, the ants
on direction� � ��
 � � �
 � � are in charge of searching in the neighborhood of the
respective boundary feasible point on direction�. The changes on the values of ratio�
to control the extent of the search interval for each dimension can be implemented as�� 	�
 � � 	� � � ����	
 �
 where� is a random number in the range�� ���
; � is the
maximum number of iterations. Consequently, the value�� 	�
 falls in the range�� ���

and gets closer to

�
as the elapsed number of iterations

�
increases.

���
���
���
��� ���

���
�
���
���
�

� �� �� �� �� �� �� �� �� �� �� �� �� �

� �� �� �� �� �� �� �� �� �� �� �� �� �
� �� �� �� �� �� �� �
� �� �� �� �� �� �� ��� ��
 �� ��

�� �	
�� �

�� ��

�����

�����

�����

��� �

Fig. 5. Sequence of points generated in the search space and limitedto the extent of values on
each dimension.

Figure 5 represents the successive points (a
�
-dimensional vector) on direction

starting from point! � 	�
 for
� � ��
 �
 �
 �
 " �. Thus, a square represents the neighbor-

hood for a particular point. Following the algorithm, at thefirst iteration a fixed number
of ants are distributed on the� directions, i.e., the ants that were allocated to direction
� at the iteration

� � �
will start the search from point! � 	�
. For example, in Figure 5,

! � 	�
 is the starting point on direction�, ! � 	�
 is the best point found by the ants allo-
cated to direction� by using�� 	�
4. As

�
increases, new regions of the search space

are independently explored on each direction. For our example, the remaining succes-
sively generated points on direction� are! � 	�
, ! � 	�
, ! � 	"
, and so on. Thus, the ACO
algorithm can be seen as a trajectory approach which simultaneously searches on dif-
ferent directions and exploits the past experience to guidethe search towards the most
promising regions according to the quality of the results. Furthermore, the accumulated
pheromone trail will decrease on the direction that produces low-quality solutions due
to the effects of the evaporation process focusing the ants’attention on more promising
regions of the feasible search space. In order to avoid premature convergence of the

4 It should be noticed that#$ 	
 � is not a monotonically decreasing value.

algorithm, a potentially useful direction can remain as an alternative search region by
bounding with lower and upper values the amount of pheromonetrial in each direction
following the principle of the��AS algorithm [9]. The main characteristics of this
method include two abstraction levels:

1. individual search: involves the strategy followed by each ant to search in its neigh-
borhood (in our case, a mutation-like operator).

2. cooperation: involves information exchange among the ants in order to guide the
search to certain regions of the search space. This information is represented by the
pheromone trial structure (�) where�# represents the accumulation of pheromone
trail on direction . The distribution of the ants on the different directions isachieved
by the formula:� � 	�
 � �� ������� � �� ���

5 Analysis of Results

The application of our approach (called ACO�) requires minimum changes when ap-
plied to the different test cases considered: the objectivefunction, the number of vari-
ables, the range of each variable, and the constraints. However, the policy to determine
on which constraint the search should focus needs to be considered when the prob-
lems have more than one constraint: a) we can focus the searchon all the constraints,
but considering one constraint in turn by controlling the change through a particular
condition (S
��), b) similar to the previous alternative but considering only the active
constraints (S
	�), or c) just considering one constraint during the whole run(S	 where
 � ��
 � � �
 � �). These three ways of exploring the search space are presented first
in our experimental study in order to analyze the performance of the ACO� on each
of the considered problems. In our experiments, the condition to produce a change on
the search from one to another constraint is given by an elapsed number of iterations
and it is represented by the parameter

�	. In addition, for problems with more than one
constraint, we incorporate a penalty function of the form:

� 	�
 �
 � � 	�
 $ � 	�
 	

�

#� �

max��
 �# 	�
� $ ��
#�
� � �"# 	�
 �
 (1)

where� 	�
 is a dynamic penalty factor which could change as
�
, the elapsed itera-

tion, increases with� 	�
 � � 	�
 � � 	�
 � � � � � 	�
. Alternatively, the penalty factor
can be fixed throughout the run, i.e.,� 	�
 � �� for all � � � � � . Regardless of
the penalty function adopted, it is worth remarking that each solution is always lying
on the boundary of the feasible space corresponding to the constraint under consider-
ation. Note that this approach was adopted due to its simplicity, since our interest was
to assess the advantages of our proposed approach. However,other constraint-handling
techniques are evidently possible. The parameter values used in the experimental study
are the following:�� ants (population size),

��
directions (number of points), maxi-

mum number of iterations
�����

, the evaporation rate� � � ��, �	 � �
is the number

of iterations the ACO� focuses on one constraint in turn. When
�	 � �

, the ACO�
focuses on only one constraint throughout the whole run (

�	 � ���
). The penalty factor

Table 1. Results for problems��� (Keane’s function) and���.

No. of BF Mean Std Worst # FeaMean(#E)
Variables (�)

Problem G02
20 0.80361908670.80256569390.00320.7930839658 30 29500
50 0.83526188140.83393096920.00210.8259508014 30 35900
100 0.84568417070.84469360110.00070.8423509002 30 46700

Problem G03
20 1.0 1.0 0.0 1.0 30 140000
50 1.0 1.0 0.0 1.0 30 389500

� 	�
 was experimentally determined for each particular problemand is shown in the
corresponding tables of results. The ACO� was executed

��
times with different seeds

for each parameter combination. The problems studied include a set of well-known test
cases traditionally adopted in the specialized literature:

���, to
� �� [10].

5.1 Study of the application of ACO�
We have divided the presentation of the results into two groups according to the follow-
ing criteria: the first group, is displayed in Tables 1 and 2. Table 1 includes two special
cases since they where the first problems on which the boundary approach was applied
(problems

���
and

���
). In addition, these problems have one and two constraints

respectively. However, the second constraint of problem
���

is not considered since
it is not active at the best known value. The columns in this table show the setting for
the number of variables, the best value found (BF), Mean, Standard Deviation (Std),
Worst, number of feasible solutions out of

��
runs (#Fea), and the mean number of

evaluations to get the best value found (Mean(#E)). On the other hand, Table 2 shows
two problems both of which include one equality constraint (problems

� �� and
���).

Accordingly, no penalty values (�) need to be applied for this first group of problems.
In the remaining tables, the column “No. of variables” is replaced by “Cnst”, indicating
the criteria adopted to proceed with the boundary search, i.e., � 	 (
 � ��
 � � �
 � �),
�
	�, or �
�� . In addition, the best known or global optimum value for eachproblem is
shown in parenthesis.

We tested
���

setting the number of variables as� � ��
 ��
 and ���. ACO�
succeeded in finding the best known value for� � ��

[11]. In addition, it was able
to find a better quality result than the best objective reported in [7] where� � ��
and � 	� �
 � � ��� ���	. For � � ���, we found

� ��"�
�" �	�	 as the best value in
our experimental study. Also, it is worth remarking that allthe solutions found were
feasible for all� and very similar among themselves as can be observed in the columns
Mean, Std, and Worst. With respect to problem

���
, we considered� � ��

and� ��� variables. ACO� found the optimum feasible solution for both cases in all runs.
Similarly to

���
, the remaining problems of this group (

� �� and
���), our approach

reached the optimum in all cases.
The second group of the test cases is conformed by some problems having more

than one constraint which have been frequently used in the specialized literature:
���,

Table 2. For problems G11 and G25 it is unnecessary to use a penalty factor.

Cnst. BF Mean Std Worst # Fea.Mean(#E)
Problem G11 (0.75)

�
� 0.75 0.75 0.0 0.75 30 70400

Problem G25 (16.73889)
�
� -16.73889-16.738890.0 -16.73889 30 10600

��",
���, ��
,

��	
,
���,

� ��, and
� ��. Also we include problem

��" [12] in this
subgroup. Only for

� ��, we adopted a dynamic penalty (� 	�
 � ���� � � 	� � �
 for� � �
 �
 � � � ��
� , with � 	�
 � ������
). The static penalty factors adopted for the

remaining problems are (i.e., for
� � �
 �
 � � � �):

���, � 	�
 � ����
;
��", � 	�
 �

������;
���, � 	�
 � ��;

��
, � 	�
 � �����
;
��	

, � 	�
 � �����
;
���, � 	�
 � ����

,� ��, � 	�
 � � ��; and
��", � 	�
 � ����

. The results for this group of problems are
displayed in Tables 3 and 4. It must be noticed that these problems include different
numbers and complexities of the equality and inequality constraints which are active at
the best known or optimum solution. As indicated in column “Cnst.”, each row shows
the results when ACO� is applied one of the following criteria: search exclusively on
constraint (�# , � �
 � � �
 �), on all the active constraints in turn (�
	�), and over
all the constraints in turn (�
��). For example, problem

��� has 6 active constraints.
Accordingly, ACO� performs optimally when searching on those active constraints.
Similarly, the algorithm succeeded in finding the optimal solution when using both
�
	� and �
��. However, its performance slightly decays when searching on the non
active constraints as could be expected. This situation is more dramatic for problem��" which has two active constraints. In this case, ACO� only finds the optimum so-
lution when searching on the respective active constraintsand�
	�. Although strategy
�
�� fails in finding any feasible solution, this strategy workedwell for all the other
problems considered. A similar situation can be seen for problem

��� which has three
equality constraints. Accordingly, ACO� finds a high quality solution for this problem
(very near to the optimal one) when searching on the equalityconstraints,�
	�, and
�
�� . On the other hand, problem

��
 has two inequality constraints which are active
at the optimum. ACO� performs optimally for this problem by following any of the
three applicable strategies:� �, �� , and�
	�. The last problem in Table 3 has six active
constraints and ACO� performs similarly to

��� since the best results were obtained
when searching on the active constraints or by using�
	� or �
��.

Problem
��� has two active constraints for which ACO� found the optimum value.

However, searching on the non active constraints can give results far from the expected
value (see�� and��). � �� constitutes one of the most difficult test cases not only for
our approach, but also for any other constraint-handling technique. ACO� found feasi-
ble solutions with all the search strategies except for� � and�� . Note the small number
of feasible solutions found for this problem, as well as the large standard deviation
value produced (with respect to the deviations of the other problems). Another interest-
ing problem is

� �� whose feasible search space is defined by three nonlinear equality
constraints. For this problem ACO� found the optimal solution following either of the
four applicable search strategies. Finally, it can be seen that ACO� performs optimally

Table 3. Results for problems�� �, ���, ���, ���, and���.

Cnst. BF Mean Std Worst # Fea. Mean(#E) Cnst. BF Mean Std Worst # Fea. Mean(#E)
Problem G01 (-15.00) Problem G07 (24.306)�� -15.00 -14.99 0.001 -14.996 30 274800

�� 24.37 29.59 4.83 42.97 30 70000�	 -15.00 -14.96 0.012 -14.995 30 159720
�	 24.51 35.10 23.02 121.56 30 133600�
 -15.00 -14.99 0.001 -14.965 30 381800
�
 24.56 28.31 5.54 50.83 30 83600�� -14.27 -13.54 .38 -13.18 29 544400
�� 24.79 54.17 70.46 380.03 30 83600��

-13.84 -13.48 0.32 -13.04 25 433800
��

24.52 34.52 16.39 77.19 30 85000��
-14.22 -13.39 0.47 -13.00 26 407200

��
24.79 31.12 6.46 48.40 30 720800��

-15.00 -14.78 0.2 -14.65 26 213400
��

33.08 38.86 4.01 46.53 30 71200�	
-15.00 -14.74 0.49 -14.46 27 723400

�	
41.03 46.86 20.92 127.06 30 260200�

-15.00 -14.67 0.76 -13.08 30 454800���

-15.00 -15.00 0 -15.00 30 81400

���

24.37 24.64 0.15 24.92 30 35600����

-15.00 -15.00 0 -15.00 30 104000
����

24.38 24.76 0.16 25.22 30 56000
Problem G04 (-30655.539) Problem G05 (5126.49)�� -30665.539-30665.357 0.04 -30665.157 30 512200

�� - - - - - -�	 - - - - - -
�	 - - - - - -�
 - - - - - -
�
 5126.50 5133.29 9.284 5147.81 6 100800�� - - - - - -
�� 5126.51 5134.70 11.219 5164.91 11 340000��

- - - - - -
��

5126.68 5130.55 3.656 5136.08 11 180000��
-30655.539-30665.302 0.01 -30665.290 30 326400���

-30655.539-30655.5390.001 -30655.539 30 19800

���

5126.50 5138.37 8.20 5132.14 6 94000����

- - - - - -
����

5126.50 5143.77 10.60 5163.56 5 135800
Problem G06 (6961.81)�� -6961.79 -6961.71 0.075 -6169.54 11 122600�	 -6961.81 -6961.72 0.097 -6961.34 25 103000���

-6961.81 -6961.74 0.070 -6961.71 25 80000

Table 4. Results for problems���, � ��, � ��, and���.

Cnst. BF Mean Std Worst # Fea. Mean(#E)
Problem G09 (680.63)�� 680.63 680.66 0.10 681,29 30 80400�	 1664.00 1890.01 119.92 1982.72 5 108000�
 840.00 880.82 15.06 890.56 29 22200�� 680.63 680.96 0.96 681.95 29 43000���

680.63 680.67 0.026 680.72 30 7400����
680.65 680.75 0.056 680.89 30 19400

Problem G10 (7049.331)�� 7101.50 7346.61 202.15 7682.20 9 147700�	 7063.02 8169.68 1866.32 10325.00 3 131600�
 7057.27 7406.51 148.60 7518.91 9 148600�� 7095.27 7349.83 360.00 7604.39 2 128200��
- - - - - -��
- - - - - -���

7052.30 7199.01 175.01 7943.15 30 42800����
7068.04 7141.87 52.27 7239.54 30 9800

Problem G13 (0.053950)�� 0.053950 0.054908 0.00054 0.055386 6 29800�	 0.053950 0.054372 0.00044 0.054968 4 7400�
 0.053950 0.054637 0.00017 0.054394 6 7200���

0.053950 0.054736 0.001 0.058462 15 19800

Problem G24 (-5.508013)�� -5.508013-5.508013 0.0 -5.508013 30 5800�	 -5.508013-5.508013 0.0 -5.508013 30 24000���

-5.508013-5.508013 0.0 -5.508013 30 21400

on problem
��" which has two active inequality constraints where the optimal solution

was found for all strategies in each run (see #Fea).

5.2 Comparison with an state-of-the-art algorithm

In this section we compare the best quality results from ACO� (we use�
	� as the most
efficient search criteria) with respect to the results of a constraint-handling technique
representative of the state-of-the-art in the area: Stochastic Ranking (SR) [10]. Table 5
shows for each problem considered, the optimum, and the corresponding Best value
found (BF), average (Mean), and Worst values respectively from ACO� and SR (re-

ported in [10]5). The performance of ACO� is comparable in many ways with respect
to SR.

From the perspective of the best values (BF) found ACO� reaches similar values
as SR in all the problems considered. For

���
, ACO� reached the best known value

reported in [5] by using anad hoc boundary operator. On the opposite side, for
� ��,

ACO� did not obtain the optimal solution. However, the results achieved in all cases
are highly competitive.

Table 5. Comparison of ACO� with respect to a constraint-handling technique representative of
the state-of-the-art in the area: stochastic ranking (SR).

BF Mean Worst
Prob. Opt6 ACO� SR ACO� SR ACO� SR
G01 -15.000 -15.000 -15.000 -15.000 -15.000 -15.000 -15.000
G02 0.803619 0.803619 0.803515 0.802656 0.781975 0.793083 0.726288
G03 1.000 1.000 1.000 1.000 1.000 1.000 1.000
G04 -30665.539-30665.539-30665.539-30665.539-30665.539-30666.539-30665.539
G05 5126.498 5126.50 5126.497 5138.37 5128.881 5132.14 5142.472
G06 -6961.814 -6961.81 -6981.814 -6961.74 -6875.940 -6961.71 -6350.262
G07 24.306 24.37 24.307 24.64 24.374 24.92 24.642
G09 680.630 680.63 680.63 680.67 680.56 680.72 680.763
G10 7049.331 7052.30 7054.316 7199.01 7559.192 7943.15 8835.655
G11 0.75 0.75 0.75 0.75 0.75 0.75 0.75
G13 0.053950 0.053950 0.053957 0.054908 0.057006 0.055386 0.216915
G24 -5.508013 -5.508013 -5.508013 -5.508013 -5.508013 -5.508013 -5.508013
G25 -16.73819 -16.73819 -16.73819-16.73819 - 16.73819 -16.73819 -16.73819

6 Conclusions and Future Work

In this paper we presented an alterative approach to reach the boundary between the
feasible and infeasible search space which could be useful when facing problems with
active constraints. For the initial testing of this method we have used an ant colony al-
gorithm as a search engine (ACO�) and a penalty function as a complementary mech-
anism for problems with more than one constraint. The overall performance of ACO�
was satisfactory for all of the problems considered. The comparison with a state-of-
the-art algorithm shows the potential of this method as an alternative or complementary
approach for constrained optimization problems. In fact, for some problems, ACO� was
able to improve the respective best known solutions (e.g.,

���
(with � � �� variables)).

It is clear that further improvements should be considered.For example, it is desirable
to implement a self-adaptation mechanisms and to try different search engines (e.g.,
differential evolution and evolution strategies). We alsoplan to study the performance
of our approach in several additional test functions.

5 Except for problems��� and��� for which SR was run by the authors using Thomas Runars-
son’s code.

Acknowledgments

The first author acknowledges support from Universidad Nacional de San Luis and the
ANPCYT (National Agency for Promotion of Science and Technology). The second
author acknowledges support from CONACyT project no. 45683-Y.

References

1. Bilchev, G., Parmee, I.C.: The ant colony metaphor for searching continuous design spaces.
Lecture Notes in Computer Science993 (1995) 25–39

2. Ling, C., Jie, S., Ling, Q., Hongjian, C.: A method for solving optimization problems in
continuous space using ant colony algorithm. In Dorigo, M.,Caro, G.D., Sampels, M., eds.:
Proceedings of the Third International Workshop, (ANTS’2002). Volume 2463 of Lecture
Notes in Computer Science. Springer Verlag, (Brussels, Belgium) 288–289

3. Lei, W., Qidi, W.: Further example study on ant system algorithm based continuous space
optimization. In: Proceedings of the 4

� �
Congress on Intelligent and Automation, Shangai,

P.R. China (2002) 2541–2545
4. Pourtakdoust, S.H., Nobahari, H.: An extension of ant colony systems to continuos opti-

mization problems. In Dorigo, M., Birattari, M., Blum, C., Gambardella, L.M., Mondada, F.,
Stützle, T., eds.: Ant Colony Optimization and Swarm Intelligence, 4th International Work-
shop, ANTS 2004. (Springer-Verlag) 294–301

5. Michalewicz, Z., Nazhiyath, G., Michalewicz, M.: A note on usefulness of geometrical
crossover for numerical optimization problems. In et al., L.J.F., ed.: Proceedings of the Fifth
Annual Conference on Evolutionary Programming, Cambridge, MA, MIT Press (1996) 305–
311

6. Keane, A.: Genetic algorithms digest, v8n16 (1994)
7. Schoenauer, M., Michalewicz, Z.: Evolutionary computation at the edge of feasibility. In

Voigt, H.M., Ebeling, W., Rechenberg, I., Schwefel, H.P., eds.: Parallel Problem Solving
from Nature – PPSN IV, Berlin, Springer (1996) 245–254

8. Wu, Z., Simpson, A.: A self-adaptive boundary search genetic algorithm and its application
to water distribution systems. Journal of Hidraulic Research 40(2) (2002) 191–203

9. Corne, D., Dorigo, M., Glover, F., eds.: New Ideas in Optimization. McGraw-Hill Interna-
tional (1999)

10. Runarsson, T.P., Yao, X.: Stochastic ranking for constrained evolutionary optimization. IEEE
Transactions on Evolutionary Computation4(3) (2000) 284–294

11. Hamida, S.B., Schoenauer, M.: ASCHEA: New Results UsingAdaptive Segregational
Constraint Handling. In: Proceedings of the Congress on Evolutionary Computation 2002
(CEC’2002). Volume 1., Piscataway, New Jersey, IEEE Service Center (2002) 884–889

12. Liang, J., Runarsson, T.P., Mezura-Montes, E., Clerc, M., Suganthan, P.N., Coello
Coello, C., Deb, K.: Problem definitions and evaluation criteria for the cec 2006
special session on constrained real-parameter optimization. Technical report, School
of Electrical and Electronic Engineering Nanyang Technological University, Singapore,
http://www.ntu.edu.sg/home5/lian0012/cec2006/technical report.pdf (2006)

