Boundary Search for Constrained Numerical
Optimization Problemsin ACO Algorithms

Guillermo Leguizaméhand Carlos A. Coello Coelfo

1 LIDIC - Universidad Nacional de San Luis, Ejército de losd&s 950
(5700) San Luis, ARGENTINA
| egui @insl . edu. ar
2 Evolutionary Computation Group (EVOCINV) at CINVESTAVANP
Electrical Engineering Department, Computer Sciencei@ect
Av. IPN No. 2508 Col. San Pedro Zacatenco México D.F. 0730BXICO
ccoel l o@s. ci nvest av. nx

Abstract. This paper presents a novel boundary approach which isdedlu
as a constraint-handling technique in an ant colony algaritThe necessity
of approaching the boundary between the feasible and ibfeasearch space
for many constrained optimization problems is a paramotailenge for ev-
ery constraint-handling technique. Our proposed tectmfyecisely focuses the
search on the boundary region and can be either used alomecomibination
with other constraint-handling techniques depending ertype and number of
problem constraints. For validation purposes, an ant algoris adopted as our
search engine. We compare our proposed approach with tespeonstraint-
handling techniques that are representative of the sfeteeeart in constrained
evolutionary optimization using a set of standard test fions.

1 Introduction

One of the first ACO extensions to operate on continuous sgagebe found in Bilchev
etal. [1] in which the whole search space is discretizeddiepto represent a finite num-
ber of search directions. This approach was validated wsisigall set of constrained
problems. Since then, several other researchers have qgo@zhemes to apply the
ACO algorithm to continuous search spaces (see for exar@p). However, all of
these approaches only deal with unconstrained optimizatioblems.

In this paper we introduce a boundary approach for solvinginear constrained
problems, which is presented as a possible extension of AG@idoms in continuous
search spaces. It is worth noting, however, that our prdpasabe coupled to other
metaheuristics (e.g., particle swarm optimization or aolionary algorithm), and
it is expected to be highly competitive in problems with @etconstraints. Our ACO
approach is mainly based on the work of Bilchev et al. [1]. Tésson for not adopting
one of the more recent ACO extensions for continuous seaaxes is that, as indicated
before, none of them deals with constrained optimizati@blams.

2 Constraint-Handling and Boundary Search

Michalewicz et al. [5] is one of the first papers on boundaarse through the use of
evolutionary algorithms. The efficiency of this approactswhown by using two con-
strained optimization problems: Keane's function (alsown asG02) [6] and another
function with one equality constraint (also known@83). For solvingG02 the authors
proposed two genetic operators: tiemetrical crossover and a special mutation oper-
ator. Both operators generate offspring lying on the boundatween the feasible and
infeasible search space. Similarly 1863, they proposed thepherical crossover which
only generates points on the surface of the sphere givereaslly constraint. Schoe-
nauer et al. [7] proposed several evolutionary operatqraldle of exploring a general
surface of dimension — 1 (n is the number of variables). The design of these opera-
tors depends on the surface representation: curves-halaeé;based, and parametric
representation. Wu et al. [8] proposed a GA for the optinnredf a water distribution
system, which is a highly constrained optimization prohl&ine proposed approach
co-evolves and self-adapts two penalty factors in ordeutdagand preserve the search
towards the boundary of the feasible search space. Thetredwdt the search space
is one of the most relevant characteristics of the boundaaych approach since the
exploration considers only the boundary of the feasiblectespace. However, many
of the test cases considered so far by other researcheriechlge problems with one
or two constraints (e.gG02 and G032, respectively). In these cases, it is possible to
definead hoc genetic operators that fit perfectly the boundary of theibdagegion.
However, this sort of approach is impractical in an arbjtqaroblem with many con-
straints, and it is therefore necessary to define a more gesgproach for boundary
search which can be as robust as possible to deal with diffé¢ypes of constraints.
This was precisely the motivation for the research repdrdidis paper.

3 An Alternative Boundary Search Approach

We are interested in solving the general nonlinear prograngproblem whose aim is
to find x so as to optimizef(x) x = (z1,%2,...,2n) € R*® wherex € F C S.
The setS € R defines the search space and sEt§& S andi/ = S — F define the
feasible andinfeasible search spaces, respectively. The search sfaselefined as an
n-dimensional rectangle iR” (domains of variables defined by their lower and upper
bounds)1(i) < z; < u(i) for 1 < i < n whereas the feasible sétis defined by the
intersection ofS and a set of additionah > 0 constraintsy; < 0,forj = 1,...,q
andh; = 0forj = ¢ +1,...,m. Atany pointx € F, the constraintg, that satisfy
gr(x) = 0 are called the active constraintsatEquality constraints; are active at all
points of F.

3.1 Theboundary operators

We propose here a general boundary operator which is bas#tearotion that each
point b of the boundary region can be represented by means of twerelift points

% Keane’s function can be considered as having one conssaioé one of them is ignored
focusing the search only on the active constraint.

x andy wherex is some feasible point ang is some infeasible one, i.gx,y) can
represent one point lying on the boundary by applying a ‘lyiisaarch” on the straight
line connecting the pointsandy. Figure 1 shows a hypothetical search space including
the feasible and infeasible (shadowed area) regions. Wedeatify four points lying

on the boundanp;, bs, bs, andb, which are respectively obtained frofs;,y:),

(Xg, Y2)1 (X3, Y3)l and(X4, y4)

Fig. 1. Given one feasible and one infeasible point, the respeptiet lying on the boundary
can be easily reached by using a simple binary search. .

The binary search applied to each pair of poifisy) is achieved following the
steps described in function BS (see Figure 2). For exampbesaible application of
this process can be seen in Figure 1 where we adopt the pagimsixs,ys) from
which we obtain the poirlbs, which lies on the boundary. The first step (labell)
indicates that the first mid point found is infeasible. Cansamtly, the left side of the
straight line &3) is moved to poinip;. In the next step(@)) we consider the points
p: andys as extreme points for which the mid point is the feasible ppin Thus,
the new feasible point or right extreme of the line is now thapp,. Finally, the last
point generated ibs which can be either lying on or close to the boundary. Cooditi
(distto_boundaryfm) > &) defines a threshold to stop the process of approaching the
boundary. It is worth noticing that parameterandy are local to BS, i.e., function
BS behaves as a decoder of the pair of feasible and infegwibi¢s passed as param-
eters. Therefore, the number of “mjmbintsbetween”x andy before approaching the
boundary within a distance less thgis given byloga(r) wherer = (dist(x,y)))/&.
Thus, the closer to the boundary, the largegk (r).

So far, we have shown how a point lying on the boundary canfresented through
a pair of points. Now we need to consider the exploration ef ¢bharch space. For
example, from the perspective of evolutionary algoriththe,candidate operators are
crossover and mutation. However, for the ACO approach wg adbpt a mutation-
like operator. Here, a pair of points is considered (oneilidasnd one infeasible).
Alternatively, any of these two points could be modified. Ewample, we can consider
the pair of pointgx,4, y4) in Figure 1 which represents poinf on the boundary. In this
case, the feasible poigt; can be modified giving as a result a poyitin the feasible

function BSk,y: real vector): int
begin
do
m = mid_pointbetweenk, y);
if (Is-on.Boundaryfn)) returnm; /* m is a point lying on the boundary ¥/
if (Feasiblefn)) x = m; elsey = m;
while (distto_boundarym)> ¢);
return midpointbetweeng, y); /* The closest point to the boundary */
end

Fig.2. Given one feasible and one infeasible point, function B&rret either a point on the
boundary or one which is close enough to the boundary acuptdia paramete.

search space. After this process, the new point lying on tmthary is obtained by
decoding(x4,y}), which gives ud).

3.2 Theproposed method

The simplest case to apply the boundary approach is whenrtidem has only one
constraint which could be either an equality or an inequaldnstraint. For the last
case, it is important to remember that we are assuming aminstraints at the global
optimum to proceed with this method where the search is avwmyformed on the
boundary of the space defined by any of the constraints.

Fig. 3. Feasible search space definedbpequality constraints.

For facing the typical situation in which we have more thaa oonstraint, it is nec-
essary to define an appropriate policy to explore the boyradaefficiently as possible.
One possibility is to explore in turn the boundary of eachst@int. The selection of
the constraints to search for can be determined using diffanethods. If the problem
includes at least one equality constraint, such equalibstaints are the most appro-
priate candidates to be selected first. In order to show thestoess of our method in
the absence of information about the active constraintspgybhlem, we will show in
our experimental study (see Section 5) a more general agiptoapply the boundary
operators. As an illustrative example, Figure 3 shows a thgiwal search space de-
termined by three inequality constraints. Let's suppoagttie search proceeds starting

on constrainy; by using the boundary operatoy,, (filled line in Figure 3). The ap-
plication of this operator will eventually produce poinishating constraintg. andgs
(dotted line in Figure 3). One of the simplest methods to @eth this situation is the
application of a penalty function for the infeasible sabat. In addition, ifg; is active
at the global optimum, the method will focus the search onbiigndary in order to
restrict the explored regions of the whole search spaces Nowever, that other (more
sophisticated) constraint-handling techniques can asadopted.

4 Boundary Approach in ACO algorithms

A possible design to apply the ACO approach in continuouscheproblems is by
discretizing the continuous search space in some way. $rvibik we use a discrete
structure to represent a set of different points spread es¢arch space. These points
are calleddirections, following Bilchev et al.’s proposal. The discrete struetgan be
seen as a sdid;, ds, ..., dr }, wherek is a parameter for the number of directions, i.e.,
the population size. Each directiah is represented as a realdimensional vector. A
general outline of the ACO algorithm is shown in Figure 4sltiorth remarking that
the original proposal [1] for ACO in continuous domains iediso proceed with the
local exploration after a genetic algorithm has finishedlie global search. However,
the algorithm proposed here, is in charge of performing thizeesearch process. More
precisely, our ACO algorithm starts with a set fofpairs of points(x,y) randomly
generated witlk € F <= y € U (when considering an equality constrainte F

iff h(z) < 0; otherwisez € U/) . In addition, a valu® < R < 1 is considered to define
the extent of the search interval with respect to each viaid#arameteR starting at
valuel will vary down to0 on each iteration as described later in this section.

ACO algorithm
begin
t = 0; initialize A(t); evaluateA(t);
while ('stop condition not metdo
begin
t=t+1
updatetrail; reallocateantsA(t);
evaluateA(t);
end
end

Fig. 4. General outline of the ACO algorithm for continuous probdesaopted in this paper.

The ACO algorithm displayed in Figure 4 works as followsi ti al i ze A(t)
“distributes” N, ants on thek directions, wheregV, > k in order to allocate one or
more ants to the same direction. Each ant randomly genema¢gsossible solution, i.e.
a pair(x,y) with z € F andy € U; eval uate A(t) obtains the objective value
for the new points generategpdate_trail is in charge of accumulating pheromone trial

in each direction proportionally to the quality of the olijee function values found
in the corresponding direction, i.ery = (1 — p) - 74 + A7y Where A7y is a value
proportional to the best objective value on directiband0 < p < 1 is the pheromone
trail evaporation rateteallocate_ants A(t) redistributes the population of ants on the
k directions, proportionally to the accumulated pheromaoai Yalues. Thus, the ants
on directiond € {1,...,k} are in charge of searching in the neighborhood of the
respective boundary feasible point on directibmhe changes on the values of rafo

to control the extent of the search interval for each dinmmsian be implemented as
Ag(t) = R(1 — r(=t/1)) wherer is a random number in the ranfe.1]; T is the
maximum number of iterations. Consequently, the valygt) falls in the rangg0..R)
and gets closer t0 as the elapsed number of iteratigrincreases.

T pad)
N Q

pql ;
(2 |
18
A o
B -
B |

»4(0) pg(l
N

(0w \
(H¥v

Fig.5. Sequence of points generated in the search space and limited extent of values on
each dimension.

Figure 5 represents the successive point2-@mensional vector) on directiof
starting from poinp,(t) for t € {0,1,2,3,4}. Thus, a square represents the neighbor-
hood for a particular point. Following the algorithm, at firet iteration a fixed number
of ants are distributed on thedirections, i.e., the ants that were allocated to direction
d at the iteratiort = 0 will start the search from point;(0). For example, in Figure 5,
pq(0) is the starting point on directiod, p4(1) is the best point found by the ants allo-
cated to directionl by usingAg(0)*. As t increases, new regions of the search space
are independently explored on each direction. For our el@rtige remaining succes-
sively generated points on directidrarep,(2), p4(3), ps(4), and so on. Thus, the ACO
algorithm can be seen as a trajectory approach which simadtasly searches on dif-
ferent directions and exploits the past experience to giiesearch towards the most
promising regions according to the quality of the resultstttermore, the accumulated
pheromone trail will decrease on the direction that produee-quality solutions due
to the effects of the evaporation process focusing the attestion on more promising
regions of the feasible search space. In order to avoid premaonvergence of the

4 It should be noticed that\z(t) is not a monotonically decreasing value.

algorithm, a potentially useful direction can remain as keraative search region by
bounding with lower and upper values the amount of pheronirgaién each direction
following the principle of theM MAS algorithm [9]. The main characteristics of this
method include two abstraction levels:

1. individual search: involves the strategy followed by each ant to search inaigim
borhood (in our case, a mutation-like operator).

2. cooperation: involves information exchange among the ants in order idegthe
search to certain regions of the search space. This infaymiatrepresented by the
pheromone trial structure’ wherer; represents the accumulation of pheromone
trail on directionj. The distribution of the ants on the different directionaékieved

by the formula:Py(t) = ﬁ

5 Analysisof Results

The application of our approach (called AgDrequires minimum changes when ap-
plied to the different test cases considered: the objeftinetion, the number of vari-
ables, the range of each variable, and the constraints. \wéae policy to determine
on which constraint the search should focus needs to bedsresi when the prob-
lems have more than one constraint: a) we can focus the searahthe constraints,
but considering one constraint in turn by controlling therge through a particular
condition (S;;), b) similar to the previous alternative but considerindgyahe active
constraints (§.), or ¢) just considering one constraint during the whole(Sywhere

¢ € {1,...,m}). These three ways of exploring the search space are peelsrst
in our experimental study in order to analyze the perforreasfcthe ACQ; on each
of the considered problems. In our experiments, the candith produce a change on
the search from one to another constraint is given by an ethpamber of iterations
and it is represented by the parametein addition, for problems with more than one
constraint, we incorporate a penalty function of the form:

q m
o, p) = f(@) + p®)Q_max{0,g;(@)} + Y |hi(@))) (1)
j=1 j=gq+1
whereu(t) is a dynamic penalty factor which could change athe elapsed itera-
tion, increases with(0) < p(1) < u(2)... < wu(T). Alternatively, the penalty factor
can be fixed throughout the run, i.@ut) = po forall 1 < ¢ < T. Regardless of
the penalty function adopted, it is worth remarking thatheselution is always lying
on the boundary of the feasible space corresponding to thstr@int under consider-
ation. Note that this approach was adopted due to its siiplgince our interest was
to assess the advantages of our proposed approach. Hoategrconstraint-handling
techniques are evidently possible. The parameter valieskinghe experimental study
are the following:50 ants (population sizeR0 directions (number of points), maxi-
mum number of iteration80000, the evaporation rate = 0.5, t. > 0 is the number
of iterations the ACQ@ focuses on one constraint in turn. When= 0, the ACQs
focuses on only one constraint throughout the whole tuge=(200). The penalty factor

Table 1. Results for problemé&/02 (Keane’s function) and703.

No. of BF Mean Std Worst |# FeaMean(#E
Variables)
Problem G02
20 0.803619086[0.8025656939.00320.7930839658 30 | 29500
50 0.8352618811.833930969.00210.8259508014 30 | 35900
100 0.845684170[0.84469360110.00070.842350900R 30 | 46700
Problem G03
20 1.0 1.0 0.0 1.0 30 | 140000
50 1.0 1.0 0.0 1.0 30 | 389500

u(t) was experimentally determined for each particular probéerd is shown in the
corresponding tables of results. The Ag@as executed0 times with different seeds
for each parameter combination. The problems studieddeciuset of well-known test
cases traditionally adopted in the specialized literatGi@, to G13 [10].

5.1 Study of the application of ACOg

We have divided the presentation of the results into two gsa@ccording to the follow-
ing criteria: the first group, is displayed in Tables 1 and&bl& 1 includes two special
cases since they where the first problems on which the boyag@roach was applied
(problemsG02 and G03). In addition, these problems have one and two constraints
respectively. However, the second constraint of probfédR is not considered since
it is not active at the best known value. The columns in thidetghow the setting for
the number of variables, the best value found (BF), Meamdatal Deviation (Std),
Worst, number of feasible solutions out &0 runs (#Fea), and the mean number of
evaluations to get the best value found (Mean(#E)). On therdtand, Table 2 shows
two problems both of which include one equality constrgmoblemsG11 andG25).
Accordingly, no penalty valuesj need to be applied for this first group of problems.
In the remaining tables, the column “No. of variables” islaged by “Cnst”, indicating
the criteria adopted to proceed with the boundary seareh,S, (¢ € {1,...,m}),
Sact, OF Sy In addition, the best known or global optimum value for epobblem is
shown in parenthesis.

We testedG02 setting the number of variables as= 20, 50, and 100. ACOg
succeeded in finding the best known value fioe= 20 [11]. In addition, it was able
to find a better quality result than the best objective regmbih [7] wheren = 50
and f(x*) = 0.831937. Forn = 100, we found0.8456841707 as the best value in
our experimental study. Also, it is worth remarking thatthk solutions found were
feasible for alln and very similar among themselves as can be observed in lilnmes
Mean, Std, and Worst. With respect to probléi3, we consideredh = 20 andn =
50 variables. AC@ found the optimum feasible solution for both cases in allsrun
Similarly to G03, the remaining problems of this grou@11 andG25), our approach
reached the optimum in all cases.

The second group of the test cases is conformed by some prsifiaving more
than one constraint which have been frequently used in thealzed literatureG01,

Table 2. For problems G11 and G25 it is unnecessary to use a penalty.fac

ICnst] BF [Mean [Std Worst [# FealMean(#E
Problem G11 (0.75)

[Si]| 075 | 075 [0.0] 0.75 [30 [70400
Problem G25 (16.73889)

[S: |-16.73889-16.738890.01-16.73889 30 | 10600

G04, G05, GO6, GO7, G09, G10, andG13. Also we include probleniz24 [12] in this
subgroup. Only foG10, we adopted a dynamic penalty(¢) = 1.05 x u(t — 1) for

t = 0,1, tmaee, With (0) = 200000). The static penalty factors adopted for the
remaining problems are (i.e., for= 0,1,---T): GO1, u(t) = 1000; GO4, u(t) =
800000; GO5, u(t) = 10; GO6, u(t) = 10000; GO7, u(t) = 20000; GO9, u(t) = 2000,
G13, u(t) = 0.2; andG24, u(t) = 1000. The results for this group of problems are
displayed in Tables 3 and 4. It must be noticed that theselgmbinclude different
numbers and complexities of the equality and inequalitystr@ints which are active at
the best known or optimum solution. As indicated in columms€’, each row shows
the results when AC®is applied one of the following criteria: search exclusjveh
constraintj (S;, j = 1,...,m), on all the active constraints in tur®{.;), and over
all the constraints in turndy;;). For example, problend’01 has 6 active constraints.
Accordingly, ACQz performs optimally when searching on those active comgsai
Similarly, the algorithm succeeded in finding the optimaduton when using both
Saet and S,y However, its performance slightly decays when searchimghe non
active constraints as could be expected. This situationaserdramatic for problem
(04 which has two active constraints. In this case, ALCanly finds the optimum so-
lution when searching on the respective active constraimisS,.;. Although strategy
Squ fails in finding any feasible solution, this strategy workadll for all the other
problems considered. A similar situation can be seen fdolproG05 which has three
equality constraints. Accordingly, AG&Xinds a high quality solution for this problem
(very near to the optimal one) when searching on the equatibstraints,S,.;, and
Sai- On the other hand, proble6i06 has two inequality constraints which are active
at the optimum. ACQ@ performs optimally for this problem by following any of the
three applicable strategieS;, S», andS,.;. The last problem in Table 3 has six active
constraints and AC® performs similarly toG01 since the best results were obtained
when searching on the active constraints or by using or S,y;.

ProblemG09 has two active constraints for which AGg@ound the optimum value.
However, searching on the non active constraints can gswdtesfar from the expected
value (seeS; and.S3). G10 constitutes one of the most difficult test cases not only for
our approach, but also for any other constraint-handlingrigue. ACG found feasi-
ble solutions with all the search strategies excepbfpandSs. Note the small number
of feasible solutions found for this problem, as well as thegyé standard deviation
value produced (with respect to the deviations of the othalnlpms). Another interest-
ing problem isG13 whose feasible search space is defined by three nonlinealityqu
constraints. For this problem AG{found the optimal solution following either of the
four applicable search strategies. Finally, it can be seahACQs performs optimally

Table 3. Results for problem&01, G04, G05, G06, andG07.

[Cnst. BF [Mean [Std][Worst [#Fea]Mean(#EJ] Cnst.| BF [Mean [Std | Worst [# Fea]Mean(#E
Problem G01 (-15.00) Problem GO07 (24.306)

S1 -15.00 -14.99 [0.001] -14.996 | 30 | 274800 || Sy 24.37 | 2959 | 4.83 | 4297| 30 70000
Sgo -15.00 -14.96 |0.012] -14.995 | 30 | 159720] Sgo | 24.51 | 35.10 [23.02| 121.56] 30 | 133600
S3 -15.00 -14.99 [0.001] -14.965 | 30 [381800[| S3 24.56 | 28.31| 554 | 50.83| 30 83600
S4 -14.27 -1354 | .38 | -13.18 29 | 544400 || S4 | 24.79 [54.17 | 70.46| 380.03| 30 | 83600
Ss -13.84 -13.48 [0.32] -13.04 25 | 433800 | S5 2452 | 3452]16.39| 77.19| 30 85000
Se -14.22 -13.39 | 047| -13.00 26 | 407200 | Sg | 24.79 | 31.12| 6.46 | 48.40 | 30 | 720800
Sz -15.00 -14.78 [0.2 -14.65 26 | 213400|[S7 33.08 | 38.86 | 4.01 | 46.53| 30 71200
Sg -15.00 -14.74 [0.49]| -14.46 27 | 723400 |[Sg 41.03 | 46.86 | 20.92| 127.06]| 30 | 260200
Sg -15.00 -14.67 | 0.76] -13.08 30 | 454800

Sact| 1500 | 1500 | 0 | -1500 | 30 | 81400 |[Sqcs| 24.37 | 2464 | 0.15 | 24.92| 30 | 35600
Sau1| 1500 | -1500 | 0 | -1500 | 30 | 104000|[S;; | 24.38 | 24.76 | 0.16 | 25.22| 30 | 56000
Problem G04 (-30655.539) Problem GO5 (5126.49)
51 |-30665.539-30665.35] 0.04]-30665.15] 30 | 512200]| S - - B - - B
So - - - - - - So - - - - - -
S3 - - - - - - S3 |5126.505133.29 9.284|5147.8] 6 | 100800
S4 - - - - - - S, |51265]5134.7q11.2195164.9] 11 | 340000
S5 - - - Sp_|5126.695130.59 3.656|5136.04 11 | 180000

Se -30655,533-30665,30 0.01]-30665.299 30 | 326400

S act [-30655.539-30655.5390.001]-30655.539 30 19800 [|S gt [5126.505138.37 8.20 |5132.14 6 94000
S ull — - |- - | - - S 411 |5126.5(5143.71 10.60|51635§ 5 | 135800
Problem G06 (6961.81)
ER -6961.79 | -6961.71[0.075 -6169.54(11 [122600
So -6961.81 | -6961.72[0.097| -6961.34(25 [103000
Sact| -6961.81 -6961.74]0.070] -6961.71[25 80000

Table 4. Results for problemé&/09, G10, G13, andG24.

[Cnst] BF | Mean | Std | Worst [#Fea]Mean(#E
Problem G09 (680.63
ER 680.63 | 680.66 | 0.10 681,29 | 30 80400

So | 1664.00(1890.01]| 119.92| 1982.72| 5 108000
S3 840.00 | 880.82 [15.06 | 890.56 | 29 22200
Sa 680.63 | 680.96 [0.96 | 681.95 | 29 | 43000
Sacet| 680.63 | 680.67 [0.026 | 680.72 | 30 7400
Sga11 | 680.65| 680.75 [0.056 | 680.89 | 30 19400
Problem G10 (7049.331)
S1 | 7101.50(7346.61| 202.15] 7682.20| 9 147700
So | 7063.02(8169.68|1866.34 10325.000 3 131600
9
2

S3 | 7057.27| 7406.51 | 148.60 7518.91 148600
S4 | 709527 7349.83] 360.00] 7604.39 128200
S5 - - - - -

Se B B B - B B

Sact | 7052.30| 7199.01| 175.01| 794315 30 | 42800
S 11 | 7068.04| 7141.87] 52.27 | 7239.54] 30 | 9800
Problem G13 (0.053950)
57 | 0.053950 0.0549080.00054 0.055386] 6 | 29800
So [0.053950] 0.0543720.00044 0.05496% 4 | 7400
S3_|0.053950 0.054637]0.00017 0.054394 6 | 7200
Sact | 0053950 0.05473¢ 0.001 | 0.058462] 15 | 19800
Problem G24 (-5.508013)
S1 |55080135508013 0.0 [-5.508013 30 | 5800
S5 | 5508013550801 0.0 |-5.508013 30 | 24000
Sact | 5508013-5508013 0.0 |-5.508013 30 | 21400

on problem&24 which has two active inequality constraints where the oatsolution
was found for all strategies in each run (see #Fea).

5.2 Comparison with an state-of-the-art algorithm

In this section we compare the best quality results from AQ®e useS,,.; as the most
efficient search criteria) with respect to the results of ast@int-handling technique
representative of the state-of-the-art in the area: SsizhRanking (SR) [10]. Table 5
shows for each problem considered, the optimum, and thesponding Best value
found (BF), average (Mean), and Worst values respectiveln fACOgz and SR (re-

ported in [109). The performance of AC@is comparable in many ways with respect
to SR.

From the perspective of the best values (BF) found gQ@aches similar values
as SR in all the problems considered. E&2, ACOg reached the best known value
reported in [5] by using aad hoc boundary operator. On the opposite side, &0,
ACOg did not obtain the optimal solution. However, the resultsiewed in all cases
are highly competitive.

Table 5. Comparison of ACO with respect to a constraint-handling technique representative of
the state-of-the-art in the area: stochastic ranking (SR).

BF Mean Worst
Prob Opf® ACOg SR ACOg SR ACOg SR
G0l -15.000 -15.000 -15.00d -15.00Q0 -15.000 -15.00(¢ -15.00
G02 0.803619 0.803619 0.80351% 0.80265¢ 0.781975% 0.793083 0.72628
GO03 1.00Q 1.00Q 1.00Q 1.00Q 1.00Q 1.00Q 1.00Q
G04-30665.539-30665.539-30665.539-30665.539-30665.539-30666.539-30665.539
G05 5126.49 5126.50 5126.497 5138.37 5128.881 5132.14 5142.472
G06 -6961.814 -6961.81 -6981.814 -6961.74 -6875.940 -6961.71 -6350.262
GO07| 24.306 24.37 24.307 24.64 24.374 24.92 24.642
G09 680.63(680.63 680.63 680.67 680.56 680.74 680.7641
G10 7049.331 7052.30 7054.316 7199.01 7559.192 7943.1% 8835.655
G11 0.75 0.75 0.75 0.75 0.75 0.75 0.75
G13 0.05395(0 0.05395(0 0.053957 0.054908 0.057006 0.05538¢ 0.216915
G24 -5.508013 -5.508013 -5.508013 -5.508013 -5.508013 -5.508013 -5.508013
G25 -16.73819 -16.73819 -16.73819-16.73819+ 16.73819 -16.73819 -16.73819

6 Conclusionsand Future Work

In this paper we presented an alterative approach to reachdbndary between the
feasible and infeasible search space which could be uséfehviacing problems with
active constraints. For the initial testing of this methoel mave used an ant colony al-
gorithm as a search engine (AgQand a penalty function as a complementary mech-
anism for problems with more than one constraint. The ovpeaformance of ACQ
was satisfactory for all of the problems considered. The mamson with a state-of-
the-art algorithm shows the potential of this method as tamrative or complementary
approach for constrained optimization problems. In famtsbme problems, ACgwas
able to improve the respective best known solutions (€@2,(with n = 50 variables)).
Itis clear that further improvements should be considefed example, it is desirable
to implement a self-adaptation mechanisms and to try @iffesearch engines (e.g.,
differential evolution and evolution strategies). We gidan to study the performance
of our approach in several additional test functions.

5 Except for problem&24 andG25 for which SR was run by the authors using Thomas Runars-
son’s code.

Acknowledgments

The first author acknowledges support from Universidad dtzadide San Luis and the
ANPCYT (National Agency for Promotion of Science and Tedbgy). The second
author acknowledges support from CONACyT project no. 45883

References

10.

11.

12.

. Bilchev, G., Parmee, I.C.: The ant colony metaphor ford@ag continuous design spaces.

Lecture Notes in Computer Scieng@3 (1995) 25-39

. Ling, C., Jie, S., Ling, Q., Hongjian, C.: A method for daly optimization problems in

continuous space using ant colony algorithm. In Dorigo,G&ro, G.D., Sampels, M., eds.:
Proceedings of the Third International Workshop, (ANT®2) Volume 2463 of Lecture
Notes in Computer Science. Springer Verlag, (BrusselgjiBel) 288—289

. Lei, W., Qidi, W.: Further example study on ant system athm based continuous space

optimization. In: Proceedings of thé#Congress on Intelligent and Automation, Shangai,
P.R. China (2002) 2541-2545

. Pourtakdoust, S.H., Nobahari, H.: An extension of anbmplsystems to continuos opti-

mization problems. In Dorigo, M., Birattari, M., Blum, C. a@bardella, L.M., Mondada, F.,
Stitzle, T., eds.: Ant Colony Optimization and Swarm ligeince, 4th International Work-
shop, ANTS 2004. (Springer-Verlag) 294-301

. Michalewicz, Z., Nazhiyath, G., Michalewicz, M.: A not@ aisefulness of geometrical

crossover for numerical optimization problems. In et alJ.E., ed.: Proceedings of the Fifth
Annual Conference on Evolutionary Programming, Cambritifys, MIT Press (1996) 305—
311

. Keane, A.: Genetic algorithms digest, v8n16 (1994)
. Schoenauer, M., Michalewicz, Z.: Evolutionary compigtatat the edge of feasibility. In

Voigt, H.M., Ebeling, W., Rechenberg, I., Schwefel, H.Rise Parallel Problem Solving
from Nature — PPSN 1V, Berlin, Springer (1996) 245-254

. Wu, Z., Simpson, A.: A self-adaptive boundary search tieadgorithm and its application

to water distribution systems. Journal of Hidraulic Reskd0(2) (2002) 191-203

. Corne, D., Dorigo, M., Glover, F., eds.: New Ideas in Ojtation. McGraw-Hill Interna-

tional (1999)

Runarsson, T.P., Yao, X.: Stochastic ranking for cairs&d evolutionary optimization. IEEE
Transactions on Evolutionary Computatié{3) (2000) 284-294

Hamida, S.B., Schoenauer, M.: ASCHEA: New Results Ugidgptive Segregational
Constraint Handling. In: Proceedings of the Congress oruEiemary Computation 2002
(CEC’2002). Volume 1., Piscataway, New Jersey, IEEE Ser@enter (2002) 884-889
Liang, J., Runarsson, T.P., Mezura-Montes, E., Clerc, Suganthan, P.N., Coello
Coello, C., Deb, K.: Problem definitions and evaluation eci#t for the cec 2006
special session on constrained real-parameter optimizati Technical report, School
of Electrical and Electronic Engineering Nanyang Techgimal University, Singapore,
http://www.ntu.edu.sg/home5/lian0012/cec2006/tecimieport.pdf (2006)

