
Increasing Successful Offspring and Diversity in
Differential Evolution for Engineering Design

Efrén Mezura-Montes†, Carlos A. Coello Coello‡ and Jesús Velázquez-Reyes‡
†Apizaco Institute of Technology, Computer Science and Systems Department, Apizaco, Tlaxcala, MEXICO
emezura@itapizaco.edu.mx
‡CINVESTAV-IPN, Computer Science Section, Electrical Eng. Department, México D.F. MEXICO
ccoello@cs.cinvestav.mx, jesus.velazquez@gmail.com

ABSTRACT

We propose a modified version of the differential
evolution approach to solve engineering design problems.
The aim is to allow each parent in the population to
generate more than one offspring at each generation and
therefore, to increase its probability of generating a better
offspring. To deal with constraints, we use some criteria
based on feasibility and a diversity mechanism to maintain
infeasible solutions in the population. The approach is
tested against penalty function approaches and its
performance is also compared against state-of-the-art
approaches.

1. INTRODUCTION

Many engineering design problems can be stated like the
general nonlinear programming problem in which we want
to:

Find xr which optimizes ()xf r

subject to:

() 0≤xgi
r , mi ,,1K=

() 0=xh j
r , pj ,,1K=

where nx ℜ∈r is a vector of solutions

[]T
nxxxx ,,, 21 K

r = , where each kx , nk ,,1K= is
bounded by lower and upper limits kki UxL ≤≤ , “m” is
the number of inequality constraints and “p” is the number
of equality constraints (in both cases, constraints could be
linear or nonlinear).

Differential Evolution (DE) is a novel evolutionary
algorithm proposed by Storn and Price [8]. The approach
works with a mutation operator which is based on the
current distribution of solutions in the population, instead
of being based on a fixed (usually Gaussian) distribution
such as other Evolutionary Algorithms (EAs) like
Evolution Strategies [1]. At each generation in DE, each
parent will generate one offspring. If this child is better
than its parent, it will replace him in the population; if not,

the parent will remain and the child is eliminated. Three
random individuals are selected to calculate the mutation
values by computing a linear combination which involves
the scaled difference of two of them added to the values of
the third one (lines 9 and 13 in Figure 1).

Four parameters are used by DE: “NP” (population size),
number of generations , “F” and “CR”. The “F” parameter
scales the influence of the set of pairs of solutions (one
pair in our case) selected to calculate the mutation values
(line 13 in Figure 1). The “CR” parameter controls the
influence either of the original parent or the mutation
values in the generation of the offspring by a binomial
recombination (lines 12 to 15 in Figure 1). Several DE
models have been proposed [8]. In our study we use the
most used model called “DE/rand/1/bin” (the individuals
for mutation are selected at random, just one pair of
solutions is used to calculate the scaled difference and a
binomial (discrete) recombination is chosen).

The motivation of this paper is two-fold: (1) to increase
the probability of a parent to generate a fitter offspring and
(2) to avoid the use of a penalty function to deal with the
constraints of the problem. The first objective is reached
by allowing each parent to generate more than one
offspring at each generation. In this way, a pre-selection
mechanism is incorporated to select, by using a
deterministic process, the best solution among the
offspring of one parent, and only this best solution will
compete against its parent in order to remain in the
population. The second objective refers to handling the
objective function value and the constraints of the problem
separately and to use a mechanism to keep solutions with a
good value of the objective function, regardless of their
feasibility, in the population. This issue is important
because maintaining promising infeasible solutions will
increase the exploration of new regions of the search space
and the feasible region and it will decrease the chances of
getting trapped in local optima.

The paper is organized as follows: In Section 2, we present
the previous related work. Section 3 provides the
description of our approach. Afterwards, in Section 4, we
detail the experimental design and we present and discuss
the results obtained. Finally, in Section 5 some
conclusions are drawn and the future work is established.

mailto:emezura@itapizaco.edu.mx
mailto:ccoello@cs.cinvestav.mx
mailto:jesus.velazquez@gmail.com

2. RELATED WORK

EAs have been widely used to solve engineering design
problems. More precisely, the approaches discussed in this
section do not use a penalty function with penalty factors
to be calibrated as a constraint-handling mechanism. Storn
[11] proposed a constraint-relaxation mechanism coupled
with the aging concept to solve optimization problems
using DE. He explored the idea of allowing a solution to
generate more than one offspring, but in his approach,
once a child is better than its parent, the multiple offspring
generation ends. Furthermore, the comparison between
solutions is always deterministic and the constraint-
handling mechanism is based on relaxing the constraint at
the beginning in order to consider all the solutions as
feasible.

Mezura-Montes & Coello Coello [7] have explored the
idea of avoiding the use of penalty functions to solve
engineering design problems. Instead, they proposed to
use multiobjective optimization concepts [7]. The
approach provided good results, however , it required to
perform a considerable high number of evaluations of the
objective function of the problem.

Among the state-of-the-art approaches available to solve
engineering design problems, we present the following:
He et al. [4] proposed a PSO-based approach to solve
engineering design problems. The main advantage of the
approach is its low computational cost measured in terms
of the number of objective function evaluations. However,
He's approach only works with feasible points; therefore,
there is no diversity mechanism at all and an initial
population of feasible solutions is always required. This is
obviously the main disadvantage of the technique.

Ray & Liew [9] used a social model to solve engineering
optimization problems. In their model, the population of
solutions is seen as a civilization and it is divided into sub-
populations known as societies. There are leaders in each
society and the leaders are also grouped in a leaders'
society. Then, solutions can follow its corresponding
leader, a leader of another society or the leader of leaders.
In this way, the approach aims to maintain diversity.
Constraints are handled by using dominance as a selection
criterion. The main advantage of the approach is that it
requires a low number of evaluations of the objective
function to obtain competitive results. However, it requires
a ranking process at each generation besides a clustering
algorithm which is used to initialize the societies.

3. OUR APPROACH

The aim of the approach is to add simple modifications to
the DE algorithm to adapt it to deal with constrained
search spaces and also to improve its performance by
generating more offspring per parent. At each generation,

each parent will be able to generate no offspring. Among
these newly generated solutions, the best of them will be
selected to compete against its parent. Then, each parent
will increase its chances to generate a fitter offspring. The
selection of the best child is completely deterministic
based on the three following criteria previously proposed
by Deb [2]:

1. Between 2 feasible solutions, the one with the
highest fitness value wins.

2. If one solution is feasible and the other one is
infeasible, the feasible solution wins.

3. If both solutions are infeasible, the one with the
lowest sum of constraint violation is preferred
∑ max(0,gi(X)) ∀i, , i=1,…,n,

After the best offspring is selected, it will compete against
its corresponding parent and the best of them will survive
for the next generation. However, unlike Deb’s approach
[2] and traditional DE [8], in this case, the comparison
between parent and best offspring is performed with a
stochastic element. Based on a parameter called selection
ratio Sr the best solution is chosen based only on the value
of the objective function value. In the remaining 1-Sr
selections, the best solution is chosen based on the three
criteria mentioned before. In this way, the best feasible
solutions will remain in the population, besides those
solutions with a promising value of the objective function,
regardless of feasibility.

This mechanism, coupled with the DE's way of finding
new search directions (based on the distribution of
solutions in the current population) will allow the
algorithm to explore the search space and its feasible
region in a better way as to obtain better solutions. The
details of our approach are presented in Figure 1.

4. EXPERIMENTS AND DISCUSSION

Our experimental design has two parts: (1) to compare our
approach against a traditional EA with different types of
penalty function approaches and (2) to compare our results
against state-of-the-art approaches and against a traditional
DE approach which generates only one offspring per
parent. We selected four well known engineering design
problems to use them in the experiments. The details of
each problem are presented in an Appendix at the end of
this document.

For the first set of experiments, we implemented four
typical penalty approaches: (1) A zero fitness value to
infeasible solutions (death penalty) [10], (2) static penalty
(fixed penalty factor during all the process) [5], (3)
dynamic penalty (the penalty factor has a low value at the
beginning and a high value at the end of the process) [6]

 1Begin
 2 G=0
 3 Create a random initial population NPiix i

G ,,1, K
r =∀

 4 Evaluate () NPiixf i
G ,,1, K
r =∀

 5 For G=1 to MAX_GENERATIONS Do
 6 F=rand[0.3,0.9]
 7 For i=1 to NP Do
 8 For k=1 to n0 Do
 9 Select randomly r1 ≠ r2 ≠ r3 ≠ i
 10 Jrand = randint(1,D)
 11 For j=1 to n Do
 12 If (rand[0,1) < CR or j = jrand) Then
 13 ()213

,,,child r
Gj

r
Gj

r
Gjj xxFx −+=

 14 Else
 15 i

Gjj x ,child =
 16 End If
 17 End For
 18 If k>1 Then
 19 If (child is better than i

Gj u 1child += r) (based on the three criteria)) Then

 20 child1 =+
i
Gur

 21 End If
 22 Else
 23 child1 =+

i
Gur

 24 End If
 25
 26 End For
 27 If flip(Sr) Then
 28 If (() ()i

G
i
G xfuf 11 ++ ≤ rr Then

 29 i
G

i
G ux 11 ++ = rr

 30 Else
 31 i

G
i
G xx rr =+1

 32 End If
 33 Else
 34 If (i

Gu 1+
r is better than i

Gxr (based on the three criteria)) Then

 35 i
G

i
G ux 11 ++ = rr

 36 Else
 37 i

G
i
G xx rr =+1

 38 End If
 39 End If
 40 End For
 41 G=G+1
 42 End For
 43 End

Figure 1. Our algorithm. The steps modified with respect to the original DE algorithm are marked with an arrow.
randint(min,max) returns an integer value between min and max. rand[0,1) returns a real number between 0 and 1. Both
functions adopt a uniform probability distribution. flip(W) returns 1 with probability W.

Table 1. Comparison of statistical results for the penalty-based approaches and our approach. “-“ means no feasible

solutions found. A result in boldface means a better result. “*(X)” means that only in X runs (out of 30) feasible
solutions were found.

a) Welded beam design
 Death Penalty Static Dynamic *(28) Adaptive *(27) Our approach

Best 1.739736 1.792248 1.781232 1.792266 1.724852
Mean 2.104756 2.023434 2.138872 2.164542 1.724853
Worst 2.803005 2.739448 2.904370 3.018553 1.724854

St. Dev. 3.0E-1 2.2E-1 2.8E-1 3.4E-1 1.0E-15

b) Pressure vessel design
 Death Penalty Static Dynamic *(22) Adaptive *(21) Our approach

Best 6172.421387 - 6162.862793 6292.51022 6059.701660
Mean 7417.028727 - 7042.828564 7703.780354 6059.701660
Worst 10477.677734 - 7798.198242 10830.894278 6059.701660

St. Dev. 9.6E+2 - 5.3E+2 1.6E+3 1.0E-12

c) Tension/Compression Spring design
 Death Penalty Static Dynamic Adaptive Our approach

Best 0.012719 0.012753 0.012702 0.012692 0.012665
Mean 0.014665 0.014636 0.013998 0.014002 0.012666
Worst 0.018139 0.018918 0.017044 0.016661 0.012674

St. Dev. 1.4E-3 1.6E-3 1.0E-3 1.2E-4 2.0E-6

d) Speed reducer design
 Death Penalty Static Dynamic Adaptive Our approach

Best - - - - 2996.356689
Mean - - - - 2996.367220
Worst - - - - 2996.390137

St. Dev. - - - - 8.2E-3

Table 2: Comparison of results with respect to two state-of-the-art approaches and a traditional DE approach. A
result in boldface means a better result. “NA” means not available.

Problem Stats Ray & Liew [9] He et al. [4] Our approach Traditional DE
Welded beam Best

Mean
St. Dev.

Evaluations

2.385435
3.255137

9.6E-1
33000

2.380957
2.381932

5.2E-3
30000

1.724852
1.724853
1.0E-15
24000

1.904312
2.237370

2.3E-1
24000

Pressure vessel Best
Mean

St. Dev.
Evaluations

6171.00
6335.05

NA
20000

6059.7143
6289.92881

3.1E+2
30000

6059.701660
6059.701660

1.0E-12
24000

7247.938477
8854.318896

1.3E+3
24000

Ten./Comp.
Spring

Best
Mean

St. Dev.
Evaluations

0.012669
0.012923

5.9E-4
25167

0.012665
0.012702

4.1E-5
15000

0.012665
0.012666

2.0E-6
24000

0.012851
0.014119

1.0E-3
24000

Speed reducer Best
Mean

St. Dev.
Evaluations

2994.744241
3001.758264

4.0E+0
54456

NA
NA
NA
NA

2996.356689
2996.367220

8.2E-3
24000

3064.211426
3244.569010

2.0E+2
24000

and finally an adaptive penalty (the penalty factor is
updated based on the behavior of the population) [3].

30 independent runs per technique per problem were
performed. The number of evaluations of the objective
function was fixed to 24,000 for the four penalty-based
approaches and also for our approach. For the penalty-
based approaches we used a typical EA: a gray-coded
genetic algorithm with roulette wheel selection, one point
crossover, uniform mutation and elitism incorporated. The
population size was 100 individuals and the number of
generations 240.

The rate of crossover was 0.6 and the mutation rate was
0.01. The parameters for the static, dynamic and adaptive
approaches and also for the genetic algorithm were
defined after a trial-and-error process.

The reported parameters were those which provided the
best results and they are the following: Static approach:
fixed penalty factor = 1000. Dynamic approach: α=2, β=2,
C=0.5. Adaptive approach: β1=2.0, β2=4.0, k=50,
δinitial=5000. Our DE-based approach used the following
parameters: NP = 60, MAX_GENERATIONS=80 (24,000
evaluations of the objective function), CR=0.9, no=5 and
Sr=0.45, F randomly generated within [0.3,0.9].

Discrete variables were handled by just truncating the real
value to its closest integer value. The statistical results of
the 30 independent runs are shown in Table 1. All these
parameters were defined after previous experiments in
order to obtain the best performance.

Based on the results obtained, our approach was able to
provide the most robust (“better” mean and standard
deviation values) and the best quality results (“better” best
solution found) in all four engineering design problems
adopted. In fact, none of the penalty-based approaches was
able to find feasible solutions for the speed reducer design
problem. Besides, the dynamic penalty approach could not
find feasible solutions for the pressure vessel problem and
it could not find feasible solutions in two and eight runs
for the welded beam and the pressure vessel problems
respectively.

Furthermore, the adaptive approach could not find feasible
solutions for the welded beam and for the pressure vessel
problems in three and nine runs, respectively. On the other
hand, our approach consistently found feasible solutions in
each run for all design problems.

The overall results suggest that our approach provided the
most consistent performance, while the penalty-based
approaches were competitive in some problems, but in
others the results were poor. This behavior indeed reflects
the need to update the penalty factors according to the

problem to be solved. This negative effect is not present in
our approach, because with the same set of parameters,
avoiding the use of a penalty function and with the
diversity mechanism, the approach finds good feasible
solutions consistently. In fact, regardless of the penalty
values adopted, calibrating the parameters for the genetic
algorithm was more difficult than defining the values for
the DE approach, which is a very interesting advantage of
our approach.

Table 3. Details of the best solution found
Problem 1. Welded beam

 Ray & Liew[9] He et al. [4] Our approach
x1
x2
x3
x4

g1(x)
g2(x)
g3(x)
g4(x)
g5(x)
g6(x)
g7(x)
f(x)

0.244438
6.237967
8.288576
0.244566

-5760.110471
-3.245428
-0.000128
-3.020055
-0.119438
-0.234237

-13.079305
2.38119

0.244369
6.217520
8.291471
0.244369

-5741.176933
0.000001
0.000000
-3.022955
-0.119369
-0.234241
-0.000309
2.380956

0.205730
3.470489
9.036624
0.205730
-0.000335
-0.000753
-0.000000
-3.432984
-0.080730
-0.235540
-0.000882
1.724852

For the second set of experiments we compared the
performance of our approach against those provided by the
last two approaches discussed in Section 2. We used He's
and Ray's approaches because they solved the same set of
test problems. In this case, the number of evaluations
required by each approach is included and it is used as a
comparison criterion. We also added the results obtained
with a traditional DE approach with the same set of initial
parameters used by our approach and with the same
constraint handling mechanism. The only difference
between traditional DE and our approach is that in the
first, only one offspring per parent is generated and in our
approach we generate 5 offspring per parent. The
parameter values used in our approach are exactly the
same used in the previous experiment. The comparison of
the statistical results and the number of evaluations
required by each approach are presented in Table 2. In
Tables 3, 4, 5 and 6 we provide the details of the best
solution found by each state-of-the-art technique and our
approach for the four test problems respectively.

The results show that our approach clearly outperforms the
two compared approaches in the welded beam design
problem (“better” best, mean and standard deviation
values, requiring a lower number of evaluations to provide
such a performance). For the pressure vessel problem,
Ray's approach required the lowest number of evaluations.
However, our approach provided clearly “better” best,

mean and standard deviation values than those provided
by Ray's technique by just using 4000 more evaluations.
For the spring design problem, He's approach provided the
same best solution found by our approach by using just
15,000 evaluations of the objective function. Nonetheless,
it is important to note that He's approach requires to
generate an initial feasible population. In contrast, our
approach starts only with random solutions, regardless of
feasibility. Furthermore, our approach provided “better”
mean and standard deviation values, which imply more
robustness of our approach.

Table 4. Details of the best solution found
Problem 2. Pressure vessel

 Ray & Liew[9] He et al. [4] Our approach
x1
x2
x3
x4

g1(x)
g2(x)
g3(x)
g4(x)
f(x)

0.8125
0.4375

41.9768
182.2845
-0.0023
-0.0370

-23420.5966
-57.7155
6171.0

0.8125
0.4375

42.098446
176.636052
-0.000000
-0.035881
-0.000000

-63.363948
6059.7143

0.8125
0.4375

42.098446
176.636047

0.000000
-0.035881
-0.000002

-63.363949
6059.701660

For the speed reducer problem, Ray's approach provided
the “best” best result, but it required more than twice the
number of evaluations used by our approach. Besides, our
best solution is close to the value provided by Ray's
approach and also our mean and standard deviation values
are clearly better, showing again, the robustness of the
approach. Finally, our approach provided better results in
all cases in all criteria with respect to the traditional DE
approach despite the fact that both share the same diversity
mechanism.

Table 5. Details of the best solution found
Problem 3. Tension/Compression spring

 Ray & Liew[9] He et al. [4] Our approach
x1
x2
x3

g1(x)
g2(x)
g3(x)
g4(x)
f(x)

0.0521602
0.368159

10.648442
-0.000000
-0.000000
-4.075805
-0.719787
0.012669

0.051690
0.356750

11.287126
-0.000000
0.000000
-4.053827
-0.727706
0.012665

0.051688
0.356692

11.290483
-0.000000
-0.000000
-0.727747
-4.053734
0.012665

The details of the best solutions found shown in Tables 3,
4, 5 and 6 seem to emphasize the ability of the approach,
based on the intensive use of the DE operator in one
parent, to explore solutions close to already good solutions
and to improve the quality of the final result. This
behavior was found mostly in the beam and the pressure
vessel design problems (Tables 3 and 4).

The overall results of this second experiment suggest that
our approach was able to provide very competitive results
compared with those provided by two state-of-the-art
approaches based on the quality, robustness and
computational cost measured by the number of evaluations
of the objective function. Furthermore, the chance to
generate more offspring per parent provided an
improvement in the quality and robustness of the results
obtained.
The conclusions for both experiments provide empirical
evidence about the importance of allowing each solution
to reproduce more than once in the same generation and
the convenience of using a mechanism to deal with
constraints by avoiding the use of a penalty function and
favoring diversity.

Table 6. Details of the best solution found
Problem 4. Speed reducer

 Ray & Liew [9] Our approach
x1
x2
x3
x4
x5
x6
x7

g1(x)
g2(x)
g3(x)
g4(x)
g5(x)
g6(x)
g7(x)
g8(x)
g9(x)
g10(x)
g11(x)
f(x)

3.500000
0.700000

17
7.327602
7.715321
3.350267
5.286655

NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA

2994.744241

3.500010
0.700000

17
7.300156
7.800027
3.350221
5.286685
-0.073918
-0.198001
-0.499144
-0.901471
-0.000005
-0.000001
-0.702500
-0.000003
-0.583332
-0.051345
-0.010856

2996.356689

9. CONCLUSIONS AND FUTURE WORK

We have presented a DE-based approach to solve
engineering design problems. The approach was based on
the more frequent use of the DE operator per parent. The
constraint handling technique was based on simple
selection criteria and a diversity mechanism to maintain
promising solutions regardless on feasibility. The results
obtained in two different experiments show that the
proposed approach outperforms four different penalty-
based techniques when tested in four engineering design
problems. Also, in the second experiment, the approach
obtained better results than a traditional DE approach and
it provided very competitive results against two state-of-
the-art approaches which neither use a penalty function as
a constraint-handling mechanism.

As future paths of research we will explore a mechanism
to adapt the parameter that controls the number of
offspring per parent and we will test our approach in other
real-world problems with a high dimensionality.

ACKNOWLEDGMENTS

The second author acknowledges support from the
Mexican Consejo Nacional de Ciencia y Tecnología
(CONACyT) through project number 45683.

REFERENCES

1. Bäck T., 1996, Evolutionary Algorithms in Theory and
Practice. Oxford University Press, New York, 1996.
2. Deb, K., 2000, An efficient constraint handling
technique method for genetic algorithms. Computer
Methods in Applied Mechanics and Engineering,
186(2/4):311—338.
3. Hadj-Alouane A.B. and Bean. J.C., 1997, A Genetic
Algorithm for the Multiple-Choice Integer Program.
Operations Research 45:92—101.
4. He S., Prempain E. and Wu O.H., 2004, An Improved
Particle Swarm Optimizer for Mechanical Design
Optimization Problems. Engineering Optimization,
36(5):585--605, October.
5. Hoffmeister, F. and Sprave, J., 1996, Problem-
independent handling of constraints by use of metric
penalty functions. In L.J. Fogel, P.J. Angeline, and T.
Bäck, editors, Proceedings of the Fifth Annual Conference
on Evolutionary Programming (EP'96), pages 289--294,
San Diego, California, February. The MIT Press.
6. Joines, J. and Houck, C., 1994, On the use of non-
stationary penalty functions to solve nonlinear constrained
optimization problems with GAs. In D. Fogel, editor,
Proceedings of the first IEEE Conference on Evolutionary
Computation, pages 579--584, Orlando, Florida. IEEE
Press.
7. Coello Coello C.A. and Mezura-Montes E., 2002,
Constraint-handling in genetic algorithms through the use
of dominance-based tournament selection. Advanced
Engineering Informatics, 16(3):193—203, July.
8. Price, K.V., 1999, .An Introduction to Differential
Evolution. In D. Corne, M. Dorigo, and F. Glover, editors,
New Ideas in Optimization, pages 79--108. Mc Graw-Hill,
UK.
9. Ray T. and Liew K., 2003, Society and Civilization: An
Optimization Algorithm Based on the Simulation of Social
Behavior. IEEE Transactions on Evolutionary
Computation}, 7(4):386--396, August.
10. Schwefel H.P., 1981, Numerical Optimization of
Computer Models. John Wiley & Sons, Great Britain.
11. Storn R., 1999, System Design by Constraint
Adaptation and Differential Evolution. IEEE Transactions
on Evolutionary Computation}, 3(1):22--34, April.

APPENDIX

Full description of the four problems used in the
experiments:
Problem 1: (Design of a Welded Beam)
A welded beam is designed for minimum cost subject to
constraints on shear stress (τ), bending stress in the beam
(σ), buckling load on the bar (Pc), end deflection of the
beam (δ), and side constraints. There are four design
variables: h (x1), l (x2), t (x3) and b (x4). See Figure 2.

Figure 2: Welded beam

The problem can be stated as follows:
Minimize:

() ()2432
2
1 0.1404811.010471.1 xxxxxxf ++=r

Subject to:
() () 0max1 ≤−= ττ xxg rr

() () 0max2 ≤−= σσ xxg rr

() 0413 ≤−= xxxg r

() () 00.50.1404811.010471.0 243
2
14 ≤−++= xxxxxg r

() 0125.0 15 ≤−= xxg r

() () 0max6 ≤−= δδ xxg rr

() () 07 ≤−= xPPxg c
rr

where:

() () ()222

2
2 τττττ ′′+′′′+′=

R
x

xr ,
212 xx

P=′τ ,

J
MR=′′τ , 







 +=
2

2x
LPM ,

2
31

2
2

24







 +
+=

xxx
R ,































 +
+=

2
31

2
2

21 212
22

xxx
xxJ , () 2

34

6
xx

PLx =rσ ,

()
4

3
3

34
xEx

PLx =rδ ,

() 







−=

G
E

L
x

L

xx
E

xPc 42
136

013.4
3

2

6
4

2
3

r

P=6000 lb, L=14 in, E=30x106 psi, G=12x106 psi,
τmax=13,600 psi, σmax=30,000 psi, δmax=0.25 in, where
0.1≤x1≤2.0, 0.1≤x2≤10.0, 0.1≤x3≤10.0 and 0.1≤x4≤2.0.

Problem 2: (Design of a Pressure Vessel)
A cylindrical vessel is capped at both ends by
hemispherical heads. The objective is to minimize the total
cost, including the cost of the material, forming and
welding. There are four design variables: Ts (thickness of
the shell), Th (thickness of the head), R (inner radius) and
L (length of the cylindrical section of the vessel, not
including the head). Ts and Th are integer multiples of
0.0625 inch, which are the available thicknesses of rolled
steel plates, and R and L are continuous. See Figure 3.

Figure 3: Pressure Vessel

The problem can be stated as follows:
Minimize:

() 4
2
1

2
32431 1661.37781.16224.0 xxxxxxxxf ++=r

 3
2
184.19 xx+

Subject to:
() 00193.0 311 ≤+−= xxxg r

() 000954.0 322 ≤+−= xxxg r

() 01296000
3
4 3

34
2
33 ≤+−−= xxxxg ππr

() 024044 ≤−= xxg r

where 1≤x1≤99, 1≤x2≤99, 10≤x3≤200 and 10≤x4≤200.

Problem 3: (Minimization of the Weight of a
Tension/Compression String)

This problem consists of minimizing the weight of a
tension/compression spring subject to constraints on
minimum deflection, shear stress, surge frequency, limits
on outside diameter and on design variables. The design
variables are the mean coil diameter D (x2), the wire
diameter d (x1) and the number of active coils N (x3). See
Figure 4.

Figure 4: Tension/Compression Spring

Formally, the problem can be expressed as:

Minimize:

() () 22 DdNxf +=r

Subject to:

() 0
71785

1 4

3

1 ≤−=
d

NDxg r

() () 01
5108

1
12566

4
243

2

2 ≤−+
−

−=
ddDd

dDDxg r

() 045.1401 23 ≤−=
Nd

dxg r

() 01
5.14 ≤−+= dDxg r

where 0.05≤d≤2, 0.25≤D≤1.3 and 2≤N≤15.

Problem 4: (Minimization of the Weight of a Speed
Reducer)
The weight of the speed reducer is to be minimized subject
to constraints on bending stress of the gear teeth, surfaces
stress, transverse deflections of the shafts and stresses in
the shafts. The variables x1,x2,…,x7 are the face width,
module of teeth, number of teeth in the pinion, length of
the first shaft between bearings, length of the second shaft
between bearings and the diameter of the first and second
shafts. The third variable is integer, the rest of them are
continuous.

Minimize:
() ()0934.439334.143333.37854.0 3

2
3

2
21 −+= xxxxxf r

() ()3

7
3
6

2
7

2
61 4777.7508.1 xxxxx +++−

()2
75

2
647854.0 xxxx ++

subject to:

() 0127

3
2
21

1 ≤−=
xxx

xg r

() 015.397
2
3

2
21

2 ≤−=
xxx

xg r

() 01
93.1

4
6

2
32

3
4

3 ≤−=
xxx
x

xg r

() 01
93.1

4
732

3
5

4 ≤−=
xxx
x

xg r

() 01
0.110

109.16
745

3
6

2/1

6
2

32

4

5 ≤−













+









=
x

x
xx
x

xg r

() 01
0.85

105.157
745

3
7

2/1

6
2

32

5

6 ≤−













+









=
x

x
xx
x

xg r

() 01
40

32
7 ≤−=

xx
xg r

() 01
5

1

2
8 ≤−=

x
x

xg r

() 01
12 2

1
9 ≤−=

x
x

xg r

() 01
9.15.1

4

6
10 ≤−

+
=

x
x

xg r

() 01
9.11.1

5

7
11 ≤−

+
=

x
x

xg r

where 2.6≤x1≤3.6, 0.7≤x2≤0.8, 17≤x3≤28, 7.3≤x4≤8.3,
7.8≤x5≤8.3, 2.9≤x6≤3.9 and 5.0≤x7≤5.5.

	Table 6. Details of the best solution found

