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ABSTRACT 
 
We propose a modified version of the differential 
evolution approach to solve engineering design problems. 
The aim is to allow each parent in the population to 
generate more than one offspring at each generation and 
therefore, to increase its probability of generating a better 
offspring.   To deal with constraints, we use some criteria 
based on feasibility and a diversity mechanism to maintain 
infeasible solutions in the population.  The approach is 
tested against penalty function approaches and its 
performance is also compared against state-of-the-art 
approaches. 
 
 
1.  INTRODUCTION 
 
Many engineering design problems can be stated like the 
general nonlinear programming problem in which we want 
to:  
 
Find xr  which optimizes ( )xf r   
 
subject to:  
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where nx ℜ∈r  is a vector of solutions 
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r = , where each kx , nk ,,1K=  is 
bounded by lower and upper limits kki UxL ≤≤ , “m” is 
the number of inequality constraints and “p” is the number 
of equality constraints (in both cases, constraints could be 
linear or nonlinear).  
 
Differential Evolution (DE) is a novel evolutionary 
algorithm proposed by Storn and Price [8]. The approach 
works with a mutation operator which is based on the 
current distribution of solutions in the population, instead 
of being based on a fixed  (usually Gaussian) distribution 
such as other Evolutionary Algorithms (EAs) like 
Evolution Strategies [1]. At each generation in DE, each 
parent will generate one offspring. If this child is better 
than its parent, it will replace him in the population; if not, 

the parent will remain and the child is eliminated. Three 
random individuals are selected to calculate the mutation 
values by computing a linear combination which involves 
the scaled difference of two of them added to the values of 
the third one (lines 9 and 13 in Figure 1).   
 
Four parameters are used by DE: “NP” (population size),  
number of generations ,  “F” and “CR”. The “F” parameter 
scales the influence of the set of pairs of solutions (one 
pair in our case) selected to calculate the mutation values 
(line 13 in Figure 1). The “CR” parameter controls the 
influence either of the original parent or the mutation 
values in the generation of the offspring by a binomial 
recombination (lines 12 to 15 in Figure 1). Several DE 
models have been proposed [8]. In our study we use the 
most used model called “DE/rand/1/bin” (the individuals 
for mutation are selected at random, just one pair of 
solutions is used to calculate the scaled difference and a 
binomial (discrete) recombination is chosen).   
 
The motivation of this paper is two-fold: (1) to increase 
the probability of a parent to generate a fitter offspring and 
(2) to avoid the use of a penalty function to deal with the 
constraints of the problem. The first objective is reached 
by allowing each parent to generate more than one 
offspring at each generation. In this way, a pre-selection 
mechanism is incorporated to select, by using a 
deterministic process, the best solution among the 
offspring of one parent, and only this best solution will 
compete against its parent in order to remain in the 
population. The second objective refers to handling the 
objective function value and the constraints of the problem 
separately and to use a mechanism to keep solutions with a 
good value of the objective function, regardless of their 
feasibility, in the population. This issue is important 
because maintaining promising infeasible solutions will 
increase the exploration of new regions of the search space 
and the feasible region and it will decrease the chances of 
getting trapped in local optima.  
 
The paper is organized as follows: In Section 2, we present 
the previous related work. Section 3 provides the 
description of our approach. Afterwards, in Section 4, we 
detail the experimental design and we present and discuss 
the results obtained. Finally, in Section 5 some 
conclusions are drawn and the future work is established. 

mailto:emezura@itapizaco.edu.mx
mailto:ccoello@cs.cinvestav.mx
mailto:jesus.velazquez@gmail.com


2.   RELATED WORK 
 
EAs have been widely used to solve engineering design 
problems. More precisely, the approaches discussed in this 
section do not use a penalty function with penalty factors 
to be calibrated as a constraint-handling mechanism. Storn 
[11] proposed a constraint-relaxation mechanism coupled 
with the aging concept to solve optimization problems 
using DE. He explored the idea of allowing a solution to 
generate more than one offspring, but in his approach, 
once a child is better than its parent, the multiple offspring 
generation ends. Furthermore, the comparison between 
solutions is always deterministic and the constraint-
handling mechanism is based on relaxing the constraint at 
the beginning in order to consider all the solutions as 
feasible.   
 
Mezura-Montes & Coello Coello [7] have explored the 
idea of avoiding the use of penalty functions to solve 
engineering design problems. Instead, they proposed to 
use multiobjective optimization concepts [7]. The 
approach provided good results, however , it required to 
perform a considerable high number of evaluations of the 
objective function of the problem.  
 
Among the state-of-the-art approaches available to solve 
engineering design problems, we present the following: 
He et al. [4] proposed a PSO-based approach to solve 
engineering design problems. The main advantage of the 
approach is its low computational cost measured in terms 
of the number of objective function evaluations. However, 
He's approach only works with feasible points; therefore, 
there is no diversity mechanism at all and an initial 
population of feasible solutions is always required. This is 
obviously the main disadvantage of the technique.  
 
Ray & Liew [9] used a social model to solve engineering 
optimization problems. In their model, the population of 
solutions is seen as a civilization and it is divided into sub-
populations known as societies. There are leaders in each 
society and the leaders are also grouped in a leaders' 
society. Then, solutions can follow its corresponding 
leader, a leader of another society or the leader of leaders. 
In this way, the approach aims to maintain diversity. 
Constraints are handled by using dominance as a selection 
criterion. The main advantage of the approach is that it 
requires a low number of evaluations of the objective 
function to obtain competitive results. However, it requires 
a ranking process at each generation besides a clustering 
algorithm which is used to initialize the societies.  
 
3. OUR APPROACH 
 
The aim of the approach is to add simple modifications to 
the DE algorithm to adapt it to deal with constrained 
search spaces and also to improve its performance by 
generating more offspring per parent. At each generation, 

each parent will be able to generate no offspring. Among 
these newly generated solutions, the best of them will be 
selected to compete against its parent. Then, each parent 
will increase its chances to generate a fitter offspring. The 
selection of the best child is completely deterministic 
based on the three following criteria previously proposed 
by Deb [2]:  
 

1. Between 2 feasible solutions, the one with the 
highest fitness value wins. 

2. If one solution is feasible and the other one is 
infeasible, the feasible solution wins.  

3. If both solutions are infeasible, the one with the 
lowest sum of constraint violation is preferred    
∑ max(0,gi(X)) ∀i, , i=1,…,n, 

 
After the best offspring is selected, it will compete against 
its corresponding parent and the best of them will survive 
for the next generation. However, unlike Deb’s approach 
[2] and traditional DE [8], in this case, the comparison 
between parent and best offspring is performed with a 
stochastic element. Based on a parameter called selection 
ratio Sr the best solution is chosen based only on the value 
of the objective function value. In the remaining 1-Sr 
selections, the best solution is chosen based on the three 
criteria mentioned before. In this way, the best feasible 
solutions will remain in the population, besides those 
solutions with a promising value of the objective function, 
regardless of feasibility.  
 
This mechanism, coupled with the DE's way of finding 
new search directions (based on the distribution of 
solutions in the current population) will allow the 
algorithm to explore the search space and its feasible 
region in a better way as to obtain better solutions. The 
details of our approach are presented in Figure 1.  
 
4. EXPERIMENTS AND DISCUSSION 
 
Our experimental design has two parts: (1) to compare our 
approach against a traditional EA with different types of 
penalty function approaches and (2) to compare our results 
against state-of-the-art approaches and against a traditional 
DE approach which generates only one offspring per 
parent. We selected four well known engineering design 
problems to use them in the experiments. The details of 
each problem are presented in an Appendix at the end of 
this document. 
 
For the first set of experiments, we implemented four 
typical penalty approaches: (1) A zero fitness value to 
infeasible solutions (death penalty) [10], (2) static penalty 
(fixed penalty factor during all the process) [5], (3) 
dynamic penalty (the penalty factor has a low value at the 
beginning and a high value at the end of the process) [6]  
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Figure 1. Our algorithm. The steps modified with respect to the original DE algorithm are marked with an arrow. 
randint(min,max) returns an integer value between min and max. rand[0,1) returns a real number between 0 and 1. Both 
functions adopt a uniform probability distribution. flip(W) returns 1 with probability W. 



 
Table 1. Comparison of statistical results for the penalty-based approaches and our approach. “-“ means no feasible 

solutions found. A result in boldface means a better result. “*(X)” means that only in X runs (out of 30) feasible 
solutions were found. 

a) Welded beam design 
 Death Penalty Static Dynamic *(28) Adaptive *(27) Our approach 

Best 1.739736 1.792248 1.781232 1.792266 1.724852 
Mean 2.104756 2.023434 2.138872 2.164542 1.724853 
Worst 2.803005 2.739448 2.904370 3.018553 1.724854 

St. Dev. 3.0E-1 2.2E-1 2.8E-1 3.4E-1 1.0E-15 
 

b) Pressure vessel design 
 Death Penalty Static Dynamic *(22) Adaptive *(21) Our approach 

Best 6172.421387 - 6162.862793 6292.51022 6059.701660 
Mean 7417.028727 - 7042.828564 7703.780354 6059.701660 
Worst 10477.677734 - 7798.198242 10830.894278 6059.701660 

St. Dev. 9.6E+2 - 5.3E+2 1.6E+3 1.0E-12 
 

c) Tension/Compression Spring design 
 Death Penalty Static Dynamic Adaptive Our approach 

Best 0.012719 0.012753 0.012702 0.012692 0.012665 
Mean 0.014665 0.014636 0.013998 0.014002 0.012666 
Worst 0.018139 0.018918 0.017044 0.016661 0.012674 

St. Dev. 1.4E-3 1.6E-3 1.0E-3 1.2E-4 2.0E-6 
 

d) Speed reducer design 
 Death Penalty Static Dynamic Adaptive Our approach 

Best - - - - 2996.356689 
Mean - - - - 2996.367220 
Worst - - - - 2996.390137 

St. Dev. - - - - 8.2E-3 
 
 
 

Table 2: Comparison of results with respect to two state-of-the-art approaches and a traditional DE approach. A 
result in boldface means a better result. “NA” means not available. 

Problem Stats Ray & Liew [9] He et al. [4] Our approach Traditional DE 
Welded beam Best 

Mean 
St. Dev. 

Evaluations 

2.385435 
3.255137 

9.6E-1 
33000 

2.380957 
2.381932 

5.2E-3 
30000 

1.724852 
1.724853 
1.0E-15 
24000 

1.904312 
2.237370 

2.3E-1 
24000 

Pressure vessel Best 
Mean 

St. Dev. 
Evaluations 

6171.00 
6335.05 

NA 
20000 

6059.7143 
6289.92881 

3.1E+2 
30000 

6059.701660 
6059.701660 

1.0E-12 
24000 

7247.938477 
8854.318896 

1.3E+3 
24000 

Ten./Comp. 
Spring 

Best 
Mean 

St. Dev. 
Evaluations 

0.012669 
0.012923 

5.9E-4 
25167 

0.012665 
0.012702 

4.1E-5 
15000 

0.012665 
0.012666 

2.0E-6 
24000 

0.012851 
0.014119 

1.0E-3 
24000 

Speed reducer Best 
Mean 

St. Dev. 
Evaluations 

2994.744241 
3001.758264 

4.0E+0 
54456 

NA 
NA 
NA 
NA 

2996.356689 
2996.367220 

8.2E-3 
24000 

3064.211426 
3244.569010 

2.0E+2 
24000 

 
 



and finally an adaptive penalty (the penalty factor is 
updated based on the behavior of the population) [3].  
 
30 independent runs per technique per problem were 
performed. The number of evaluations of the objective 
function was fixed to 24,000 for the four penalty-based 
approaches and also for our approach. For the penalty-
based approaches we used a typical EA: a gray-coded 
genetic algorithm with roulette wheel selection, one point 
crossover, uniform mutation and elitism incorporated. The 
population size was 100 individuals and the number of 
generations 240. 
 
The rate of crossover was 0.6 and the mutation rate was 
0.01. The parameters for the static, dynamic and adaptive 
approaches and also for the genetic algorithm were 
defined after a trial-and-error process.  
 
The reported parameters were those which provided the 
best results and they are the following: Static approach: 
fixed penalty factor = 1000. Dynamic approach: α=2, β=2, 
C=0.5. Adaptive approach: β1=2.0, β2=4.0, k=50, 
δinitial=5000. Our DE-based approach used the following 
parameters: NP = 60, MAX_GENERATIONS=80 (24,000 
evaluations of the objective function), CR=0.9, no=5 and 
Sr=0.45, F randomly generated within [0.3,0.9]. 
 
Discrete variables were handled by just truncating the real 
value to its closest integer value. The statistical results of 
the 30 independent runs are shown in Table 1. All these 
parameters were defined after previous experiments in 
order to obtain the best performance.  
 
Based on the results obtained, our approach was able to 
provide the most robust (“better” mean and standard 
deviation values) and the best quality results (“better” best 
solution found) in all four engineering design problems 
adopted. In fact, none of the penalty-based approaches was 
able to find feasible solutions for the speed reducer design 
problem. Besides, the dynamic penalty approach could not 
find feasible solutions for the pressure vessel problem and 
it could not find feasible solutions in two and eight runs 
for the welded beam and the pressure vessel problems 
respectively. 
 
Furthermore, the adaptive approach could not find feasible 
solutions for the welded beam and for the pressure vessel 
problems in three and nine runs, respectively. On the other 
hand, our approach consistently found feasible solutions in 
each run for all design problems.  
 
The overall results suggest that our approach provided the 
most consistent performance, while the penalty-based 
approaches were competitive in some problems, but in 
others the results were poor. This behavior indeed reflects 
the need to update the penalty factors according to the 

problem to be solved. This negative effect is not present in 
our approach, because with the same set of parameters, 
avoiding the use of a penalty function and with the 
diversity mechanism, the approach finds good feasible 
solutions consistently.  In fact, regardless of the penalty 
values adopted, calibrating the parameters for the genetic 
algorithm was more difficult than defining the values for 
the DE approach, which is a very interesting advantage of 
our approach.  
 
 

Table 3. Details of the best solution found 
Problem 1. Welded beam 

 Ray & Liew[9] He et al. [4] Our approach 
x1 
x2 
x3 
x4 

g1(x)
g2(x)
g3(x)
g4(x)
g5(x)
g6(x)
g7(x)
f(x) 

0.244438 
6.237967 
8.288576 
0.244566 

-5760.110471 
-3.245428 
-0.000128 
-3.020055 
-0.119438 
-0.234237 

-13.079305 
2.38119 

0.244369 
6.217520 
8.291471 
0.244369 

-5741.176933 
0.000001 
0.000000 
-3.022955 
-0.119369 
-0.234241 
-0.000309 
2.380956 

0.205730 
3.470489 
9.036624 
0.205730 
-0.000335 
-0.000753 
-0.000000 
-3.432984 
-0.080730 
-0.235540 
-0.000882 
1.724852 

 
 
For the second set of experiments we compared the 
performance of our approach against those provided by the 
last two approaches discussed in Section 2. We used He's 
and Ray's approaches because they solved the same set of 
test problems. In this case, the number of evaluations 
required by each approach is included and it is used as a 
comparison criterion. We also added the results obtained 
with a traditional DE approach with the same set of initial 
parameters used by our approach and with the same 
constraint handling mechanism. The only difference 
between traditional DE and our approach is that in the 
first, only one offspring per parent is generated and in our 
approach we generate 5 offspring per parent. The 
parameter values used in our approach are exactly the 
same used in the previous experiment. The comparison of 
the statistical results and the number of evaluations 
required by each approach are presented in Table 2. In 
Tables 3, 4, 5 and 6 we provide the details of the best 
solution found by each state-of-the-art technique and our 
approach for the four test problems respectively. 
 
The results show that our approach clearly outperforms the 
two compared approaches in the welded beam design 
problem (“better” best, mean and standard deviation 
values, requiring a lower number of evaluations to provide 
such a performance). For the pressure vessel problem, 
Ray's approach required the lowest number of evaluations. 
However, our approach provided clearly “better” best, 



mean and standard deviation values than those provided 
by Ray's technique by just using 4000 more evaluations. 
For the spring design problem, He's approach provided the 
same best solution found by our approach by using just 
15,000 evaluations of the objective function. Nonetheless, 
it is important to note that He's approach requires to 
generate an initial feasible population. In contrast, our 
approach starts only with random solutions, regardless of 
feasibility. Furthermore, our approach provided “better” 
mean and standard deviation values, which imply more 
robustness of our approach.  
 

Table 4. Details of the best solution found 
Problem 2. Pressure vessel 

 Ray & Liew[9] He et al. [4] Our approach 
x1 
x2 
x3 
x4 

g1(x) 
g2(x) 
g3(x) 
g4(x) 
f(x) 

0.8125 
0.4375 

41.9768 
182.2845 
-0.0023 
-0.0370 

-23420.5966 
-57.7155 
6171.0 

0.8125 
0.4375 

42.098446 
176.636052 
-0.000000 
-0.035881 
-0.000000 

-63.363948 
6059.7143 

0.8125 
0.4375 

42.098446 
176.636047 

0.000000 
-0.035881 
-0.000002 

-63.363949 
6059.701660 

 
For the speed reducer problem, Ray's approach provided 
the “best” best result, but it required more than twice the 
number of evaluations used by our approach. Besides, our 
best solution is close to the value provided by Ray's 
approach and also our mean and standard deviation values 
are clearly better, showing again, the robustness of the 
approach. Finally, our approach provided better results in 
all cases in all criteria with respect to the traditional DE 
approach despite the fact that both share the same diversity 
mechanism.  
 

Table 5. Details of the best solution found 
Problem 3. Tension/Compression spring 

 Ray & Liew[9] He et al. [4] Our approach 
x1 
x2 
x3 

g1(x) 
g2(x) 
g3(x) 
g4(x) 
f(x) 

0.0521602 
0.368159 

10.648442 
-0.000000 
-0.000000 
-4.075805 
-0.719787 
0.012669 

0.051690 
0.356750 

11.287126 
-0.000000 
0.000000 
-4.053827 
-0.727706 
0.012665 

0.051688 
0.356692 

11.290483 
-0.000000 
-0.000000 
-0.727747 
-4.053734 
0.012665 

 
The details of the best solutions found shown in Tables 3, 
4, 5 and 6 seem to emphasize the ability of the approach, 
based on the intensive use of the DE operator in one 
parent, to explore solutions close to already good solutions 
and to improve the quality of the final result. This 
behavior was found mostly in the beam and the pressure 
vessel design problems (Tables 3 and 4).  
 

The overall results of this second experiment suggest that 
our approach was able to provide very competitive results 
compared with those provided by two state-of-the-art 
approaches based on the quality, robustness and 
computational cost measured by the number of evaluations 
of the objective function. Furthermore, the chance to 
generate more offspring per parent provided an 
improvement in the quality and robustness of the results 
obtained.  
The conclusions for both experiments provide empirical 
evidence about the importance of allowing each solution 
to reproduce more than once in the same generation and 
the convenience of using a mechanism to deal with 
constraints by avoiding the use of a penalty function and 
favoring diversity. 
 

Table 6. Details of the best solution found 
Problem 4. Speed reducer 

 Ray & Liew [9] Our approach 
x1 
x2 
x3 
x4 
x5 
x6 
x7 

g1(x) 
g2(x) 
g3(x) 
g4(x) 
g5(x) 
g6(x) 
g7(x) 
g8(x) 
g9(x) 
g10(x) 
g11(x) 
f(x) 

3.500000 
0.700000 

17 
7.327602 
7.715321 
3.350267 
5.286655 

NA 
NA 
NA 
NA 
NA 
NA 
NA 
NA 
NA 
NA 
NA 

2994.744241 

3.500010 
0.700000 

17 
7.300156 
7.800027 
3.350221 
5.286685 
-0.073918 
-0.198001 
-0.499144 
-0.901471 
-0.000005 
-0.000001 
-0.702500 
-0.000003 
-0.583332 
-0.051345 
-0.010856 

2996.356689 
 
 
9.  CONCLUSIONS AND FUTURE WORK 
 
We have presented a DE-based approach to solve 
engineering design problems. The approach was based on 
the more frequent use of the DE operator per parent. The 
constraint handling technique was based on simple 
selection criteria and a diversity mechanism to maintain 
promising solutions regardless on feasibility. The results 
obtained in two different experiments show that the 
proposed approach outperforms four different penalty-
based techniques when tested in four engineering design 
problems. Also, in the second experiment, the approach 
obtained better results than a traditional DE approach and 
it provided very competitive results against two state-of-
the-art approaches which neither use a penalty function as 
a constraint-handling mechanism.  



 
As future paths of research we will explore a mechanism 
to adapt the parameter that controls the number of 
offspring per parent and we will test our approach in other 
real-world problems with a high dimensionality.  
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APPENDIX 
 
Full description of the four problems used in the 
experiments: 
Problem 1: (Design of a Welded Beam) 
A welded beam is designed for minimum cost subject to 
constraints on shear stress (τ), bending stress in the beam 
(σ), buckling load on the bar (Pc), end deflection of the 
beam (δ), and side constraints.  There are four design 
variables: h (x1), l (x2), t (x3) and b (x4). See Figure 2. 
 

 
Figure 2: Welded beam 

 
The problem can be stated as follows: 
Minimize: 

( ) ( )2432
2
1 0.1404811.010471.1 xxxxxxf ++=r  

Subject to:  
( ) ( ) 0max1 ≤−= ττ xxg rr  

( ) ( ) 0max2 ≤−= σσ xxg rr  

( ) 0413 ≤−= xxxg r  

( ) ( ) 00.50.1404811.010471.0 243
2
14 ≤−++= xxxxxg r

( ) 0125.0 15 ≤−= xxg r  

( ) ( ) 0max6 ≤−= δδ xxg rr  

( ) ( ) 07 ≤−= xPPxg c
rr  

where:  
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( ) 







−=

G
E

L
x

L

xx
E

xPc 42
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P=6000 lb, L=14 in, E=30x106 psi, G=12x106 psi, 
τmax=13,600 psi, σmax=30,000 psi, δmax=0.25 in, where 
0.1≤x1≤2.0, 0.1≤x2≤10.0, 0.1≤x3≤10.0 and 0.1≤x4≤2.0.  
 
 
Problem 2: (Design of a Pressure Vessel) 
A cylindrical vessel is capped at both ends by 
hemispherical heads. The objective is to minimize the total 
cost, including the cost of the material, forming and 
welding. There are four design variables: Ts (thickness of 
the shell), Th (thickness of the head), R (inner radius) and 
L (length of the cylindrical section of the vessel, not 
including the head). Ts and Th are integer multiples of 
0.0625 inch, which are the available thicknesses of rolled 
steel plates, and R and L are continuous. See Figure 3.  
 

 

 
Figure 3: Pressure Vessel 

 
The problem can be stated as follows: 
Minimize:  

( ) 4
2
1

2
32431 1661.37781.16224.0 xxxxxxxxf ++=r

                3
2
184.19 xx+  

Subject to: 
( ) 00193.0 311 ≤+−= xxxg r  

( ) 000954.0 322 ≤+−= xxxg r  

( ) 01296000
3
4 3

34
2
33 ≤+−−= xxxxg ππr  

( ) 024044 ≤−= xxg r  
 
where 1≤x1≤99, 1≤x2≤99, 10≤x3≤200 and 10≤x4≤200.  
 
 
 
 

 
Problem 3: (Minimization of the Weight of a 
Tension/Compression String) 
 
This problem consists of minimizing the weight of a 
tension/compression spring subject to constraints on 
minimum deflection, shear stress, surge frequency, limits 
on outside diameter and on design variables. The design 
variables are the mean coil diameter D (x2), the wire 
diameter d (x1) and the number of active coils N (x3). See 
Figure 4.  
 

 
 

Figure 4: Tension/Compression Spring 

 
Formally, the problem can be expressed as: 
 
Minimize: 
 

( ) ( ) 22 DdNxf +=r  
 
Subject to: 

( ) 0
71785

1 4

3

1 ≤−=
d

NDxg r  

( ) ( ) 01
5108

1
12566

4
243

2

2 ≤−+
−

−=
ddDd
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( ) 045.1401 23 ≤−=
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( ) 01
5.14 ≤−+= dDxg r  

where 0.05≤d≤2, 0.25≤D≤1.3 and 2≤N≤15. 
 
 
Problem 4: (Minimization of the Weight of a Speed 
Reducer) 
The weight of the speed reducer is to be minimized subject 
to constraints on bending stress of the gear teeth, surfaces 
stress, transverse deflections of the shafts and stresses in 
the shafts. The variables x1,x2,…,x7 are the face width, 
module of teeth, number of teeth in the pinion, length of 
the first shaft between bearings, length of the second shaft 
between bearings and the diameter of the first and second 
shafts. The third variable is integer, the rest of them are 
continuous. 
 
 
 



Minimize: 
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where 2.6≤x1≤3.6, 0.7≤x2≤0.8, 17≤x3≤28, 7.3≤x4≤8.3, 
7.8≤x5≤8.3, 2.9≤x6≤3.9 and 5.0≤x7≤5.5. 


	Table 6. Details of the best solution found

