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Abstract- The successof the Particle Swarm Optimiza-
tion (PSO) algorithm as a single-objective optimizer
(mainly when dealing with continuous search spaces)
hasmotivated researchers to extend the useof this bio-
inspired techniqueto other areas.One of them is multi-
objective optimization. Despite the fact that the first
proposalof a Multi-Objecti veParticle SwarmOptimizer
(MOPSO) is over six years old, a considerable num-
ber of other algorithms have beenproposedsincethen.
This paper presentsa comprehensive review of the var-
ious MOPSOsreported in the specializedliteratur e. As
part of this review, we include a classificationof the ap-
proaches,and weidentify the main featuresof eachpro-
posal. In the last part of the paper, we list someof the
topicswithin this field that weconsideraspromisingar-
easof futur e research.

1 Intr oduction

Optimizationproblemsthat have more that one objective
functionarerathercommonin everyfield or areaof knowl-
edge.In suchproblems,theobjectivesto beoptimizedare
normallyin conflictwith respectto eachother, whichmeans
that thereis no singlesolutionfor theseproblems.Instead,
we aim to find good“trade-off ” solutionsthatrepresentthe
bestpossiblecompromisesamongtheobjectives.

ParticleSwarmOptimization(PSO)is a heuristicsearch
technique(whichis consideredasanevolutionaryalgorithm
by its authors[18]) thatsimulatesthemovementsof aflock
of birds which aim to find food. The relative simplicity
of PSOand the fact that is a population-basedtechnique
have madeit a naturalcandidateto be extendedfor multi-
objectiveoptimization.

MooreandChapmanproposedthefirst extensionof the
PSO strategy for solving multi-objective problemsin an
unpublishedmanuscriptfrom 19991 [41]. After this early
attempt,a great interestto extend PSO aroseamongre-
searchers,but interestingly, thenext proposalwasnot pub-
lished until 2002. Nevertheless,thereare currently over
twentyfive differentproposalsof MOPSOsreportedin the
specializedliterature. This paperprovidesthe first survey
of this work, attemptingto classify theseproposalsandto
delineatesomeof thepotentialresearchpathsthatcouldbe
followedin thefutureby researchersin thisarea.

The remainderof this paperis organizedasfollows. In
Section2, we provide somebasic conceptsfrom multi-

1This paper may be found in the EMOO repository located at:
http://delta.cs.cinvestav.mx/˜ccoello/EMOO/

objective optimization required to make the paper self-
contained. Section3 presentsan introductionto the PSO
strategy andSection4 presentsa brief discussionaboutex-
tendingthe PSOstrategy for solving multi-objective prob-
lems.A completereview of theMOPSOapproachesis pro-
videdin Section5. We providea brief discussionaboutthe
convergencepropertiesof PSOandMOPSOin Section6.
In Section7, possiblepathsof futureresearcharediscussed
and,finally, we presentour conclusionsin Section8.

2 BasicConcepts

We areinterestedin solvingproblemsof thetype2:

minimize
���� ������
	�� ���� ������ ����� �������������� ����� ������ (1)

subjectto: ��� � ����� "!$#�	�%��'&(���������*) (2)+ � � ����,	-!.#/	�%��'&(���������10 (3)

where
��2	 � �  �3� � ���������*�54��76 is the vector of decision

variables,
� � �98 : 4<; 8 : , #=	>%����?�@�?�BA are the objective

functionsand
� � � +DC �58 : 4 ; 8 : , #E	F%����@�@�?�*) , G 	H%����?�@�@�10

aretheconstraintfunctionsof theproblem.

To describethe conceptof optimality in which we are
interested,wewill introducenext a few definitions.

Definition 1. Given two vectors
��I� �JLK�8 : � , we say that��M �J if � �  �J � for #N	O%����@�@�?�BA , andthat

�� dominates
�J

(denotedby
��QP �J ) if

��R �J and
��TS	 �J .

Figure 1 shows a particular caseof the dominance
relation in thepresenceof two objectivefunctions.

Definition 2. We say that a vector of decision vari-
ables

��TKTUWVX8 : 4 is nondominatedwith respectto U , if
theredoesnotexist another

��5YZKQU suchthat
��/� ��5Y7�[P ���� ���� .

Definition 3. We say that a vector of decisionvariables���\]K_^HV`8 : 4 ( ^ is thefeasibleregion) is Pareto-optimal
if it is nondominatedwith respectto ^ .

Definition 4. TheParetoOptimal Set a \ is definedby:

a \ 	Lb ��QKc^Qd �� is Pareto-optimale
2Without lossof generality, we will assumeonly minimizationprob-

lems.
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Figure1: Dominancerelationin a bi-objectivespace.
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Figure 2: The Paretofront of a set of solutionsin a two
objectivespace.

Definition 5. TheParetoFront a ^f\ is definedby:

a ^ \ 	gb ���� ����[Kc8 : � d ��QK a \ e
Figure2 shows a particularcaseof the Pareto fr ont in

thepresenceof two objective functions.
We thuswish to determinetheParetooptimal setfrom the
set ^ of all the decisionvariablevectorsthat satisfy (2)
and(3). Note however that in practice,not all the Pareto
optimalsetis normallydesirable(e.g.,it maynot bedesir-
ableto have differentsolutionsthatmapto thesamevalues
in objective functionspace)or achievable.

3 Particle Swarm Optimization

JamesKennedyand Russell C. Eberhart [30] originally
proposedthe PSO algorithm for optimization. PSO is a
population-basedsearchalgorithmbasedon thesimulation
of the social behavior of birds within a flock. Although
originally adoptedfor balancingweightsin neuralnetworks
[17], PSOsoonbecamea very popularglobal optimizer,
mainly in problemsin which thedecisionvariablesarereal
numbers3 [32, 19].

Accordingto Angeline[3], we canmake two maindis-
tinctionsbetweenPSOandanevolutionaryalgorithm:

3It is worth noting that therehave beenproposalsto usealternative
encodingswith PSO(e.g.,binary[31] andinteger [26]), but noneof them
hasbeenaspopularastheoriginalproposalin whichthealgorithmoperates
usingvectorsof realnumbers.

1. Evolutionaryalgorithmsrely on threemechanismsin
their processing:parentrepresentation,selectionof
individualsandthefinetuningof theirparameters.In
contrast,PSOonly relieson two mechanisms,since
PSO doesnot adopt an explicit selectionfunction.
Theabsenceof aselectionmechanismin PSOis com-
pensatedby the useof leadersto guide the search.
However, thereis no notion of offspring generation
in PSOaswith evolutionaryalgorithms.

2. A seconddifferencebetweenevolutionaryalgorithms
andPSOhasto do with the way in which the indi-
vidualsaremanipulated.PSOusesan operatorthat
setsthevelocityof a particleto aparticulardirection.
Thiscanbeseenasadirectionalmutationoperatorin
which the direction is definedby both the particle’s
personalbestandthe global best(of the swarm). If
thedirectionof thepersonalbestis similar to thedi-
rectionof theglobalbest,theangleof potentialdirec-
tions will be small, whereasa larger anglewill pro-
vide a largerrangeof exploration.In contrast,evolu-
tionaryalgorithmsuseanmutationoperatorthat can
set an individual in any direction (althoughthe rel-
ative probabilitiesfor eachdirection may be differ-
ent). In fact, the limitations exhibited by the direc-
tionalmutationof PSOhasled to theuseof mutation
operatorssimilar to thoseadoptedin evolutionaryal-
gorithms.

Two arethe key aspectsby which we believe that PSO
hasbecomesopopular:

1. The main algorithm of PSO is relatively simple
(since in its original version, it only adopts one
operator for creating new solutions, unlike most
evolutionary algorithms) and its implementa-
tion is, therefore, straightforward. Additionally,
there is plenty of source code of PSO avail-
able in the public domain (see for example:
http://www.swarmintelligence.org/
codes.php ).

2. PSOhasbeenfoundto beveryeffectivein awideva-
riety of applications,beingableto produceverygood
resultsata very low computationalcost[32, 20].

In orderto establisha commonterminology, in the fol-
lowing we provide somedefinitions of several technical
termscommonlyused:

h Swarm: Populationof thealgorithm.

h Particle: Member(individual) of the swarm. Each
particlerepresentsapotentialsolutionto theproblem
beingsolved.Thepositionof aparticleis determined
by thesolutionit currentlyrepresents.

h pbest (personal best): Personalbest position of a
given particle, so far. That is, the position of the
particlethat hasprovided the greatestsuccess(mea-
suredin termsof a scalarvalueanalogousto the fit-
nessadoptedin evolutionaryalgorithms).



h lbest (local best): Positionof thebestparticlemem-
berof theneighborhoodof a givenparticle.

h gbest (globalbest): Positionof thebestparticleof the
entireswarm.

h Leader: Particlethatis usedto guideanotherparticle
towardsbetterregionsof thesearchspace.

h Velocity (vector): Thisvectordrivestheoptimization
process,thatis, it determinesthedirectionin which a
particleneedsto “fly” (move),in orderto improveits
currentposition.

h Inertia weight: Denotedby i , theinertiaweight is
employed to control the impactof the previous his-
tory of velocitieson the currentvelocity of a given
particle.

h Learning factor: Representstheattractionthatapar-
ticle hastoward either its own successor that of its
neighbors.Two arethelearningfactorsused: j  andj � . j  is thecognitive learningfactorandrepresents
the attractionthat a particlehastoward its own suc-
cess. j � is the social learningfactorandrepresents
theattractionthataparticlehastowardthesuccessof
its neighbors.Both, j  and j � , areusuallydefined
asconstants.

h Neighborhoodtopology: Determinesthesetof par-
ticles that contribute to the calculationof the lbest
valueof a givenparticle.

In PSO,particlesare“flown” throughhyperdimensional
searchspace.Changesto thepositionof theparticleswithin
thesearchspacearebasedon thesocial-psychologicalten-
dency of individualsto emulatethesuccessof otherindivid-
uals.

Thepositionof eachparticleis changedaccordingto its
own experienceandthatof its neighbors.Let

�� � �lk � denote
the positionof particle 0 � , at time step

k
. The positionof0 � is thenchangedby addinga velocity
�m � �1k � to thecurrent

position,i.e.:

�� � �1k �,	 �� � �1k�n %o�Zp �m � �lk � (4)

Thevelocityvectorreflectsthesociallyexchangedinfor-
mationand,in general,is definedin thefollowing way:

�m � �1k �q	 i �m � �lk/n %o�Zp j �rs�� ��(t�u�vxwzyl{ n �� � �1k �3�p j ��r���� ��5|?vx}�~�vz� n �� � �1k �3� (5)

whereand
r  � r � KT� !(��%�� arerandomvalues.

Particlestendto be influencedby thesuccessof anyone
they areconnectedto. Theseneighborsarenot necessarily
particleswhich arecloseto eachotherin parameter(deci-
sionvariable)space,but insteadareparticlesthatareclose
to eachotherbasedonaneighborhoodtopologythatdefines
thesocialstructureof theswarm[32].

Particlescanbe connectedto eachotherin any kind of
neighborhoodtopologyrepresentedasa graph. In the fol-
lowing, list sometypicalneighborhoodgraphsusedin PSO.

Figure3: The ring neighborhoodtopology that represents
the local bestscheme,when A�	�& . In this commonlocal
bestcase,eachparticleis affectedonly by its two immediate
adjacentneighbors.Eachcircle representsa particle.

Figure 4: The fully connectedgraph representsthe fully
connectedneighborhoodtopology(eachcircle representsa
particle). All membersof the swarm areconnectedto one
another.

h Empty graph: In this topology, particlesare iso-
lated. Each particle is connectedonly with itself,
and it comparesits currentpositiononly to its own
bestpositionfound so far (pbest) [19]. In this case,j � 	X! in Equation5.

h Local best: In this topology, eachparticleis affected
by thebestperformanceof its A immediateneighbors.
Particlesare influencedby the bestposition within
their neighborhood(lbest), aswell astheir own past
experience(pbest) [19]. When Af	�& , thisstructureis
equivalentto a ring topologysuchasthe oneshown
in Figure3. In this case,leader=lbestin Equation5.

h Fully connectedgraph: This topologyis the oppo-
siteof theemptygraph. Thefully connectedtopology
connectsall membersof the swarm to one another.
Eachparticleusesits historyof experiencesin terms
of its own bestsolutionsofar (pbest) but, in addition,
theparticleusesthepositionof thebestparticlefrom
theentireswarm(gbest). This structureis alsocalled
star topologyin the PSOcommunity[19]. SeeFig-
ure4. In this case,leader=gbestin Equation5.

h Star network: In this topology, oneparticleis con-
nectedto all othersand they are connectedto only
that one (called focal particle) [19]. SeeFigure 5.



focal particle

Figure5: Thestarnetwork topology(eachcircle represents
a particle). Tne focal particle is connectedto all the other
particlesandthey areconnectedto only thatone.

Figure6: Thetreenetwork topology(eachcircle represents
a particle). All particlesarearrangedin a tree. A particle
is influencedby its own bestpositionso far (pbest) andby
thebestpositionof theparticlethat is directly above in the
tree.Here,we show anexampleof a topologydefinedby a
regulartreewith aheightequalto 3, degreeequalto 4 anda
totalof 21 particles.

Particlesare isolatedfrom oneanother, asall infor-
mationhasto becommunicatedthroughthefocalpar-
ticle. Thefocalparticlecomparesperformancesof all
particlesin the swarm and adjustsits trajectoryto-
wardsthe bestof them. That performanceis even-
tually communicatedto the restof the swarm. This
structureis also called wheel topology in the PSO
community. In this case,leader=focal in Equation
5.

h Treenetwork: In this topology, all particlesarear-
rangedin a tree andeachnodeof the tree contains
exactly one particle [28]. SeeFigure 6. A particle
is influencedby its own bestpositionso far (pbest)
andby thebestpositionof theparticlethatis directly
abovein thetree(parent).If a particleata child node
hasfounda solutionthat is betterthanthebestsofar
solutionof theparticleat theparentnode,bothparti-
clesareexchanged.In thisway, this topologyoffersa
dynamicneighborhood.This structureis alsocalled
hierarchical topologyin thePSOcommunity. In this
case,leader=pbestt�}��Bv 4 y in Equation5.

The neighborhoodtopology is likely to affect the rate
fo convergenceasit determineshow muchtime it takesto
the particlesto find out aboutthe locationof good(better)
regionsof thesearchspace.For example,sincein the fully
connectedtopologyall particlesareconnectedto eachother,

Begin
Initialize swarm
Locateleader� 	X!
While

����� )����
For eachparticle

UpdatePosition(Flight)
Evaluation
Update0������ k

EndFor
Updateleader�
++

EndWhile
End

Figure7: Pseudocodeof thegeneralPSOalgorithm.

all particlesreceivetheinformationof thebestsolutionfrom
theentireswarmat thesametime. Thus,whenusingsuch
topology, the swarm tendsto converge more rapidly than
whenusinglocal besttopologies,sincein this case,the in-
formationof the bestpositionof the swarm takesa longer
time to be transferred.However, for the samereason,the
fully connectedtopologyis alsomoresusceptibleto suffer
prematureconvergence(i.e., to converge to local optima)
[20].

Figure 7 shows the way in which the general(single-
optimization)PSO algorithm works. First, the swarm is
initialized. This initialization includesboth positionsand
velocities. Thecorrespondingpbestof eachparticleis ini-
tializedandtheleaderis located(usuallythegbestsolution
is selectedasthe leader).Then,for a maximumnumberof
iterations,eachparticlefliesthroughthesearchspaceupdat-
ing its position(using(4) and(5)) andits pbestand,finally,
theleaderis updatedtoo.

4 Particle Swarm Optimization for Multi-
Objective Problems

In order to apply the PSO strategy for solving multi-
objectiveoptimizationproblems,it is obviousthattheorig-
inal schemehasto be modified. As we saw in Section2,
thesolutionsetof a problemwith multiple objectivesdoes
not consistof a singlesolution(asin globaloptimization).
Instead,in multi-objectiveoptimization,weaimto find aset
of differentsolutions(the so-calledParetooptimal set). In
general,whensolvinga multi-objective problem,threeare
themaingoalsto achieve[73]:

1. Maximizethenumberof elementsof theParetoopti-
mal setfound.

2. Minimize thedistanceof theParetofront producedby
our algorithmwith respectto thetrue(global)Pareto
front (assumingwe know its location).

3. Maximize the spreadof solutionsfound, so that we
canhave a distribution of vectorsassmoothanduni-
form aspossible.



Giventhepopulation-basednatureof PSO,it is desirable
to produceseveral (different)nondominatedsolutionswith
a singlerun. So,aswith any otherevolutionaryalgorithm,
thethreemainissuesto beconsideredwhenextendingPSO
to multi-objectiveoptimizationare[13]:

1. How to selectparticles(to be usedasleaders)in or-
derto givepreferenceto nondominatedsolutionsover
thosethataredominated?

2. How to retainthenondominatedsolutionsfounddur-
ing the searchprocessin order to report solutions
that are nondominatedwith respectto all the past
populationsandnot only with respectto the current
one?Also, it is desirablethatthesesolutionsarewell
spreadalongtheParetofront.

3. How to maintaindiversity in the swarm in order to
avoid convergenceto a singlesolution?

As we could seein the previous section,whensolving
single-objectiveoptimizationproblems,theleaderthateach
particleusesto updateits positionis completelydetermined
oncea neighborhoodtopology is stablished.However, in
thecaseof multi-objectiveoptimizationproblems,eachpar-
ticle might have a setof different leadersfrom which just
one can be selectedin order to updateits position. Such
setof leadersis usuallystoredin a differentplacefrom the
swarm,thatwe will call externalarchive4: This is a repos-
itory in which thenondominatedsolutionsfoundsofar are
stored.The solutionscontainedin the externalarchive are
usedas leaderswhen the positionsof the particlesof the
swarmhaveto beupdated.Furthermore,thecontentsof the
externalarchive is alsousuallyreportedasthe final output
of thealgorithm.

Figure8 shows theway in which a generalMOPSOal-
gorithmworks. We have markedwith italics theprocesses
thatmake this algorithmdifferentfrom thegeneralPSOal-
gorithmfor singleobjectiveoptimization.

First, the swarm is initialized. Then, a set of leaders
is alsoinitialized with thenondominatedparticlesfrom the
swarm. As we mentionedbefore,thesetof leadersis usu-
ally storedin an externalarchive. Later on, somesort of
quality measureis calculatedfor all the leadersin orderto
select(usually)one leaderfor eachparticleof the swarm.
At eachgeneration,for eachparticle, a leaderis selected
andtheflight is performed.Most of theexisting MOPSOs
applysomesortof mutationoperator5 afterperformingthe
flight. Then,theparticleis evaluatedandits corresponding0������ k is updated.A new particlereplacesits 0������ k particle
usually when this particle is dominatedor if both are in-
comparable(i.e., they areboth nondominatedwith respect
to eachother).After all theparticleshavebeenupdated,the
setof leadersis updated,too. Finally, thequalitymeasureof
thesetof leadersis re-calculated.This processis repeated
for acertain(usuallyfixed)numberof iterations.

4Thisexternalarchiveis alsousedby many Multi-Objective Evolution-
aryAlgorihtms(MOEAs).

5Themutationoperatorsadoptedin the PSOliteraturehave alsobeen
calledturbulenceoperators.

Begin
Initialize swarm
Initialize leaders in an externalarchive
Quality(leaders)� 	X!
While

���M� )_���
For eachparticle

Selectleader
UpdatePosition(Flight)
Mutation
Evaluation
Update0������ k

EndFor
Updateleaders in theexternalarchive
Quality(leaders)�
++

EndWhile
Reportresultsin theexternalarchive

End

Figure8: Pseudocodeof ageneralMOPSOalgorithm.

As we cansee,andgiventhecharacteristicsof thePSO
algorithm, the issuesthat arisewhen dealingwith multi-
objective problemsare relatedwith two main algorithmic
designaspects[64]:

1. Selectionandupdatingof leaders:

h How to selecta singleleaderout of setof non-
dominatedsolutionswhichareall equallygood?
Shouldweselectthis leaderin arandomwayor
shouldwe usean additionalcriterion (to pro-
motediversity, for example)?h How to selectthe particlesthat shouldremain
in theexternalarchive from oneiterationto an-
other?

2. Creationof new solutions:

h How to promotediversitythroughthetwo main
mechanismsto createnew solutions: updating
of positions(Equations4 and5) andmutation
(turbulence)operator.

Theseissuesarediscussedin moredetailin thenext sub-
sections.

4.1 Leadersin Multi-Objecti veOptimization

Sincethesolutionof a multi-objectiveproblemconsistof a
setof equallygoodsolutions,it is evident that the concept
of leadertraditionallyadoptedin PSOhasto bechanged.

A few researcheshave avoidedthe problemof defining
a new conceptof leaderfor multi-objective problemsby
adoptingaggregatingfunctions(i.e., weightedsumsof the
objectives)or approachesthatoptimizeeachobjective sep-
arately. We will briefly discusstheseapproachesin Section
5.
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Figure9: Thenearestneighbordensityestimatorfor anex-
amplewith two objective functions.Particleswith a larger
valueof this estimatorarepreferred.

However, it is important to indicate that the majority
of thecurrentlyproposedMOPSOapproachesredefinethe
conceptof leader.

Aswementionedbefore,theselectionof aleaderis akey
componentwhendesigninga MOPSOapproach.Themost
straightforwardapproachis to considereverynondominated
solutionasa new leaderandthen,just oneleaderhasto be
selected.In this way, a quality measurethat indicateshow
goodis a leaderis very important.Obviously, suchfeature
can be definedin several different ways. As we will see
in Section5, thereexist alreadydifferentproposalsto deal
with this issue.

Oneposibleway of definingsuchquality measurecan
berelatedto densitymeasures.Promotingdiversitymaybe
donethroughthis processby meansof mechanismsbased
on somequality measuresthat indicatetheclosenessof the
particleswithin theswarm.

Several authorshave proposedleader selectiontech-
niquesthatarebasedon densitymeasures.In orderto help
understandingthe specificapproachesthat aregoing to be
describedlateron, we presentheretwo of themostimpor-
tantdensitymeasuresusedin theareaof multi-objectiveop-
timization:

h Nearestneighbor densityestimator [16]. Thenear-
estneighbordensityestimatorgivesusanideaof how
crowdedaretheclosestneighborsof a givenparticle,
in objective function space.This measureestimates
theperimeterof thecuboidformedby usingthenear-
estneighborsasthevertices.SeeFigure9.

h Kernel density estimator [22, 15]: Whena particle
issharingresourceswith others,its fitnessisdegraded
in proportionto thenumberandclosenessto particles
that surroundit within a certainperimeter. A neigh-
borhoodof aparticleis definedin termsof aparame-
tercalled � w3�o}��'v thatindicatestheradiusof theneigh-
borhood.Suchneighborhoodsarecalledniches. See
Figure10.

σ
share

σ
share

Figure10: For eachparticle,a niche is defined. Particles
whosenicheis lesscrowdedarepreferred.

4.2 Retaining and SpreadingNondominatedSolutions

As we mentionedbefore,it is importantto retainthe non-
dominatedsolutionsfound alongall the searchprocessso
that we canreportat the endthosesolutionsthat arenon-
dominatedwith respectto all thepreviouspopulations.This
is importantnotonly for pragmaticreasons,but alsofor the-
oreticalones[54].

Themoststraightforwardwayof retainingsolutionsthat
arenondominatedwith respectto all the previous popula-
tions (or swarms) is to usean external archive. Suchan
archivewill allow theentranceof asolutiononly if: (a) it is
nondominatedwith respectto thecontentsof thearchiveor
(b) it dominatesany of thesolutionswithin the archive (in
this case,the dominatedsolutionshave to be deletedfrom
thearchive).

This approachhas,however, thedrawbackof increasing
the sizeof the archive very quickly. This is an important
issuebecausethearchivehasto beupdatedat eachgenera-
tion. Thus,this updatemay becomevery expensive, com-
putationallyspeaking,if the sizeof the archive grows too
much. In the worst case,all membersof the swarm may
wish to enterinto thearchive,at eachgeneration.Thus,the
correspondingupdatingprocess,at eachgeneration,hasa
complexity of � � AD� � � , where � is the sizeof the swarm
and A is the numberof objectives. In this way, the com-
plexity of the updatingprocessfor the completerun is of� � A(�L� � � , where � is thetotalnumberof iterations.

Thus,mainly dueto practicalreasons,archivestendto
bebounded[13], which makesnecessarytheuseof anad-
ditional criterion to decidewhich nondominatedsolutions
to retain, oncethe archive is full. In evolutionary multi-
objective optimization,researchershave adopteddifferent
techniquesto prunethe archive (e.g., clustering[74] and
geographical-basedschemesthat place the nondominated
solutionsin cells in orderto favor lesscrowdedcellswhen
deletingin-excessnondominatedsolutions[34]). However,
the useof an archive introducesadditionalissues:for ex-
ample,do we imposeadditionalcriteriato enterthearchive
insteadof just usingnondominance(e.g.,usethe distribu-
tion of solutionsasanadditionalcriterion)?

Note that, strictly speaking,three archives should be
usedwhenextendingPSOfor multi-objectiveoptimization:
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Figure12: An exampleof theuseof � -dominancein anex-
ternalarchive. Solution1 dominatessolution2, therefore
solution1 is preferred.Solutions3 and4 areincomparable.
However, solution3 is preferredoversolution4, sincesolu-
tion 4 is thecloserto thelower lefthandcornerrepresented
by point (2� ,2� ). Solution5 dominatessolution6, therefore
solution5 is preferred.Solution7 is not acceptedsinceits
box, representedby point (2� ,3� ) is dominatedby the box
representedby point (2� ,2� ).
one for storing the global bestsolutions,one for the per-
sonalbestvaluesanda third onefor storingthe local best
(if applicable).However, in practice,few authorsreportthe
useof morethanonearchive in theirMOPSOs.

Besidesthe useof an externalfile, it is alsopossibleto
usea plus selectionin which parentscompetewith their
childrenand thosewhich arenondominated(andpossibly
comply with someadditionalcriterion suchasproviding a
betterdistribution of solutions)areselectedfor the follow-
ing generation.In thecaseof PSO,aplusselectioninvolves
selectingfrom a mergeof two consecutiveswarms.

More recently, otherresearchershave proposedthe use
of relaxed forms of dominance.The main oneadoptedin
PSOhasbeen� -dominance[36], which is illustratedin Fig-
ure11. Themainuseof thisconceptin multi-objectivePSO
hasbeento filter solutionsin theexternalarchive. By using� -dominance,wedefineasetof boxesof size� andonly one

nondominatedsolutionis retainedfor eachbox(e.g.,theone
closestto the lower lefthandcorner). This is illustratedin
Figure12, for a bi-objectivecase.Theuseof � -dominance,
asproposedin [36] andillustratedin Figure12, guarantees
thattheretainedsolutionsarenondominatedwith respectto
all solutionsgeneratedduring the run. It is worth noting,
however, that,whenusing � -dominance,thesizeof thefinal
externalarchive dependson the � -value,which is normally
a user-definedparameter[36]. MostaghimandTeich [43]
have found that whencomparing� -dominanceagainstex-
isting clusteringtechniquesfor fixing the archive size, the� -dominancemethodcanfind solutionsmuchfaster(com-
putationallyspeaking)thanthe clusteringtechniquewith a
comparable(and even better in somecases)convergence
anddiversity.

4.3 Promoting Diversity while CreatingNew Solutions

It is well-known thatoneof themostimportantfeaturesof
the PSOalgorithmis its fastconvergence.This is a posi-
tivefeatureaslongaswedon’t haveprematureconvergence
(i.e.,convergenceto a localoptimum).

Prematureconvergenceis causedby therapidlossof di-
versitywithin theswarm. So,theappropriatepromotionof
diversityin PSOis avery importantissuein orderto control
its (normallyfast)convergence.

As we mentionedin Section4.1, when adoptingPSO
for solvingmulti-objectiveoptimizationproblems,it is pos-
sible to promotediversity throughthe selectionof leaders.
However, thiscanbealsodonethroughthetwo mainmech-
anismsusedfor creatingnew solutions:

1. Updating of positions. As we mentionedin Section
3, theuseof differentneighborhoodtopologiesdeter-
mineshow fast is the processof transferingthe in-
formationthroughthe swarm (sincea neighborhood
determineswho the leaderparticleis in Equation5).
Sincein a fully connectedtopologyall particlesare
connectedwith eachother, the information is trans-
ferredfasterthanin thecaseof a local bestor a tree
topology, sincein thesecasesparticleshave smaller
neighborhoods.Under the sameargument,a speci-
fied neighborhoodtopologyalsodetermineshow fast
is diversity lost within the swarm. Sincein a fully
connectedtopology, thetranferof informationis fast,
whenusingthis topology, diversitywithin theswarm
is alsolost rapidly. In thisway, topologiesthatdefine
neighborhoodssmallerthantheentireswarmfor each
particlecanalsopreserve diversitywithin theswarm
a longertime.

On theotherhand,diversitycanalsobepromotedby
meansof the inertia weight ( i in Equation5). As
it wasdefinedin Section3, the inertiaweight is em-
ployed to control the impactof the previous history
of velocitieson thecurrentvelocity. Thus,theinertia
weightinfluencesthetrade-off betweenglobal(wide-
ranging)andlocal (nearby)explorationabilities[58].
A large inertia weight facilitatesglobal exploration
(searchingnew areas)while a smallerinertia weight



tendsto facilitate local exploration to fine-tunethe
currentsearcharea. The valueof the inertia weight
may vary during the optimizationprocess.Shi [59]
assertedthatby linearlydecreasingtheinertiaweight
from a relatively large valueto a small onethrough
the courseof the PSOrun, the PSOtendsto have
moreglobalsearchability at thebeginningof therun
andhavemorelocalsearchability neartheendof the
run. On the otherhand,Zhenget al. [72] arguethat
eitherglobalor local searchability associateswith a
small inertia andthata large inertiaweight provides
the algorithmmorechancesto be stabilized. In this
way, inspiredon theprocessof thesimulatedanneal-
ing algorithm,theauthorsproposedto useanincreas-
ing inertiaweightthroughthePSOrun.

Theadditionof velocityto thecurrentpositionto gen-
eratethe next positionis similar to the mutationop-
eratorin evolutionaryalgorithms,exceptthat “muta-
tion” in PSOis guidedby theexperienceof aparticle
andthat of its neighbors. In otherwords,PSOper-
forms“mutation” with a “conscience”[58].

2. Thr oughthe useof a mutation (or turb ulence)op-
erator.

As mentionedin the previous section,whena parti-
cleupdatesits position,amutationwith “conscience”
occurs. Sometimes,however, someunconciousness
or “craziness”,ascalledby KennedyandEberhartin
the original proposalof PSO[30], is needed.Crazi-
ness,alsoreferredasturbulence,reflectsthe change
in a particle’sflight which is outof its control[21].

In general,when a swarm stagnates,that is, when
the velocitiesof the particlesarealmostzero, it be-
comesunableto generatenew solutionswhich might
lead the swarm out of this state. This behavior can
leadto thewholeswarmbeingtrappedin a local op-
timum from which it becomesimpossibleto escape.
Sincethe globalbestindividual attractsall members
of the swarm, it is possibleto leadthe swarm away
from a currentlocationby mutatinga singleparticle
if the mutatedparticlebecomesthe new globalbest.
Thismechanismpotentiallyprovidesameansbothof
escapinglocal optimaandof speedingup thesearch
[62].

In thisway, theuseof amutationoperatoris very im-
portantin order to escapefrom local optimaand to
improve the exploratory capabilitiesof PSO.When
a solution is chosento be mutatedeachcomponent
is thenmutated(randomlychanged)or not with cer-
tain probability. Actually, differentmutationopera-
tors have beenproposedthat mutatecomponentsof
eitherthepositionor thevelocityof a particle.

In our experience,thechoiceof a goodmutationop-
eratoris a difficult taskthat hasa significantimpact
on performance.On the other hand,oncewe have
selecteda specificmutationoperatoranotherdifficult
taskis to decidehow muchmutationto apply: with

how muchprobability, in which momentsof thepro-
cess,in which specificcomponentof a particle,etc.

Severalproposedapproacheshaveuseddifferentmu-
tation operators,however, therearealsoapproaches
which do not useany kind of mutationoperatorand
that show good performance.So, the useof muta-
tion is anissuethatcertainlydeservesa morecareful
study.

5 A Taxonomyof Approaches

Thetaxonomythatweproposeto classifythecurrentMOP-
SOsis thefollowing:

h Aggregatingapproaches

h Lexicographicordering

h Sub-Populationapproaches

h Pareto-basedapproaches

h Combinedapproaches

h Otherapproaches

We will discussnext eachof thesetypesof approaches.
Also, Table 1 summarizeall the differentapproachesand
indicatestheirmostimportantfeatures.

5.1 AggregatingApproaches

Underthis category we considerapproachesthat combine
(or “aggregate”) all the objectives of the problem into a
singleone. In otherwords,the multi-objective problemis
transformedinto a single-objective one. This is not a new
idea,sinceaggregatingfunctionscanbe derived from the
well-known Kuhn-Tuckerconditionsfor nondominatedso-
lutions[35].

h ParsopoulosandVrahatis[50]: Thisalgorithmadopts
threetypesof aggregating functions: (1) a conven-
tional linear aggregatingfunction (wereweightsare
fixedduringtherun),(2) adynamicaggregatingfunc-
tion (wereweightsaregraduallymodifiedduringthe
run) and(3) thebangbangweightedaggregationap-
proach(were weightsare abruptly modified during
therun)6 [29]. In all cases,theauthorsadoptthefully
connectedtopology.

h Baumgartneret al. [6]: This approach,basedon
the fully connectedtopology, useslinearaggregating
functions. In this case,the swarm is equally parti-
tionedinto � subswarms,eachof whichusesadiffer-
entsetof weightsandevolvesinto thedirectionof its
own swarm leader. The approachadoptsa gradient
techniqueto identify theParetooptimalsolutions.

6This approachhasthe peculiarityof beingable to generatenoncon-
vex portionsof theParetofront, which is somethingthat traditionallinear
aggregatingfunctionscannotdo [14].



5.2 Lexicographic Ordering

In this method,the useris asked to rank the objectivesin
orderof importance.Theoptimumsolutionis thenobtained
by minimizing the objective functionsseparately, starting
with the most importantoneandproceedingaccordingto
the assignedorder of importanceof the objectives [40].
Lexicographicorderingtendsto be useful only when few
objective functionsareused(two or three),and it may be
sensitive to theorderingof theobjectives[10].

h Hu andEberhart[24]: In thisalgorithm,only oneob-
jective is optimizedat a time usinga schemesimilar
to lexicographicordering[13]. This approachadopts
the ring (local best) topology. No external archive
is adoptedin this case. However, in a further ver-
sionof this approach[25], theauthorsincorporatean
externalarchive (called“extendedmemory”)andin-
troducesomefurther improvementsto their dynamic
neighborhoodPSOapproach.

5.3 Sub-Population Approaches

Theseapproachesinvolvetheuseof severalsubpopulations
as single-objective optimizers. Then, the subpopulations
somehow exchangeinformationor recombineamongthem-
selvesaimingto producetrade-offs amongthedifferentso-
lutions previously generatedfor the objectives that were
separatelyoptimized.

h Parsopouloset al. [49] studieda parallel version
of the Vector EvaluatedParticle Swarm (VEPSO)
methodfor multi-objective problems. VEPSOis a
multi-swarm variant of PSO, which is inspired on
the Vector Evaluated Genetic Algorithm (VEGA)
[56, 57]. In VEPSO,eachswarm is evaluatedusing
only oneof theobjectivefunctionsof theproblemun-
derconsideration,andtheinformationit possessesfor
this objective function is communicatedto the other
swarmsthroughtheexchangeof theirbestexperience
(gbestparticle). The authorsarguethat this process
canleadto Paretooptimalsolutions.

h Chow andTsui[8]: In thispaper, theauthorsusePSO
asanautonomousagentresponselearningalgorithm.
For that sake, the authorsproposeto decomposethe
awardfunctionof theautonomousagentinto a setof
local award functionsand,in this way, to modelthe
responseextractionprocessasa multi-objective op-
timization problem. A modifiedPSOcalled“Multi-
SpeciesPSO” is introducedby consideringeachob-
jective function asa speciesswarm. A communica-
tion channelis establishedbetweenthe neighboring
swarmsfor transmittingthe information of the best
particles,in orderto provide guidancefor improving
theirobjectivevalues.Also, theauthorsusetheflight
formula of the fully connectedtopology, but include
a neighborswarmreferencevelocity. Suchvelocity
is directly relatedwith the bestparticlewithin each
subswarm(similar to lbest).

5.4 Pareto-BasedApproaches

Theseapproachesuseleaderselectiontechniquesbasedon
Paretodominance.Thebasicideaof all theapproachescon-
sideredhereis to selectas leadersto the particlesthat are
nondominatedwith respectto the swarm. Note however,
that several variationsof the leaderselectionschemeare
possiblesincemostauthorsadoptadditionalinformationto
selectleaders(e.g.,informationprovidedby a densityesti-
mator)in orderto avoid arandomselectionof a leaderfrom
thecurrentsetof nondominatedsolutions.

h Moore andChapman[41]: This algorithmwaspre-
sentedin anunpublisheddocumentandit is basedon
Paretodominance.Theauthorsemphasizetheimpor-
tanceof performingboth an individual anda group
search(a cognitive componentanda social compo-
nent). In this approach,the personalbest(pbest) of
a particle is a list of all the nondominatedsolutions
it hasfoundin its trajectory. Whenselectinga pbest,
a particlefrom thelist is randomlychosen.Sincethe
ring topologyis used,whenselectingthebestparticle
of the neighborhood,the solutionscontainedin the
pbestlists arecompared,anda nondominatedsolu-
tion with respectto theneighborhoodis chosen.The
authorsdon’t indicatehow they choosethe lbestpar-
ticle when more that one nondominatedsolution is
foundin theneigborhood.

h RayandLiew [53]: This algorithm(basedon a fully
connectedtopology)usesParetodominanceandcom-
binesconceptsof evolutionary techniqueswith the
particleswarm. The approachusesa nearestneigh-
bor densityestimatorto promotediversity(by means
of arouletteselectionschemeof leadersbasedonthis
value)andamultilevelsieveto handleconstraints(for
this, the authorsadopt the constraintand objective
matricesproposedin someof their previousresearch
[52]). The setof leadersmaintainedby the authors
canbeconsideredanexternalarchive.

h FieldsendandSingh[21]: This approachusesanun-
constrainedelite externalarchive (in which a special
datastructurecalled“dominatedtree” is adopted)to
storethe nondominatedindividuals found along the
searchprocess.Thearchiveinteractswith theprimary
populationin orderto defineleaders.Theselectionof
the gbestfor a particlein the swarm is basedon the
structuredefinedby thedominatedtree.First,acom-
positepointof thetreeis locatedbasedondominance
relations,and then the closestmember(in objective
function space)of the compositepoint is chosenas
the leader. On the otherhand,a setof personalbest
particlesfound(nondominated)is alsomaintainedfor
eachswarm member, andthe selectionis performed
uniformly. Thisapproachalsousesa“turbulence”op-
eratorthatis basicallyamutationoperatorthatactson
thevelocityvalueusedby thePSOalgorithm.

h Coello et al. [11, 12]: This proposalis basedon
theideaof having anexternalarchive in which every



particlewill depositits flight experiencesafter each
flight cycle. The updatesto the externalarchive are
performedconsideringa geographically-basedsys-
tem definedin termsof the objective function val-
uesof eachparticle. The searchspaceexplored is
divided on hypercubes.Eachhypercubereceives a
fitnessvaluebasedon thenumberof particlesit con-
tains. Thus,in orderto selecta leaderfor eachpar-
ticle of the swarm, a roulette-wheelselectionusing
thesefitnessvaluesis first applied,to selectthe hy-
percubefrom which theleaderwill betaken. Oncea
hypercubehasbeenselected,the leaderis randomly
chosen.This approachalsousesa mutationoperator
that actsboth on the particlesof the swarm, andon
therangeof eachdesignvariableof theproblemto be
solved.

In morerecentwork, ToscanoandCoello[66] usethe
conceptof Paretodominanceto determinethe flight
directionof a particle. The authorsadoptclustering
techniquesto divide the populationof particlesinto
severalswarms. This aimsto provide a betterdistri-
bution of solutionsin decisionvariablespace.Each
sub-swarmhasits own setof leaders(nondominated
particles).In eachsub-swarm,aPSOalgorithmis ex-
ecuted(leadersare randomlychosen)and, at some
point, the different sub-swarms exchangeinforma-
tion: theleadersof eachswarmaremigratedto a dif-
ferentswarmin ordertovariatetheselectionpressure.
Also, this approachdoesnot usean externalarchive
sinceelitism in this caseis an emergentprocessde-
rivedfrom themigrationof leaders.

h SrinivasanandHou [61]: This approach,calledPar-
ticle Swarm Inspired Evolutionary Algorithm (PS-
EA), is a hybrid betweenPSOand an evolutionary
algorithm.Themainaim is to useEA operators(mu-
tation,for example)to emulatetheworkingsof PSO
mechanisms,basedon a fully connectedtopology.
Sincethe authorsmentionthat the final swarm con-
stitutesthefinal solution(Paretofront), we conclude
thata plusselectionis performedat eachiterationof
thealgorithm.Also, theauthorsuseanichecountand
a Paretorankingapproachin orderto assigna fitness
valueto theparticlesof theswarm. However, these-
lectiontechniqueusedis not describedin thepaper.

h Mostaghimand Teich [44]: They proposea sigma
methodin which the leaderfor eachparticle is se-
lectedin orderto improvetheconvergenceanddiver-
sity of a MOPSOapproach.The ideaof the sigma
methodis similar to compromiseprogramming[13].
In order to selecta leaderfor eachparticle of the
swarm,a sigmavalueis assignedto eachparticleof
theswarmandof theexternalarchive. Eachparticle
of theswarmselectsasits leadertheparticleof theex-
ternalarchivewith theclosestsigmavalue.Theuseof
thesigmavaluesmakestheselectionpressureof PSO
evenhigher, whichmaycauseprematureconvergence
in somecases.The authorsalsousea “turbulence”

operator, which is appliedondecisionvariablespace.
This approachhasbeensuccessfullyappliedto the
molecularforcefield parametrizationproblem[42].

In further work, Mostaghimand Teich [43] studied
the influenceof � -dominance[36] on MOPSOmeth-
ods. � -dominanceis comparedwith existing cluster-
ing techniquesfor fixing theexternalarchivesizeand
thesolutionsarecomparedin termsof computational
time, convergenceand diversity. The resultsshow
thatthe � -dominancemethodcanfind solutionsmuch
fasterthanthe clusteringtechniquewith a compara-
ble (andevenbetterin somecases)convergenceand
diversity. The authorssuggesta new densitymea-
sure(sigmamethod)inspiredon their previouswork
[44]. Also, basedon the idea that the initial exter-
nal archive from which the particleshave to selecta
leaderhasinfluenceon thediversityof solutions,the
authorsproposethe useof successive improvements
adoptinga previousexternalarchive of solutions.In
this way, in morerecentwork, MostaghimandTeich
[45] proposea new methodcalledcoveringMOPSO
(cvMOPSO)which retakes this idea. This method
works in two phases. In phase1, a MOPSOalgo-
rithm is run with an externalarchive with restricted
sizeandthegoalis to obtainagoodapproximationof
the Pareto-front. In the phase2, the non-dominated
solutionsobtainedfrom the phase1 are considered
as the input externalarchive of the cvMOPSO.The
particlesin the swarm of the cvMOPSOaredivided
into subswarmsaroundeachnon-dominatedsolution
after thefirst generation.The taskof thesubswarms
is to cover the gapsbetweenthe non-dominatedso-
lutionsobtainedfrom thephase1. No restrictionson
thearchivesizeareimposedin thephase2.

h Bartz et al. [5]: This approachstartsfrom the idea
of introducingelitism (throughthe useof an exter-
nal archive) into PSO.Differentmethodsfor select-
ing anddeletingparticles(leaders)from the archive
areanalyzedto generateasatisfactoryapproximation
of the Paretofront. The deletionmethodsanalyzed
arebasedon the contribution of eachparticleto the
diversity of the Paretofront. Selectingmethodsare
either inverselyrelatedto the fitnessvalueor based
on theprevioussuccessof eachparticle.Theauthors
providesomestatisticalanalysisin orderto assessthe
impact of eachof the parametersusedby their ap-
proach.

h Li [37]: This approachis basedon a fully connected
topology and incorporatesthe main mechanismsof
the NSGA-II [16] to the PSOalgorithm. In this ap-
proach,oncea particlehasupdatedits position, in-
steadof comparingthenew positiononly againstthe
pbestpositionof the particle,all the pbestpositions
of the swarm andall the new positionsrecentlyob-
tainedarecombinedin just oneset(given a total of&�� solutions,where � is the size of the swarm).
Then,the approachselectsthe bestsolutionsamong



them to conform the next swarm (by meansof a
nondominatedsorting). The authordoesn’t specify
whichvaluesareassignedto thevelocityof pbestpo-
sitions, in order to considerthemasparticles. This
approachalsoselectsthe leadersrandomlyfrom the
leadersset(storedin an externalarchive) amongthe
bestof them,basedon two differentmechanisms:a
niche count and a nearestneighbordensityestima-
tor. Thisapproachusesamutationoperatorthatis ap-
pliedateachiterationsteponly to theparticlewith the
smallestdensityestimatorvalue(or the largestniche
count).

h Reyes and Coello [60]: This approachis basedon
Pareto dominanceand the use of a nearestneigh-
bor densityestimatorfor theselectionof leaders(by
meansof a binary tournament).This proposaluses
two externalarchives:onefor storingtheleaderscur-
rently usedfor performingthe flight andanotherfor
storingthefinal solutions.Thedensityestimatorfac-
tor is usedto filter out the list of leaderswhenever
themaximumlimit imposedon suchlist is exceeded.
Only the leaderswith thebestdensityestimatorval-
uesareretained. On the otherhand,the conceptof� -dominanceis usedto selectthe particlesthat will
remainin thearchiveof final solutions.Additionally,
theauthorsproposeaschemein whichthey subdivide
thepopulation(or swarm)into threedifferentsubsets.
A differentmutationoperatoris appliedto eachsub-
set.Notehowever, thatfor all otherpurposes,asingle
swarmis considered(e.g.,for selectingleaders).This
approachis basedona fully connectedtopology.

h Alvarez-Benitezetal. [2]: Theauthorsproposemeth-
odsbasedexclusivelyonParetodominancefor select-
ing leadersfrom anunconstrainednondominated(ex-
ternal)archive. Threedifferentselectiontechniques
arepresented:Onetechniquethatexplicitly promotes
diversity (called Roundsby the authors),one tech-
nique that explicitly promotesconvergence(called
Random) andfinally onetechniquethatis aweighted
probabilisticmethod(calledProb) andformsa com-
promisebetweenRandomand Rounds. Also, the
authorsproposeand evaluatefour mechanismsfor
confining particles to the feasible region, that is,
constraint-handlingmethods.The authorsshow that
probabilisticselectionfavoring archival particlesthat
dominatefew particlesprovidesgoodconvergenceto-
wardsthe Paretofront while properlycovering it at
thesametime. Also, they concludethatallowing par-
ticlesto exploreregionscloseto theconstraintbound-
ariesis importantto ensureconvergenceto thePareto
front. This approachusesa turbulencefactor that
is addedto the positionof the particleswith certain
probability.

h Ho et al. [23]: Theauthorsproposea novel formula
for updatingvelocityandpositionparticles,basedon
threemainmodificationsto theknown flight formula

for the fully connectedtopology. First, sincethe au-
thorsarguethattherandomfactors

r�
and

r��
in Equa-

tion 5 arenot completelyindependent,they propose
to use:

r � 	�% nXr  . Second,they proposeto in-
corporatethe term

� % n i � in the secondandthird
termsof Equation5, where i 	 r �Z� � !(��%s� . Third
(andlast), underthe argumentof allowing a particle
to fly sometimesback, the authorsproposeto allow
thefirst termof Equation5 beingnegativewith a50%
probability. On theotherhand,theauthorsintroduce
a “craziness”operatorin order to promotediversity
within the swarm. This “craziness”operatoris ap-
plied (with certainprobability) to thevelocity vector
beforeupdatingthepositionof aparticle.Finally, the
authorsintroduceoneexternalarchive for eachpar-
ticle and one global external archive for the whole
swarm. Thearchive of eachparticlestoresthe latest
Paretosolutionsfoundby theparticleandtheglobal
archive storesthe currentParetooptimal set. Every
time a particleupdatesits position,it selectsits per-
sonalbestfrom its own archive and the global best
from the global archive. In both cases,the authors
usea rouletteselectionmechanismbasedon the fit-
nessvaluesof theparticles(assignedusingthemech-
anismoriginally proposedby Zitzler et al. [74], for
theSPEAalgorithm)andonan“age” variablethatthe
authorsintroduceandthatis increasedat eachgener-
ation.

h Villalobos-Arias et al. [68]: The authorspropose
a new mechanismto promote diversity in multi-
objective optimizationproblems. Although the ap-
proachis independentof the searchengineadopted,
they incorporateit into theMOPSOproposedin [12].
Thenew approachis basedon theuseof stripesthat
areappliedon theobjectivefunctionspace.Basedon
ananalysisfor a bi-objectiveproblem,themain idea
of the approachis that the Paretofront of the prob-
lem is “similar” to the line determinedby the min-
imal points of the objective functions. In this way,
severalpoints(thattheauthorscall stripecenters)are
distributeduniformly alongsuchline, andthe parti-
clesof the swarm are assignedto the neareststripe
center. Whenusingthis approachfor solving multi-
objective problemswith PSO,one leaderis usedin
eachstripe. Such leader is selectedminimizing a
weightedsumof the minimal pointsof the objective
functions.Theauthorsshow thattheirapproachover-
comesthe drawbackson other popularmechanisms
suchas � -dominance[36] andthesigmamethodpro-
posedin [44].

h Salazar-Lechugaand Rowe [55]: The main idea of
this approachis to usePSOto guidethe searchwith
the help of nichecounts(appliedon objective func-
tion space)[22] to spreadthe particles along the
Paretofront. The approachusesan externalarchive
to store the best particles(nondominatedparticles)
found by the algorithm. Sincethis externalarchive



helpsto guidethesearch,thenichecountis calculated
for eachof the particlesin the archive andthe lead-
ersarechosenfrom thissetby meansof anstochastic
samplingmethod(roulettewheel). Also, the niche
count is usedas a criterion to updatethe external
archive. Eachtime thearchive is full anda new par-
ticle wantsto getin, its nichecountis comparedwith
thenichecountof theworstsolutionof thearchive. If
thenew particleis betterthantheworstparticle,then
thenew particleentersinto thearchiveandtheworst
particle is deleted. Niche countsare updatedwhen
insertingor deletinga particlefrom thearchive.

h RaquelandNaval [51]: As in [60], this approachin-
corporatestheconceptof nearestneighbordensityes-
timator for selectingtheglobalbestparticleandalso
for deletingparticlesfromtheexternalarchiveof non-
dominatedsolutions. When selectinga leader, the
archive of nondominatedsolutionsis sortedin de-
scendingorderwith respectto the densityestimator,
andaparticleis randomlychosenfrom thetoppartof
thelist. On theotherhand,whentheexternalarchive
is full, it is againsortedin descendingorderwith re-
spectto the densityestimatorvalueanda particle is
randomlychosento bedeleted,from thebottompart
of the list. This approachusesthe mutationopera-
tor proposedin [12] in sucha way that it is applied
only during a certainnumberof generationsat the
beginning of the process.Finally, the authorsadopt
theconstraint-handlingtechniquefrom the NSGA-II
[16].

h ZhaoandCao[71]: This approachis very similar to
the proposalof Coello andLechuga[11]. However,
the authorsindicatethat they maintaintwo external
archives,but oneof themis actuallya list thatkeeps
thepbestparticlefor eachmemberof theswarm.The
anotherexternalarchive storesthenondominatedso-
lutions found along the evolutionary process. This
truncatedarchive is similar to the adaptive grid of
PAES[34]. Theauthorsapplytheirapproachto solve
the economicload dispatchproblem. With this aim,
they employ a fuzzy-basedmechanismto extract the
bestcompromisesolution,in which they incorporate
thepreferencesof thedecisionmaker. Theapproach
adoptsa linearmembershipfunctionto representthe
goalsof eachobjective function. This membership
functionis adoptedto modify therankingof thenon-
dominatedsolutionsasto focusthesearchon thesin-
glesolutionthatattainsthemaximummembershipin
thefuzzyset.

Jansonand Merkle [27] proposeda hybrid particle
swarmoptimizationalgorithmfor multi-objectiveop-
timization,calledClustMPSO.ClustMPSOcombines
the PSOalgorithmwith clusteringtechniquesto di-
vide all particlesinto several subswarms. For this
aim, the authorsusethe � -meansalgorithm. Each
subswarmhasits own nondominatedfront andtheto-
tal nondominatedfront is obtainedfrom theunionof

the fronts of all the subswarms. Eachparticle ran-
domly selectsits neighborhoodbest( � ����� k ) particle
from the nondominatedfront of the swarm to which
it belongs.Also, a particleonly selectsa new � ����� k
particle when the current is no longer a nondomi-
natedsolution. On the otherhand,the personalbest
(0������ k ) of eachparticle is updatedbasedon domi-
nancerelations.Finally, theauthorsdefinethatasub-
swarm is dominatedwhen noneof its particlesbe-
longs to the total nondominatedfront. In this way,
when a subwarm is dominatedfor a certain num-
ber of consecutive generations,the subswarm is re-
located. The proposedalgorithmis testedon an ar-
tificial multi-objective optimizationfunction andon
a real-world problemfrom biochemistry, called the
moleculardockingproblem.Theauthorsreformulate
the moleculardockingproblemasa multi-objective
optimizationproblemand,in this case,the updating
of the 0������ k particle is also basedon the weighted
sum of the objectivesof the problem. ClustMPSO
outperformsawell-knownLamarckianGeneticAlgo-
rithm thathadbeenpreviously adoptedto solve such
problem.

5.5 Combined Approachesh Mahfoufetal. [39]: TheauthorsproposeanAdaptive
WeightedPSO(AWPSO)algorithm,in which theve-
locity is modifiedby including an accelerationterm
that increasesas the numberof iterationsincreases.
This aimsto enhancethe global searchability at the
endof run andto help the algorithmto jump out of
local optima. Also, a weightedaggregatingfunction
is introducedwithin the algorithm for performance
evaluationandto guidethe selectionof the personal
andglobal bests. The authorsusedynamicweights
to generateParetooptimalsolutions.Whenthepop-
ulation is losingdiversity, a mutationoperatoris ap-
plied to thepositionsof certainparticlesandthebest
of themare retained. Finally, the authorsincludea
nondominatedsortingalgorithmto selecttheparticles
from oneiterationto thenext. Sinceplusselectionis
adopted,an externalarchive is not necessaryin this
case.This approachis appliedin the optimaldesign
of heat-treatedalloy steels.

h Xiao-huaet al. [69]: Theauthorsproposean Intelli-
gentParticle Swarm Optimization(IPSO)algorithm
for multi-objective problems basedon an Agent-
Environment-Rules(AER) model to provide an ap-
propriateselectionpressureto propeltheswarmpop-
ulation towards the Pareto optimal front. In this
model, the authorsmodify the fully connectedflight
formula including the lbestpositionof theneighbor-
hoodof eachparticle. The neighborhoodof a parti-
cle is determinedby a lattice-like topology. On the
otherhand,eachparticle is taken asan agentparti-
cle with the ability of memory, communication,re-
sponse,cooperationandself-learning.Eachparticle



hasits position,velocity andenergy, which is related
to its fitness. All particleslive in a latticelike envi-
ronment,which is called an agentlattice, and each
particle is fixed on a lattice-point. In order to sur-
vive in the system,they competeor cooperatewith
their neighborsso that they cangainmoreresources
(increaseenergies). Eachparticlehasthe ability of
cloningitself, andthenumberof clonesproducedde-
pendsof the energy of the particle. Generalagent
particlesandlatency agentparticles(thosewho have
smallerenergy but containcertainfeatures—e.g.,fa-
voringdiversity—thatmake themgoodcandidatesto
becloned)will becloned.Theaim of theclonalop-
erator(which is modeledin the clonal selectionthe-
ory alsoadoptedwith artificial immunesystems[46])
is to increasethecompetitionamongparticles,main-
taindiversityof theswarmandimproving theconver-
genceof theprocess.Also,aclonalmutationoperator
is used.Leadersareselectedbasedon theenergy val-
uesof theparticles.Finally, this approachadoptsan
externalarchive in order to storethe nondominated
solutionsfoundthroughouttherunandto providethe
final solutionset.

5.6 Other Approaches

Here,we considerthe approachesthat could not fit any of
themaincategoriespreviouslydescribed.

h Li [38]: This author proposesthe maximinPSO,
which usesa fitnessfunction derived from the max-
imin strategy proposedby Balling [4] to determine
Pareto-domination.Theauthorshowsthatoneadvan-
tageof this approachis that no additionalclustering
or nichingtechniqueis needed,sincethemaximinfit-
nessof a solution can tell us not only if a solution
is dominatedor not, but also if it is clusteredwith
othersolutions,i.e., theapproachalsoprovidesdiver-
sity information. In this approach,for eachparticle,
a differentleaderis selectedfor eachof thedecision
variablesto conform a single global best. Leaders
(storedin anexternalarchive) arerandomlyselected
basedon themaximinfitness.

h Zhanget al. [70]: This approach(basedon a fully
connectedtopology) attemptsto improve the selec-
tion of

� ����� k and 0������ k when the velocity of each
particleis updated.For eachobjectivefunction,there
exists botha

� ����� k anda 0������ k for eachparticle. In
order to updatethe velocity of a particle, the algo-
rithm definesthe

� ����� k of a particleastheaverageof
thecompletesetof

� ���s� k particles.Analogously, the0������ k is computedusingeitherarandomchoiceor the
averagefrom the completesetof 0������ k values.This
choicedependson thedispersiondegreebetweenthe� ����� k and0������ k valuesof eachparticle.

6 ConvergencePropertiesof PSOand MOPSO

Recently, sometheoreticalstudiesabout the convergence
propertiesof PSOhave beenpublished.As in the caseof
many evolutionaryalgorithms,thesestudieshaveconcluded
that the performanceof the PSOis sensitive to control pa-
rameterchoices[20].

Most of the theoreticalstudiesarebasedon simplified
PSOmodels,in which a swarm consistingof oneparticle
of onedimensionis studied.The pbestandgbestparticles
areassumedto be constantthroughoutthe process.Also,
the terms �  	H� Br� , � � 	F� ��r�� (usedin Equation5) are
assumedto be constant. Under theseconditions,particle
trajectoriesandconvergenceof the swarm have beenana-
lyzed.

In the theoreticalstudiesdevelopedaboutPSO,conver-
gencehasbeendefinedasfollows:

Definition 6. Consideringthe sequenceof global best
solutionsb � ����� k y e��yl��� , we saythattheswarmconvergesif f

lim y1� �
� ����� k y�	T0

where0 is anarbitrarypositionin thesearchspace.
Since0 refersto anarbitrarysolution,Definition 6 does

notmeanconvergenceto a localor globaloptimum.
The first studieson the convergencepropertiesof PSO

weredevelopedby OzcanandMohan[47, 48]. Ozcanand
Mohanstudieda PSOunderthe conditionspreviously de-
scribedbut, in addition, their model did not considerthe
inertia weight. They concludedthat, when ! � � � �

,
where � 	 �  p � � , the trajectoryof a particle is a si-
nusoidalwave wherethe initial conditionsand parameter
choicesdeterminetheamplitudeandfrequency of thewave.
Also, they concludedthat theperiodicnatureof the trajec-
tory maycauseaparticleto repeatedlysearchregionsof the
searchspacealreadyvisited, unlessanotherparticle in its
neighborhoodfindsabettersolution.

In [67], vandenBergh developeda modelof PSOunder
thesameconditions,but consideringtheinertiaweight.Van
denBerg provedthat,when ¡g¢ � � �  p�� � � n % , theparticle
convergesto thepoint

�  0������ k p � � � ����� k�  p � � �
In this way, if �  	-� � , theparticleconvergesto thepoint

0������ k p � ���s� k& �
Sincetheseconclusionswereobtainedunderthe assump-
tion of �  and � � beingconstants,vandenBergh general-
izedhis modelconsideringthe stochasticnatureof �  and� � . In this case,heconcluded(assuminguniform distribu-
tions)thattheparticlethenconvergesto theposition:

� % n �D�70������ k p£� � ����� k
where �R	 ¤�¥¤x¦3§I¤�¥ . In this way, vandenBergh showedthat
a particleconvergesto a weightedaveragebetweenits per-
sonalbestandits neighborhoodbestposition.



neighborhood leadersselection external dynamic mutation
topology basedon archive i operator

Aggregatingapproaches
ParsopolousandVrahatis[50] fully connected single-objective no yes no¨�©oª «E¬H«�ª s®
Baumgartneretal. [6] fully connected single-objective no no no
Lexicographic ordering
Hu andEberhart[24] ring single-objective no yes no¯�°(± ¨l«�ª ²�³�©�ª «o®
Hu et al. [25] ring single-objective yes yes no¯�°(± ¨l«�ª ²�³�©�ª «o®
Sub-Population approaches
Parsopouloset al. [49] fully connected single-objective yes no no
Chow andTsui [8] fully connected single-objective no no no
Pareto-Basedapproaches
MooreandChapman[41] ring dominance no no no
RayandLiew [53] fully connected densityestimator yes no no
FieldsendandSingh[21] fully connected dominance& yes no yes

closeness
Coelloet al. [11, 12] fully connected densityof solutions yes no yes
ToscanoandCoello[66] fully connected randomly no no no
SrinivasanandHou [61] fully connected nichecount& no no yes

dominance
MostaghimandTeich[44] fully connected sigmavalue yes no yes
MostaghimandTeich[43] fully connected sigmavalue yes no yes
MostaghimandTeich[45] fully connected sigmavalue yes no yes
Bartzetal. [5] fully connected densityof solutions; yes no no

success
Li [37] fully connected nichecount; yes yes yes

densityestimator
¨�©oª «E¬H«�ª s®

ReyesandCoello[60] fully connected densityestimator yes yes yes¯�°(± ¨l«�ª´©o³3«�ª ²�®
Alvarez-Benitezetal. [2] fully connected dominance yes no yes
Ho et al. [23] fully connected fitness& age yes yes yes

proposed
Villalobos-Ariaset al. [68] fully connected stripes yes no yes
Salazar-LechugaandRowe[55] fully connected nichecount yes no no
RaquelandNaval [51] fully connected densityestimator yes no yes
ZhaoandCao[71] fully connected fuzzymembership yes no no
JansonandMerkle [27] fully connected random yes no no
Combined approaches
Mahfoufet al. [39] fully connected single-objective no yes yes¯�°(± ¨l«�ª´©�²�³�©�ª «s®
Xiao-huaetal. [69] fully connected& energyvalue yes yes yes

lattice
¨l«�ª µE¬H«�ª ¶�®

Other approaches
Li [38] fully connected maximinfitness yes yes no¨�©oª «E¬H«�ª s®
Zhanget al. [70] fully connected compositeleader no yes no¨l«�ª ·E¬H«�ª s®

Table1: Completelist of theMOPSOproposalsreviewed.For eachproposal,we indicatethecorrespondingneighborhood
topology adopted,leaderselectionschemeusedand whetherthe approachincorporatessomedynamicschemefor the
inertiaweight( i ), anexternalarchiveandamutationoperator.



As we saidbefore,in order to ensureconvergence,the
condition ¡¸¢ � � �  pX� � � n % musthold. However, it is
possibleto choosevaluesof �  , � � and ¡ suchthatthecon-
dition is violated,andtheswarmstill converges[67]: if

� �B}By �º¹ 	 � ¤ � � y�  p�� �
is closeto 1.0, where � ¤ � � y]	 sup b � d�!(�
» � n % � ¡¼e ,� K � !½�*�  p"� � � , theswarmhasconvergentbehavior. This
impliesthatthetrajectoryof theparticlewill convergemost
of thetime, occasionallytakingdivergentsteps.

Thestudiesdevelopedby OzcanandMohan,andvander
Bergh, considertrajectoriesthatarenot constricted.In [9],
ClercandKennedyprovideatheoreticalanalysisof particle
behavior in which they introducea constrictioncoefficient
whoseobjective is to preventthevelocity from growing out
of bounds.

As we could see, the convergenceof PSO has been
proved. However, we canonly ensurethe convergenceof
PSOto the bestpositionvisited by all the particlesof the
swarm.In orderto ensureconvergenceto thelocalor global
optimum,two conditionsarenecessary:

1. The
� ����� k y §  solution can be no worse than the� ����� k y solution(monotoniccondition).

2. Thealgorithmmustbeableto generatea solutionin
theneighborhoodof theoptimumwith nonzeroprob-
ability, from any solution � of thesearchspace.

In [67], vandenBergh providesa proof to show thatthe
basicPSOis not a local (neitherglobal)optimizer. This is
dueto the fact that, althoughPSOsatisfiesthe monotonic
condition indicatedabove, oncethe algorithmreachesthe
statewhere �O	¾0������ k 	 � ����� k for all particlesin the
swarm, no further progresswill be made. The problemis
that this statemaybereachedbefore

� ���s� k reachesa mini-
mum,whetherbelocalorglobal.ThebasicPSOis therefore
said to prematurelyconverge. In this way, the basicPSO
algorithmis not a local (global) searchalgorithm,sinceit
hasnoguaranteedconvergenceto a local (global)minimum
from anarbitraryinitial state.

Also, van den Bergh suggeststwo ways of extending
PSOin order to make it a global searchalgorithm. The
first is relatedto the generationof new randomsolutions.
In general,theintroductionof amutationoperatoris useful.
Nevertheless,forcing PSOto performa randomsearchin
an areasurroundingthe global bestposition, that is, forc-
ing the global bestposition to changein order to prevent
stagnation(by meansof a hill-climbing search,for exam-
ple), is alsoa suitablemechanism[20]. On theotherhand,
vandenBergh alsoproposesto usea “multi-start PSO”, in
whichwhenthealgorithmhasconverged(undersomecrite-
ria), it recordsthebestsolutionfoundandtheparticlesare
randomlyreinitialized.

To the bestof our knowledge,until this date,thereare
no studiesaboutthe convergencepropertiesof MOPSOs.
Fromthediscussionpreviously provided,we canconclude
thatit is possibleto ensureconvergence,by correctlysetting
the parametersof the flight formula. But, as in the case

of single-optimization,suchpropertydoesnot ensurethe
convergenceto the true Paretofront, in this case. In the
caseof multi-objectiveoptimization,we mayconcludethat
we still needconditions(1) and(2), to ensureconvergence.
However, in this case,condition(1) maychangeto:

1. Thesolutionscontainedin theexternalarchiveat iter-
ation

k p¿% shouldbenondominatedwith respectto the
solutionsgeneratedin all iterations

k
, !c k  k p-% ,

sofar (monotoniccondition).

Theuseof the � -dominancebasedarchiving asproposed
in [36] ensuresthis condition,but the normaldominance-
basedstrategiesdo not. In this way, given a MOPSOap-
proach,andassumingit satisfiescondition(1), it remainsto
exploreif it satisfiescondition(2), to ensureglobalconver-
genceto thetrueParetofront.

7 Future Research Paths

As we have seen,despitethe fact that MOPSOsstartedto
be developedless than ten yearsago, the growth of this
field hasexceededeven the most optimistic expectations.
By looking at the papersthatwe reviewed, the coreof the
work on MOPSOshasfocusedon algorithmicaspects,but
thereis muchmoreto doin thisarea.In thissection,wewill
providesomeinsightsregardingsometopicsthatwebelieve
thatareworth investigatingwithin thenext few years:

h Emphasison Efficiency: The currentMOPSOsare
notalgorithmsparticularlycomplex (in termsof their
datastructures,memorymanagementandsoon),and
arequite effective (more thanstate-of-the-artmulti-
objectiveevolutionaryalgorithmsin somecases).So,
why tomakethingsmorecomplicatedregardingalgo-
rithmic design?Is thereroomfor new developments
in this regard?We believe that thereis, but we have
to focusour work in a new direction. For example,
few peoplehavetried to exploit theveryhighconver-
genceratecommonlyassociatedwith PSOto design
an“ultra-efficient” MOPSO.It would bevery useful
(for real-world applications)to have a MOPSOthat
couldproducereasonablygoodapproximationsof the
Paretofront of multi-objectiveoptimizationproblems
with 20 or 30 decisionvariableswith lessthan5000
fitnessfunctionevaluations.A first attemptto design
sucha type of MOPSOis reportedin [64] but more
work in thatdirectionis certainlyexpected,sincethis
topic hasbeenrecentlyexploredwith othertypesof
multi-objectiveevolutionaryalgorithmsaswell [33].

h Self-Adaptation of Parameters in MOPSOs: The
design of MOPSOswith no parametersthat have
to be fine-tunedby the user is anothertopic that is
worth studying.In evolutionarymulti-objectiveopti-
mizationin general,theuseof self-adaptationor on-
line adaptationmechanismsis scarce(seefor exam-
ple [63, 1, 7]), andwe areonly awareof onemulti-
objectiveevolutionaryalgorithmwhichwasdesigned
to beparameterless:themicroGA

�
[65]. Thedesign



of a parameterlessMOPSOrequiresa careful study
of the velocity updateformula adoptedin PSO,and
an assessmentof the impact of eachof its compo-
nentsin theperformanceof aMOPSO.Eventheiner-
tia andlearningfactorswhich arenormallyassumed
constantsin PSOmay benefitfrom an on-line adap-
tationmechanismwhendealingwith multi-objective
optimizationproblems.7

h Theoretical Developments:Thereis notmuchtheo-
reticalwork on PSOin general(seefor example[9])
and,therefore,thelack of researchon theoreticalas-
pectsof MOPSOsis, by no means,surprising. It
wouldbeinterestingto performa theoreticalstudyof
therun-timeandconvergencepropertiesof aMOPSO
(seeSection6). Otheraspectssuchasthefitnessland-
scapesanddynamicsof a MOPSOarealsovery at-
tractive theoreticalresearchtopics.

h Applications: Evidently, no algorithm will ever be
useful if we cannotfind a good applicationfor it.
MOPSOshave beenusedin a few applications(see
Section 5), but not so extensively as other multi-
objectiveevolutionaryalgorithms.Thereasonmaybe
that MOPSOsareyoungerandlessknown than,for
example,multi-objective geneticalgorithms. How-
ever, a well-designedMOPSOmaybequiteusefulin
real-world applications,mainly if, aswe mentioned
before,its very fastconvergencerateis properlyex-
ploited. At somepoint in thenearfuture,we believe
that therewill bean importantgrowth in thenumber
of applicationsthatadoptMOPSOsastheirsearchen-
gine.

8 Conclusions

We have reviewedthe state-of-the-artregardingextensions
of PSOto handlemultiple objectives. We have startedby
providingashortintroductiontoPSOin whichwedescribed
its basicalgorithmandits main topologies. We have also
indicatedthe main issuesthat have to be consideredwhen
extendingPSOto multi-objectiveoptimization,andthenwe
haveanalyzedeachof themin moredetail.

We have alsoproposeda taxonomyto classify the cur-
renttechniquesreportedin thespecializedliterature,andwe
have provideda survey of approachesbasedon sucha tax-
onomy.

Finally, we have providedsometopicsthat seem(from
theauthors’perspective)asvery promisingpathsfor future
researchin thisarea.Consideringthecurrentrateof growth
of thisarea,weexpecta lot of moreactivity within thenext
few years.However, theswitchto new areasdifferentfrom
purealgorithmdevelopmentmayattractnewcomersto this
field andmay contribute to keepit alive for several more
years.

7Readers interested in this topic may be interested
in looking at the work of Maurice Clerc, available at:
http://clerc.maurice.free.fr/pso/ .
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2005. Springer. LectureNotes in ComputerScience
Vol. 3410.

[34] JoshuaD. Knowles and David W. Corne. Ap-
proximatingthe nondominatedfront usingthe pareto
archived evolution strategy. EvolutionaryComputa-
tion, 8(2):149–172,2000.

[35] HaroldW. KuhnandAlbert W. Tucker. Nonlinearpro-
gramming. In J. Neyman,editor, Proceedingsof the
SecondBerkeley Symposiumon MathematicalStatis-
tics and Probability, pages481–492,Berkeley, Cali-
fornia,1951.Universityof CaliforniaPress.

[36] Marco Laumanns,Lothar Thiele, Kalyanmoy Deb,
andEckartZitzler. Combiningconvergenceanddiver-
sity in evolutionarymulti-objectiveoptimization.Evo-
lutionaryComputation, 10(3):263–282,Fall 2002.

[37] Xiaodong Li. A non-dominatedsorting parti-
cle swarm optimizer for multiobjective optimization.
In Erick Cant́u-Paz et al., editor, Proceedingsof

the Geneticand Evolutionary ComputationConfer-
ence(GECCO’2003), pages37–48.Springer. Lecture
Notesin ComputerScienceVol. 2723,July2003.

[38] XiaodongLi. Betterspreadandconvergence:Parti-
cle swarmmultiobjectiveoptimizationusingthemax-
imin fitnessfunction. In Kalyanmoy Deb et al., ed-
itor, Proceedingsof the Genetic and Evolutionary
ComputationConference(GECCO’2004), pages117–
128,Seattle,Washington,USA, June2004.Springer-
Verlag,LectureNotesin ComputerScienceVol. 3102.

[39] Mahdi Mahfouf, Min-You Chen, and Derek Arturh
Linkens.Adaptiveweightedparticleswarmoptimisa-
tion for multi-objectiveoptimaldesignof alloy steels.
In Parallel ProblemSolvingfromNature - PPSNVIII ,
pages762–771,Birmingham,UK, September2004.
Springer-Verlag.LectureNotesin ComputerScience
Vol. 3242.

[40] KaisaMiettinen. NonlinearMultiobjectiveOptimiza-
tion. Kluwer Academic Publishers,Boston, Mas-
sachusetts,1999.

[41] JacquelineMoore and RichardChapman. Applica-
tion of particleswarmto multiobjective optimization.
Departmentof ComputerScienceandSoftwareEngi-
neering,AuburnUniversity, 1999.

[42] S.Mostaghim,M. Hoffmann,P.H. König,Th. Frauen-
heim,andJ.Teich. Molecularforcefield parametriza-
tion using multi-objective evolutionary algorithms.
In 2004 Congress on Evolutionary Computation
(CEC’2004), volume 1, pages212–219, Portland,
Oregon,USA, June2004.IEEEServiceCenter.

[43] SanazMostaghimandJürgenTeich. The role of � -
dominancein multi objectiveparticleswarmoptimiza-
tion methods.In Congresson EvolutionaryComputa-
tion (CEC’2003), volume3, pages1764–1771,Can-
berra,Australia,December2003.IEEEPress.

[44] SanazMostaghimand Jürgen Teich. Strategies for
finding good local guidesin multi-objective particle
swarmoptimization(MOPSO). In Proceedingsof the
2003IEEESwarmIntelligenceSymposium, pages26–
33,Indianapolis,Indiana,USA,April 2003.IEEESer-
viceCenter.

[45] SanazMostaghimandJürgenTeich. Coveringpareto-
optimal frontsby subswarmsin multi-objective parti-
cle swarm optimization. In Congresson Evolution-
ary Computation(CEC’2004), volume2, pages1404–
1411,Portland,Oregon,USA, June2004.IEEE Ser-
viceCenter.

[46] LeandroNunesde CastroandJonathanTimmis. An
Introduction to Artificial ImmuneSystems: A New
Computational Intelligence Paradigm. Springer-
Verlag,2002.



[47] EnderOzcanandChilukuri K. Mohan. Analysisof a
simpleparticleswarm optimizationsystem. In Intel-
ligentEngineeringSystemsThroughArtificial Neural
Networks, pages253–258,1998.

[48] EnderOzcanandChilukuri K. Mohan.Particleswarm
optimization: Surfing the waves. In Congresson
EvolutionaryComputation(CEC’1999), pages1939–
1944,WashingtonD.C.,USA, 1999.IEEE Press.

[49] KonstantinosE. Parsopoulos,Dimitris K. Tasoulis,
and Michael N. Vrahatis. Multiobjective optimiza-
tion usingparallelvectorevaluatedparticleswarmop-
timization. In Proceedingsof the IASTEDInterna-
tional ConferenceonArtificial IntelligenceandAppli-
cations(AIA 2004), volume2, pages823–828,Inns-
bruck,Austria,February2004.ACTA Press.

[50] KonstantinosE.ParsopoulosandMichaelN. Vrahatis.
Particleswarmoptimizationmethodin multiobjective
problems. In Proceedingsof the 2002ACM Sympo-
siumon AppliedComputing(SAC’2002), pages603–
607,Madrid,Spain,2002.ACM Press.

[51] CarloR. RaquelandJr. ProsperoC. Naval. An effec-
tive useof crowding distancein multiobjective parti-
cleswarmoptimization.In Proceedingsof theGenetic
andEvolutionaryComputationConference(GECCO-
2005), pages257–264,Washington,DC, USA, June
2005.ACM Press.

[52] TapabrataRay, Tai Kang, andSeow Kian Chye. An
evolutionary algorithm for constrainedoptimization.
In Darrell Whitley, David Goldberg, Erick Cant́u-Paz,
LeeSpector, Ian Parmee,andHans-Georg Beyer, ed-
itors, Proceedingsof the Geneticand Evolutionary
ComputationConference(GECCO’2000), pages771–
777, SanFrancisco,California, 2000.MorganKauf-
mann.

[53] TapabrataRay and K.M. Liew. A swarm metaphor
for multiobjective designoptimization. Engineering
Optimization, 34(2):141–153,March2002.

[54] GünterRudolph.Onamulti-objectiveevolutionaryal-
gorithmandits convergenceto theparetoset. In Pro-
ceedingsof the5th IEEE Conferenceon Evolutionary
Computation, pages511–516,Piscataway, New Jer-
sey, 1998.IEEEPress.

[55] Maximino Salazar-LechugaandJonathanRowe. Par-
ticle swarm optimizationandfitnesssharingto solve
multi-objective optimizationproblems. In Congress
on Evolutionary Computation (CEC’2005), pages
1204–1211, Edinburgh, Scotland, UK, September
2005.IEEE Press.

[56] J. David Schaffer. Multiple ObjectiveOptimization
with VectorEvaluatedGeneticAlgorithms. PhD the-
sis,VanderbiltUniversity, 1984.

[57] J. David Schaffer. Multiple objective optimization
with vectorevaluatedgeneticalgorithms. In Genetic
Algorithmsandtheir Applications:Proceedingsof the
First InternationalConferenceonGeneticAlgorithms,
pages93–100.LawrenceErlbaum,1985.

[58] Yuhui Shi and Russell Eberhart. Parameterselec-
tion in particle swarm optimization. In Evolution-
ary Programming VII: Proceedingsof the Seventh
annual Conference on Evolutionary Programming,
pages591–600, New York, USA, 1998. Springer-
Verlag.

[59] Yuhui Shi andRussellEberhart. Empirical study of
particleswarm optimization. In Congresson Evolu-
tionary Computation(CEC’1999), pages1945–1950,
Piscataway, NJ,1999.IEEE Press.

[60] MargaritaReyesSierraandCarlosA. Coello Coello.
Improving PSO-basedmulti-objective optimization
usingcrowding, mutationand � -dominance.In Third
International Conference on Evolutionary Multi-
Criterion Optimization,EMO 2005., pages505–519,
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