
A Bi-population PSO with a Shake-Mechanism for Solving
Constrained Numerical Optimization

Leticia C. Cagnina Susana C. Esquivel Carlos A. Coello Coello

Abstract— This paper presents an enhanced Particle Swarm
Optimizer approach, which is designed to solve numerical
constrained optimization problems. The approach uses a sin-
gle method to handle different types of constraints (linear,
nonlinear, equality or inequality) and it incorporates a shake-
mechanism and a dual population in an attempt to overcome
the problem of premature convergence to local optima. The
proposed algorithm is validated using standard test functions
taken from the specialized literature and is compared with
respect to algorithms representative of the state-of-the-art in
the area. Our preliminary results indicate that our proposed
approach is a highly competitive alternative to solve constrained
optimization problems.

I. INTRODUCTION

The solution of constrained optimization problems using
metaheuristics (particularly, evolutionary algorithms) has at-
tracted a lot of interest in the last few years, since such
problems are very common in real-world applications. One
of the many metaheuristics that has been adopted to solve
such problems is particle swarm optimization (PSO) [13].
PSO has been found to be highly competitive for solving
unconstrained optimization problems [14], [15], [9], [3], [4].
However, its use in constrained optimization problems is still
relatively scarce (see for example [19], [18], [16]).

PSO was conceived as a simulation of individual and social
behavior [12] such as the one observed in flocks of birds
and fish. PSO explores the search space using a population
of individuals, and the best performers (either within a
group or with respect to the entire population) affect the
performance of the others. Each individual is named particle
and represents a possible solution within a multidimensional
search space. The particles have their own position and
velocity, which are constantly updated. They record their past
behavior and use it to move towards promising regions of the
search space.

In this paper, we present a PSO algorithm which is
designed to solve constrained optimization problems. For that
sake, our approach contains a constraint-handling technique
as well as a mechanism to update the velocity and position
of the particles [2], which is extended by adding to it a
bi-population and a shake-mechanism as a way to avoid
premature convergence.

Leticia C. Cagnina and Susana C. Esquivel are with LIDIC
(Research Group). Universidad Nacional de San Luis - Ej. de
Los Andes 950 - (D5700HHW) San Luis, ARGENTINA. (emails:
{lcagnina,esquivel}@unsl.edu.ar). Carlos A. Coello Coello is with
CINVESTAV-IPN (Evolutionary Computation Group), Departamento de
Computacion, Av. IPN No. 2508, Col. San Pedro Zacatenco, Mexico D.F.
07300, MEXICO. (email: ccoello@cs.cinvestav.mx).

The remainder of this paper is organized as follows.
Section II provides the statement of general constrained
optimization problems. Section III briefly discusses the pre-
vious related work. In Section IV, we describe in detail our
proposed approach. Section V describes the experimental
setup and provides an analysis of the results obtained from
our empirical study. The conclusions and some directions for
future research are stated in Section VII.

II. STATEMENT OF THE PROBLEM

Without loss of generality, we can consider the general
nonlinear optimization problem as a minimization problem,
which can be formally stated as the problem of finding �x
which:

minf(�x) with �x = (x1, x2, . . . , xD) ∈ F ⊆ S ⊆ RD (1)

subject to:
gi(�x) ≤ 0 i = 1, 2, . . . , n . (2)

he(�x) = 0 e = 1, 2, . . . , m . (3)

Each xd ∈ [ld, ud] with d ∈ [1..D]. The ld and ud are the
lower and upper bounds imposed on the decision variables.
The gi and he functions are defined on S (search space),
and correspond to the inequality and equality constraint
functions, respectively. A constraint delimits the search space
splitting it into a feasible and an infeasible region. S is
a D-dimensional rectangle defined by the lower and upper
bounds of each variable xd. All �x satisfying all inequality and
equality constraint functions determine the feasible solution
space F .

III. PREVIOUS RELATED WORK

As indicated before, despite its success in a variety of
optimization problems, the proposals of constraint-handling
mechanisms for PSO are relatively scarce. Next, we will
review the most representative work done in this area.

Zang et al. [23] presented a PSO algorithm that imple-
ments a periodic mechanism for handling constraints. The
approach makes periodic copies of the search space when
the algorithm starts the run, thus avoiding the disorganization
that might arise when the mutation operator is applied to
those particles lying on the boundary between the feasible
and infeasible regions. The authors validated their algorithm
with eight test functions and compared their results with re-
spect to whose provided by conventional constraint-handling
methods.

Toscano Pulido and Coello Coello [19] added to a basic
PSO a simple mechanism for tackling constraints based on

how close are the particles from the feasible region. A
turbulence operator was incorporated in order to improve
the exploration of the search space. The thirteen well-known
constrained test functions from [21] were used to show the
performance of this PSO algorithm. The authors concluded
that their results were highly competitive.

Liang and Suganthan [16] proposed a novel constraint-
handling mechanism based on multi-swarms (sub-
populations). Each swarm works on a constraint, but these
are assigned in an adaptive manner, and are periodically
changed. Additionally, a local search mechanism is combined
with the algorithm in order to improve the overall quality of
the search performed. The authors validated their approach
using twenty four test function taken from [8] and expressed
their results in terms of Best functions error values. The
authors reported that their results were satisfactory for 21
test functions, but the approach did not properly work in
the other three.

Muñoz-Zavala et al. [18] presented a standard PSO algo-
rithm improved with two perturbation operators that are only
applied to the best particle population (pbest) at two different
stages. These operators are used to keep the algorithm’s
exploration ability. To handle the constraints, they used the
summation of constraint violations and a dynamic tolerance
factor for the equality constraints (i.e., a higher tolerance
is allowed at the beginning of the search, and such value
is decreased along the run). The algorithm also maintains a
“tolerant file”, that is used when the perturbation operators
are applied and the tolerance factor is decremented, in order
to determine a better leader for the swarm. The authors also
used the twenty four test functions from [8] to validate their
approach. The results were found to be competitive, but the
approach did not properly work in one of the test functions.

The algorithm CPSO-shake, which is proposed in this
paper, shares some features with some of the algorithms
cited above: the constraint-handling mechanism, the variant
tolerance factor and the subpopulation concept. However, as
we will see later on, the last two concepts are used in a
different manner.

IV. CPSO-SHAKE ALGORITHM

In this section, we describe in detail our proposed ap-
proach, which we call the CPSO-shake algorithm.

A. General Model

As stated before, a PSO algorithm operates on a population
of particles. Due to the type of problem to optimize (with
n decision variables), the particles are n-dimensional real
number vectors. The best position found so far for the
particles (for the gbest model) or in the neighborhood (lbest
model) is recorded. The best value reached by each particle
(pbest) is stored, too. As in the standard model, the particles
evolve using two update formulas, one for position and
another one for velocity.

B. Particular Model

As it was stated in some of our previous work [1], the
gbest model tends to converge to a local optimum; however,
this model works well in a variety of problems. Motivated
by this, we proposed a formula to update the velocity, using
a combination of both the gbest and the lbest models [2].
Such a formula is adopted here as well, and is shown in
equation (4).

vid = w(vid + γ1(pid − parid) + (4)

γ2(pld − parid) + γ3(pgd − parid))

where vid is the velocity of particle i at the dimension d;
w is the inertia factor [5] whose goal is to balance global
exploration and local exploitation. γ1 is the personal learning
factor, and γ2 and γ3 are the social learning factors. These 3
values are multiplied by 3 different random numbers within
the range [0..1], pid is the best position reached by the
particle i; pld is the best position reached by any particle
in the neighborhood, pgd is the best position reached by any
particle in the swarm. parid is the value of the particle i at
the dimension d.

But in [2] we modified the equation for updating the
particles. In that paper, during 10% of the iterations, we
applied the normal formula (depicted in equation (5)) as
suggested in [13].

parid = parid + vid (5)

And in the remainder 90% of cases, we used equation (6)
proposed by Kennedy [11].

pari = N

(
pi + pl

2
, |pi − pl|

)
(6)

where pi is the position of the particle to be updated, N is the
Gaussian random generator, pi and pl are the best position
reached by the particle pari and the best position reached
by any particle in the neighborhood of pari, respectively.
That probability was empirically found to be the best after
performing a series of experiments with all the test functions
evaluated.

We use a circle topology [10] to compute the pld value,
in which each particle is connected to k neighbors. The
neighbors are determined by the position of the particles in
the storage structure. Figure 1 illustrates this concept.

1 2 3 4 5 6 ...Particle:

 Best particle within the neighborhood
Neighborhood (size: 4)

Fig. 1. Circle topology adopted in the population of our PSO approach

To help avoiding convergence to a local optimum, we used
a dynamic mutation operator [1] which is applied to each
individual with a pm-probability. This value is calculated
considering the total number of iterations in the algorithm
(cycles) and the current cycle number as the following
equation indicates:

pm = max pm−max pm − min pm

max cycle
∗current cycle (7)

where max pm and min pm are the maximum and
minimum values that pm can take, max cycle is the
total number of cycles that the algorithm will iterate, and
current cycle is the current cycle in the iterative process.

C. Handling Constraints

The constraint-handling scheme adopted in this paper is
the simplest method possible to handle both equality and
inequality constraints: we prefer a feasible particle over
an infeasible one. When the two particles compared are
infeasible, we choose the one which is closer to the feasible
region. In order to do that, our algorithm stores the largest
violation obtained for each constraint. When an individual
is found infeasible, the amount of violation (this value is
normalized with respect to the largest violation stored so
far) is added. This strategy is used when the pbest, gbest
and lbest particles are chosen. All equality constraints were
transformed into inequalities, as is normally done in the
evolutionary optimization literature, and we used a tolerance
factor (ε) defined by the following formula:

|he(�x)| − ε ≤ 0 (8)

D. Dynamic Tolerance

Our algorithm has a mechanism to adapt the value of ε
during the run. When the search process starts, the value is
initialized in 0.1. As we increase the number of iterations,
the value of ε is divided by 10 at three different moments
(i.e., ε takes the values: 0.01, 0.001 and 0.0001 during a
run). If we assume that N is the total number of iterations
to be performed, the value of ε will change according to the
scheme graphically shown in Figure 2.

cycles 0 N/4 N/2 3N/4 N

{ { { {

ε 0.1 0.01 0.001 0.0001

Fig. 2. Variation of ε during a run of our PSO approach

The main advantage of using a varying ε value is to
favor the existence of feasible solutions at the beginning
of the search process, so that the search space can be
properly sampled (particularly in problems having equality
constraints). As the number of iterations increases, ε is
decreased, so that our approach starts converging towards

solutions that satisfy the equality constraints with a higher
numerical precision.

E. Bi-population

The CPSO-shake algorithm splits the entire population into
two subpopulations each of which is independently evolved.
The idea is to maintain more than one group of particles
exploring the search space (at the same time). In that way
the possibility of falling into local optima is reduced.

One may then wonder why to adopt only two subpopula-
tions and not more. The reason is that it does not make any
sense to adopt more than two subpopulations, considering
the small number of particles that we use in our original
population (only 10). In fact, we believe that our neighbor-
hood topology would not work properly if we adopt less
than 5 particles and therefore our choice of adopting only
two subpopulations.

All the features stated before for the entire population
(neighborhoods, lbest and gbest approaches, equations for
updating the velocity and the positions) still apply, but in
this case, they are applied not to a single population, but to
each subpopulation. When the iterative process finishes, the
best particle from both subpopulations is reported as the final
output.

F. Shake-Mechanism

In our PSO-based proposal reported in [2], we had some
stagnation problems when trying to obtain values close to
the optima for some difficult test functions. In order to
overcome this problem, the algorithm reported in this paper
incorporates a shake-mechanism. This mechanism is applied
when the percentage of infeasible individuals is higher than
10%. This value was empirically derived. Note that it is not
convenient to keep populations in which all the solutions
are feasible, since infeasible solutions play an important role
when trying to solve problems with active constraints [17].

In order to implement the shake-mechanism, some parti-
cles are moved to another place in the search space. Although
this can be done by guiding a particle to a random direction,
it is undesirable that the particles move away too much (we
just want to shake them a little!). So, a particle with a good
solution is selected as a reference: a randomly chosen pbest
particle. Thus, equation (9) is used to move a particle i:

vid = w ∗ vid + γ1 ∗ (pseld) (9)

where vid is the dth-position of the velocity vector, w is the
inertia factor, γ1 is the personal learning factor multiplied
by a random number within the range [0..1]. pseld is the
dth-position of a (randomly chosen) pbest vector.

The shake-mechanism is applied with a 50% probability.

G. CPSO-shake Pseudocode

Figure 3 shows the pseudocode of our proposed CPSO-
shake algorithm. At the beginning of the search, we initialize
the vectors of position and velocity of each particle in both
subpopulations and we initialize the ε value, too (lines 2 to 6).

After evaluating the particles and obtaining the best values:
pbest, lbest and gbest (lines 7 and 8), the subpopulations
begin to evolve. During the evolutionary process, new values
of pbest, lbest and gbest are chosen and both, the velocity and
the position of each particle are updated (lines 10 to 25). At
line 26, a keeping mechanism is applied to control that all the
dimensions in all particles are within the allowable bounds.
We then calculate the percentage of infeasible individuals
in the entire population (both subpopulations considered
together) and apply the shake-mechanism if the required con-
ditions are fulfilled (lines 27 to 30). The mutation probability
is updated and the particles are mutated, if applicable (lines
31 and 32). After that, the particles are evaluated, new “best”
values are recorded and the ε value is updated (lines 33 to
35). Finally, the best value reached by any subpopulation is
taken and compared. The best of them is returned (lines 37
and 38).

0. CPSO-shake:
1. Swarm Initialization
2. Initializate subpop1
3. Initializate velocity for subpop1
4. Initializate subpop2
5. Initializate velocity for subpop2
6. Init epsilon
7. Evaluate fitness for each subpop
8. Record pbest and gbest for each subpop
9. Swarm flights through the search space
10. DO
11. FOR each subpop DO
12. FOR i=1 TO numberOfparticles DO
13. Search the best leader in the
14. neighborhood of parti
15. and record in lbesti
16. FOR j=1 TO numberOfdimensions DO
17. Update velij
18. IF flip(0.1)
19. Update partij with eq.(3)
20. ELSE
21. Gaussian update with eq.(5)
22. END
23. END
24. END
25. END
26. Keeping particles
27. Calculating % infeasibles
28. IF % infeasibles > 10%
29. Move particles
30. END
31. Update pm
32. Mutate every particle depending on pm
33. Evaluate fitness(parti)
34. Record pbest and gbest
35. Update epsilon
36. WHILE(current cycle < max cycle)
37. result=BEST(best subpop1,best subpop2)
38. RETURN(result)

Fig. 3. Pseudo-code of CPSOshake

V. EXPERIMENTAL STUDY

For validating our proposed approach, we adopted 20 test
problems taken from [8]. The detailed description of the
test problems may be consulted in its original source [8].

TABLE I

COMPARISON OF THE best VALUES OBTAINED BY OUR CPSO-SHAKE

AND THE APPROXIMATION EVOLUTION STRATEGY WHICH USES

STOCHASTIC RANKING (AESSR).

Funct. Benchmark CPSO-shake AESSR

g1 -15.000 -15.000 -15.000
g2 -0.803 -0.803 -0.739
g3 -1.000 -1.000 -1.000
g4 -30665.539 -30665.538 -30665.539
g5 5126.496 5126.498 5126.497
g6 -6961.813 -6961.825 -6961.814
g7 24.306 24.309 24.306
g8 -0.095 -0.095 -0.096
g9 680.630 680.630 680.630

g10 7049.248 7049.285 7049.408
g11 0.749 0.749 0.750
g12 -1.000 -1.000 -1.000
g13 0.053 0.054 0.054
g14 -47.764 -47.635 -47.765
g15 961.715 961.715 961.715
g16 -1.905 -1.905 -1.905
g17 8853.539 8853.539 8853.540
g18 -0.866 -0.866 -0.866
g19 32.655 34.018 32.665
g20 0.204 0.203 -

All these test functions were transformed into minimization
problems. All the equality constraints were transformed into
inequalities. We performed 25 independent runs per problem,
with a total of 350,000 evaluations of the objective func-
tion per run. Our proposed CPSO-shake used the following
parameters: swarm size = 10 particles, pm min = 0.1,
pm max = 0.4, neighborhood size = 3, inertia factor w
= 0.8, personal learning factor and social learning factors
for γ1, γ2 and γ3 was set to 1.8. The parameter settings
such as swarm size, mutation probability, neighborhood size
and learning factors were empirically derived after numerous
experiments.

Our results were compared with respect to those obtained
by an Approximation Evolution Strategy which uses Stochas-
tic Ranking (AESSR) recently proposed in [20] and with
respect to the results produced by the Stochastic Ranking
(SR) approach [21]. Both approaches are highly competitive
and are representative of the state-of-the-art in the area. Note
that in [20], the author validated his approach using 500,000
objective function evaluations per run, while our approach
only performs 350,000 evaluations.

Table I shows the best values found by CPSO-shake and
AESSR. The conclusion is the following: Despite the fact
that the number of evaluations performed by our CPSO-
shake approach is 30% lower than the number of evaluations
performed by AESSR, our CPSO-shake algorithm obtained
results that are very satisfactory. For five functions (g2, g8,
g10, g11 y g17) the values obtained by CPSO-shake are
better than those obtained by AESSR. In 10 test functions,
the results are the same and only for 4 test functions, AESSR
obtained better values than CPSO-shake. All the solutions
found by both algorithms are feasible, except for the value
shown for g20 which is infeasible but is very close to the

TABLE II

BEST VALUES OBTAINED WITH CPSO-SHAKE PERFORMING 350,000

OBJECTIVE FUNCTION EVALUATIONS.

Funct. Benchmark Best Mean Worst

g1 -15.000 -15.000 -15.000 -88.844
g2 -0.803 -0.803 -0.796 -0.064
g3 -1.000 -1.000 -1.000 -1.005
g4 -30665.538 -30665.538 -30646.178 -25186.227
g5 5126.496 5126.498 5240.496 4153.354
g6 -6961.813 -6961.825 -6859.075 -6482.554
g7 24.306 24.309 24.912 47.401
g8 -0.095 -0.095 -0.095 -72.264
g9 680.630 680.630 681.373 8825.132

g10 7049.248 7049.285 7850.401 1810.354
g11 0.749 0.749 0.749 1.361
g12 -1.000 -1.000 -1.000 -0.718
g13 0.053 0.054 0.450 1.082
g14 -47.764 -47.635 -45.665 -517.919
g15 961.715 961.715 962.516 768.737
g16 -1.905 -1.905 -1.795 0.179
g17 8853.539 8853.539 8894.708 9003.614
g18 -0.866 -0.866 -0.787 5.438
g19 32.655 34.018 64.505 55.835
g20 0.204 0.203 0.416 17.048

TABLE III

BEST VALUES OBTAINED WITH AESSR PERFORMING 500,000

OBJECTIVE FUNCTION EVALUATIONS.

Funct. Benchmark Best Mean Worst

g1 -15.000 -15.000 -15.000 -15.000
g2 -0.803 -0.739 -0.697 -0.657
g3 -1.000 -1.000 -1.000 -1.000
g4 -30665.538 -30665.539 -30665.539 -30665.539
g5 5126.496 5126.497 5126.497 5126.497
g6 -6961.813 -6961.814 -6961.814 -6961.814
g7 24.306 24.306 24.307 24.312
g8 -0.095 -0.096 -0.096 -0.096
g9 680.630 680.630 680.630 680.630

g10 7049.248 7049.408 7061.087 7126.958
g11 0.749 0.750 0.750 0.750
g12 -1.000 -1.000 -1.000 -1.000
g13 0.053 0.054 0.116 0.439
g14 -47.764 -47.765 -47.762 -47.753
g15 961.715 961.715 961.715 961.715
g16 -1.905 -1.905 -1.905 -1.905
g17 8853.539 8853.540 8853.717 8857.816
g18 -0.866 -0.866 -0.851 0.675
g19 32.655 32.665 32.829 33.242
g20 0.204 - - -

solution (which is also infeasible) reported as the best known
for this test function in [8].

Table II shows the Best, Mean and Worst values obtained
by CPSO-shake for the 20 constrained test functions adopted
in our empirical study.

Table III shows the Best, Mean and Worst values obtained
by AESSR for the 20 constrained test functions adopted for
our empirical study.

We also compared results with respect to the SR algorithm,
using the same number of evaluations of the objective func-
tion (350,000). We downloaded the source code of the SR
algorithm from Runarsson’s web page [7] and ran it ourselves

TABLE IV

COMPARISON OF THE best VALUES OBTAINED BY OUR CPSO-SHAKE

AND STOCHASTIC RANKING (SR).

Funct. Benchmark CPSO-shake SR

g1 -15.000 -15.000 -15.000
g2 -0.803 -0.803 -0.803
g3 -1.000 -1.000 -1.000
g4 -30665.539 -30665.538 -30665.539
g5 5126.496 5126.498 5126.497
g6 -6961.813 -6961.825 -6961.814
g7 24.306 24.309 24.310
g8 -0.095 -0.095 -0.095
g9 680.630 680.630 680.630

g10 7049.248 7049.285 7050.194
g11 0.749 0.749 0.749
g12 -1.000 -1.000 -1.000
g13 0.053 0.054 0.053
g14 -47.764 -47.635 -41.551
g15 961.715 961.715 961.715
g16 -1.905 -1.905 -1.905
g17 8853.539 8853.539 8811.692
g18 -0.866 -0.866 -0.866
g19 32.655 34.018 33.147
g20 0.204 0.203 0.057

in order to perform a direct comparison of results. We had to
implement the 7 last functions (from g14 to g20) and re-run
the algorithm, since such functions were not available in the
original source code. To implement those 7 functions we used
the code available at [8]. The results obtained are compared
with respect to our CPSO-shake and shown in Table IV. The
best, mean and worst values obtained by SR are shown in
Table V.

Table IV shows the best values found by our CPSO-shake
and SR. The results of both algorithms are comparable: in
11 test functions both approaches reached the optimum (or
best known solution). In 5 test functions (g7, g10, g14, g17 y
g20), our CPSO-shake overperforms the SR algorithm, while
in other 4 test functions (g4, g5, g6, g13) SR outperforms
our CPSO-shake. However, it is important to emphasize that
the previous version of CSPO, reported in [2], was able to
outperforms SR only in one test function (g10). This is a
clear indication of the improvements achieved by the new
version of our PSO-based approach presented in this paper.

Figures 4, 5 and 6 show how far are the best values found
by the algorithms with respect to the values reported to be
the optima or best known for each test function. In particular,
Figure 4 shows the best performance of the new algorithm
presented in this paper with respect to our previous version,
reported in [2].

VI. STATISTICAL ANALYSIS

Another way to compare the performance of our algo-
rithms is with a statistical test. The comparison with AESSR
is not possible because we do not have the best values
reached at each run. So, we performed an analysis of variance
between SR and CPSO-shake using the best values of the 25
independent runs performed with each one. We applied the
Kruskal-Wallis [6] nonparametric one-way analysis because

TABLE V

BEST VALUES OBTAINED WITH SR PERFORMING 350,000 OBJECTIVE

FUNCTION EVALUATIONS.

Funct. Benchmark Best Mean Worst

g1 -15.000 -15.000 -15.000 -15.000
g2 -0.803 -0.803 -0.784 -0.734
g3 -1.000 -1.000 -1.000 -1.000
g4 -30665.538 -30665.539 -30665.480 -30664.216
g5 5126.496 5126.497 5130.752 5153.757
g6 -6961.813 -6961.814 -6863.645 -6267.787
g7 24.306 24.310 24.417 24.830
g8 -0.095 -0.095 -0.095 -0.095
g9 680.630 680.630 680.646 680.697

g10 7049.248 7050.194 7423.434 8867.844
g11 0.749 0.750 0.750 0.751
g12 -1.000 -1.000 -1.000 -1.000
g13 0.053 0.053 0.061 0.128
g14 -47.764 -41.551 -41.551 -40.125
g15 961.715 961.715 961.731 962.008
g16 -1.905 -1.905 -1.703 -1.587
g17 8853.539 8811.692 8805.990 8559.613
g18 -0.866 -0.866 -0.786 -0.457
g19 32.655 33.147 34.337 37.477
g20 0.204 0.057 0.052 0.062

Fig. 4. Comparison between our original CPSO [2] and our CPSO-shake
(this paper)

Fig. 5. Comparison between our CPSO-shake (this paper) and Stochastic
Ranking (SR) [21]

Fig. 6. Comparison between our CPSO-shake (this paper) and Approximate
Evolution Strategy with Stochastic Ranking (AESSR) [20]

the values (the sample) do not have a normal distribution
(determined with the Kolmogorov-Smirnov test).
The Kruskal-Wallis test returns the p-values for the null
hypothesis for all samples. If the p-values are near zero, that
suggests that at least one sample is significantly different (or
statistically significant) than the other samples. Usually, if
p-values are less than 0.05, we declare that the results are
significant.
Table VI shows the p-value for each function. The results
indicate the values reached with CPSO-shake (for all func-
tions except: g5, g12 and g16), are statistically significant
from those of SR.
For those functions significantly different we apply the Tukey
test to determine under which experimental conditions the
differences are significant. The test returns: an estimate value
(EV) into a range ([LI,LS]). If the range does not contain
the zero-value, then the results are confirmed (significantly
different). As we observe in Table VI, for every function
statistically significant, the ranges do not have the zero-value.

VII. CONCLUSIONS

In this paper, we have introduced an enhanced PSO
algorithm called CPSO-shake, which is proposed to solve
constrained numerical optimization problems. The results
reached by CPSO-shake are very competitive with respect
to Stochastic Ranking (which is one of the best constraint-
handling techniques known to date) and to Approximation
Evolution Strategy which uses Stochastic Ranking (recently
proposed [20]) which is also a very competitive constraint-
handling technique. Our preliminary results indicate that
CPSO-shake is at least comparable to Stochastic Ranking and
is also very satisfactory with respect to AESSR, since it ob-
tained similar results despite performing 30% less objective
function evaluations than AESSR. SR and AESSR presented
a lower variability of the results than CPSO-shake, but this
is due to the mechanisms implemented in our approach to
maintain diversity. However, we argue that such mechanisms
provide a tradeoff that we consider acceptable, since the best

TABLE VI

KRUSKAL-WALLIS’ P-VALUES AND TUKEY’S RESULTS FOR SR VS

CPSO-SHAKE

Funct. p-value LI EV LS

g1 9.00796e-011 17.4420 25.0000 32.5580
g2 0.0011 -20.9348 -13.0800 -5.2252
g3 1.28334e-010 17.3787 25.0000 32.6213
g4 9.08263e-011 -32.5598 -25.0000 -17.4402
g5 0.6735 - - -
g6 5.35295e-005 -22.2776 -15.0000 -7.7224
g7 8.32678e-007 -26.5573 -19.0000 -11.4427
g8 2.55962e-012 -31.9998 -25.0000 -18.0002
g9 5.98833e-009 -30.8563 -23.0800 -15.3037

g10 6.75438e-009 -30.7763 -23.0000 -15.2237
g11 0.0003 6.5685 14.2917 22.0149
g12 1 - - -
g13 3.35698e-010 -32.6957 -24.9200 -17.1443
g14 6.75279e-010 17.0609 25.0000 32.9391
g15 1.53751e-009 -32.7940 -24.7600 -16.7260
g16 0.2651 - - -
g17 3.60989e-010 -32.8147 -25.0000 -17.1853
g18 6.73625e-009 -30.7757 -23.0000 -15.2243
g19 3.3067e-010 -32.4829 -24.7600 -17.0371
g20 1.28627e-010 -32.6218 -25.0000 -17.3782

values found by our approach remained very competitive
despite the larger variability of results obtained (we sacrificed
some online performance for the sake of improving offline
performance).

Our proposed approach is one of the most competitive
constraint-handling techniques currently available for the
PSO algorithm (both SR and AESSR use an evolution
strategy [22] as their search engine).

As part of our future work, we aim to improve the
robustness of our CPSO-shake algorithm, by introducing
alternative mechanisms to maintain diversity. We believe
that this goal is achievable, but a much more careful study
of the behavior of our PSO-based approach in constrained
search spaces is required for that sake.

ACKNOWLEDGMENT

The third author gratefully acknowledges support from
CONACyT project no. 45683-Y.

REFERENCES

[1] L. Cagnina, S. Esquivel, and R. Gallard. Particle swarm op-
timization for sequencing problems: a case study. In Congress
on Evolutionary Computation, pages 536–541, Portland, Ore-
gon, USA, 2004. http://www.lidic.unsl.edu.ar/publicaciones/in-
fo publicacion.php?id publicacion=200.

[2] L. C. Cagnina, Susana C. Esquivel, and C. A. Coello Coello. A
particle swarm optimizer for constrained numerical optimization. In
9th International Conference - Parallel problem Solving from Nature
- PPSN IX, pages 910–919, Reykjavik, Island, 2006.

[3] W. Cedeno and D. Agrafiotis. Particle swarms for drug design. In
Proceeding of the IEEE Congress on Evolutionary Computation 2005,
pages 479–486, Edinburgh, Scotland, 2005.

[4] E. Correa, A. Freitas, and C. Johnson. A new discrete particle
swarm algorithm applied to attribute selection in a bioinformatics
data set. In Proceeding of the GECCO 2006, pages 35–42, Seattle,
Washington,USA, 2006.

[5] R. Eberhart and Y. Shi. A modified particle swarm optimizer. In
International Conference on Evolutionary Computation, IEEE Service
Center, Anchorage, AK, Piscataway, NJ, 1998.

[6] M. Hollander and D. A. Wolfe. Nonparametric Statistical Methods.
Wiley, 1973.

[7] http://cerium.raunvis.hi.is/ tpr/software/sres/index.html.
[8] http://www.ntu.edu.sg/home/EPNSugan/index files/CEC-

06/CEC06.html.
[9] X. Hu, R. Eberhart, and Y. Shi. Swarm intelligence for permutation

optimization: a case study on n-queens problem. In Proceeding of the
IEEE Swarm Intelligence Symposium, pages 243–246, Indianapolis,
Indiana, USA, 2003.

[10] J. Kennedy. Small world and mega-minds: effects of neighborhood
topologies on particle swarm performance. In 1999 Congress on
Evolutionary Computation, pages 1931–1938, Piscataway, NJ, 1999.
IEEE Service Center.

[11] J. Kennedy. Bores bones particle swarm. In IEEE Swarm Intelligence
Symposium, pages 80–87, 2003.

[12] J. Kennedy and R. Eberhart. The particle swarm: social adaptation
in information-processing systems. In D. Corne, M. Dorigo, and
F. Glover, editors, New Ideas in Organization, 1999.

[13] J. Kennedy and R. Eberhart. Swarm Intelligence. Morgan Kaufmann
Publishers, California, USA, 2001.

[14] J. Kennedy and W. Spears. Matching algorithm to problems: an
experimental test of the particle swarm and some genetic algorithms
on the multimodal problem generator. In IEEE Conference on
Evolutionary Computation, Anchorage, Alaska, 1998.

[15] R. Krohling, H. Knidel, and Y. Shi. Solving numerical equations of
hydraulic problems using particle swarm optimization. In Congress
on Computational Intelligence, pages 1968–1961, Honolulu, Haway,
2002.

[16] J. J. Liang and P. N. Suganthan. Dynamic multi-swarm particle
swarm optimizer with a novel constraint-handling mechanism. In IEEE
Congress on Evolutionary Computation, pages 316–323, Vancouver,
Canada, 2006. IEEE Press.

[17] Efrén Mezura-Montes and Carlos A. Coello Coello. A Simple
Multimembered Evolution Strategy to Solve Constrained Optimization
Problems. IEEE Transactions on Evolutionary Computation, 9(1):1–
17, February 2005.

[18] Angel E. Muñoz et al. PESO+ for Constrained Optimization. In IEEE
Congress on Evolutionary Computation, pages 936–942, Vancouver,
Canada, 2006.

[19] G. Toscano Pulido and C. A. Coello Coello. A constraint-handling
mechanism for particle swarm optimization. In IEEE Congress on
Evolutionary Computation, pages 1396–1403, Portland, Oregon, USA,
2004.

[20] T. P. Runarsson. Approximate evolution strategy using stochastic
ranking. In 2006 IEEE World Congress on Computation Intelligence,
volume 3, pages 2760–2767, British Columbia, Canada, 2006.

[21] T. P. Runarsson and X. Yao. Stochastic ranking for constrained
evolutionary optimization. In IEEE Transactions on Evolutionary
Computation, volume 3, pages 284–294, 2000.

[22] Hans-Paul Schwefel. Evolution and Optimum Seeking. John Wiley &
Sons, New York, 1995.

[23] W. Zang, X. Xie, and D. Bi. Handling boundary constraints for
numerical optimization by particle swarm flying in periodic search
spaces. In IEEE Congress on Evolutionary Computation, pages 2307–
2311, Portland, Oregon, USA, 2004.

