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Abstract— This paper provides a state-of-the-art survey of
applications of multi-objective evolutionary algorithms in eco-
nomics and finance reported in the specialized literature. A
taxonomy of applications within this area is proposed, and a
brief review of the most representative research reported to date
is then provided. In the final part of the paper, some potential
paths for future research within this area are identified.

I. INTRODUCTION

The use of evolutionary algorithms (EAs) in all sorts
of application domains has become increasingly popular in
the last few years, producing a wide variety of interesting
applications ranging from engineering and computer science
to ecology, sociology and medicine [1]. From these diverse
application areas of evolutionary algorithms, economics and
finance constitutes a very promising field, given the high
complexity that many problems in these areas have.1 The
use of evolutionary algorithms in economics and finance
is, by no means, an emerging research area, since it has
been around since the late 1980s. Chen and Kuo [4] already
reported the existence of about 400 publications in this field
by 2001, which is a clear indication of the high interest
raised by this area. On the other hand, the use of evolutionary
algorithms for solving multi-objective optimization problems
(an area frequently called “evolutionary multi-objective opti-
mization” or EMOO) has also raised a lot of interest within
the last few years.2 This paper presents a survey on the
use of multi-objective evolutionary algorithms (MOEAs) for
solving problems in economics and finance.3 The use of
MOEAs in this research field is, currently, still relatively
scarce, mainly when compared with respect to the use of
single-objective evolutionary algorithms [5], [2]. Thus, one
of the main purposes of this survey is precisely to attract
the attention of EMOO researchers towards this field, which
is very promising and contains a wide variety of interesting
and challenging problems. Rather than competing with the
excellent survey written by Schlottmann and Seese [3], we
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consider this paper as an extension (and upgrading) of such
work, although in this case our goal was to have a broader
coverage of applications, thus sacrificing a more in-depth
analysis of them, such as the one provided by Schlottmann
and Seese.

The remainder of this paper is organized as follows.
Section II presents a brief introduction to multi-objective
optimization. In Section III, we propose a taxonomy of
applications. In Section IV, we review the use of MOEAs in
investment portfolio optimization. In Section IX, we describe
some of the future applications that remain to be done using
MOEAs. Finally, Section X contains our conclusions.

II. BASIC CONCEPTS

We are interested in solving problems of the type4:

minimize �f(�x) := [f1(�x), f2(�x), . . . , fk(�x)] (1)

subject to:
gi(�x) ≤ 0 i = 1, 2, . . . ,m (2)

hi(�x) = 0 i = 1, 2, . . . , p (3)

where �x = [x1, x2, . . . , xn]T is the vector of decision
variables, fi : IRn → IR, i = 1, ..., k are the objective
functions and gi, hj : IRn → IR, i = 1, ...,m, j = 1, ..., p
are the constraint functions of the problem.

To describe the concept of optimality in which we are
interested, we will introduce next a few definitions.

Definition 1. Given two vectors �x, �y ∈ IRk, we say that
�x ≤ �y if xi ≤ yi for i = 1, ..., k, and that �x dominates �y
(denoted by �x ≺ �y) if �x ≤ �y and �x �= �y.

Definition 2. We say that a vector of decision variables
�x ∈ X ⊂ IRn is nondominated with respect to X , if there
does not exist another �x′ ∈ X such that �f(�x′) ≺ �f(�x).

Definition 3. We say that a vector of decision variables
�x∗ ∈ F ⊂ IRn (F is the feasible region) is Pareto-optimal
if it is nondominated with respect to F .

Definition 4. The Pareto Optimal Set P∗ is defined by:

P∗ = {�x ∈ F|�x is Pareto-optimal}
Definition 5. The Pareto Front PF∗ is defined by:

4Without loss of generality, we will assume only minimization problems.



PF∗ = {�f(�x) ∈ IRk|�x ∈ P∗}
In words, the Pareto front is the image of the Pareto

optimal set and is normally displayed in graphical form,
in order to have a better idea of the trade-offs available
among the objectives. Thus, we wish to determine the Pareto
optimal set from the set F of all the decision variable vectors
that satisfy (2) and (3). Note however that in practice, and
particularly when dealing with real-world problems, not all
the Pareto optimal set is normally desirable (e.g., it may not
be desirable to have different solutions that map to the same
values in objective function space) or achievable.

III. A TAXONOMY OF APPLICATIONS

Unlike the taxonomy of applications of EAs in economics
and finance provided by Chen [5], we have decided to adopt
a more pragmatic view, and classify applications of MOEAs
in economics and finance based on the topics covered by the
papers revised when elaborating this survey. This led us to
a taxonomy containing five groups of applications:

1) Investment portfolio optimization
2) Financial time series
3) Stock ranking
4) Risk-Return analysis
5) Economic modelling

Each of these topics will be reviewed in the following
sections. Note, however, that the discussion provided will be
unbalanced, since most of the work done so far in this area
has focused on investment portfolio optimization.

IV. INVESTMENT PORTFOLIO OPTIMIZATION

Investment portfolios are very common nowadays, and
they can vary from simple portfolios held by individu-
als (containing a few stocks, bank investments, real estate
holdings, etc.), to huge portfolios managed by professional
investors (containing lots of stocks, bonds, treasury bills,
etc.). Investment portfolios are projected to provide a certain
return (i.e., money earned), but they also have an associated
risk. Normally, a high risk corresponds to a high expected
return and viceversa. Ideally, one would like to minimize the
risk (within the tolerance allowed by the investor) while max-
imizing the return. This is the so-called optimal investment
portfolio that one wishes to obtain by using optimization
techniques. In the specialized literature, these problems are
traditionally studied using the Markowitz portfolio selection
model [6]. In this model, a portfolio is defined by a vector
of real numbers which contains the weight corresponding to
each asset available. Each asset has an expected rate of return
paid at a certain time. Then, one wishes to maximize the
return function (the weighted sum of the assets’ expected rate
of return), while minimizing the risk (the standard deviation
of the portfolio rate of return, since this defines the level
of uncertainty about the future payoff at a certain time).
There are also different constraints, depending on the type
of problem to be solved. For example, the weights normally
have lower bounds (i.e., they must normally be greater than

zero), upper bounds and possibly other constraints related
to how diversified is the portfolio. The use of MOEAs for
optimizing investment portfolios is, by far, the most popular
topic within this area that has been reported in the specialized
literature. Next, we will review the most representative work
in this area.

A. Arnone et al.

Apparently, Arnone et al. [7] were the first to use MOEAs
for optimizing investment portfolios. Although the authors
adopt the Markowitz model and aim to maximize return
while minimizing risk, they do not adopt the variance of
the distribution of portfolio returns as their measure of risk.
Instead, they use lower partial moments, which refer to the
down-side part of the distribution of returns (appropriately,
this measure is called downside risk). The use of downside
risk makes the problem more difficult, because the shape
of the objective surface is generally non-convex. Therefore,
quadratic programming can no longer be used to find exact
solutions. The authors adopt a genetic algorithm (GA) with
a weighted linear aggregating function to solve this problem.
The weights are called trade-off coefficients. So, the authors
adopt different populations in order to encode different
weight combinations and produce, in consequence, different
portions of the Pareto front. In a further paper, Loraschi et
al. [8] use a distributed GA in the same problems, and show
that the distributed version offers a significantly better return
for a given risk level than its sequential counterpart.

B. Shoaf and Foster

Shoaf and Foster [9] use a GA with a linear combination
of weights for portfolio selection based on the Markowitz
model. They minimize portfolio variance (i.e., risk) and
maximize the expected return of the portfolio. The authors
raise an issue of great importance when dealing with this
problem: the encoding. The portfolio selection problem is
really an allocation problem. Thus, a direct representation
(i.e., using decision variables as usually done with GAs for
representing the weights of each stock) does not work well.
The reason is that this type of representation will frequently
produce infeasible solutions in which the values allocated
do not sum to 1.0, which is a constraint imposed on the
problem. The authors adopt a representation which has a
single field of k+1 bits for each asset. The first bit indicates
whether the position on that holding will be long (one) or
short (zero). The remaining k bits are an unsigned index
onto an “allocation wheel”, representing the resources to be
allocated. The wheel is divided into 2k equal sections, each
indexed by a k-bit binary value. For any asset represented as
a long position, the wheel proportion between its index and
the index of the next long position, plus the proportion of
any enclosed short position wedges, is the total proportion
of resource allocation for that holding. The idea is that, for
example, the resources from a short sale of a stock are used to
purchase additional shares of the long position stock whose
index most immediately precedes its index. The greatest ben-
efit of this encoding is that the total investment represented



by a chromosome is always 100% of the available resources
(i.e., solutions are always feasible). The main drawback of
this representation is its higher sensitivity to the mutation
and crossover rates, since the encoding is epistatic (i.e., a
change in the index of one holding generally affects one or
two other holding allocations). The authors compare their
approach with respect to quadratic programming (the most
common approach used to solve this problem) using end-of-
week closing data accumulated over an eleven month period
beginning on October 3, 1994. The GA adopts two-point
crossover, roulette-wheel selection and bit-flip mutation. Re-
sults indicated that the GA could find portfolio allocations
with similar risk and higher rates of return than quadratic
programming.

In a further paper, Shoaf and Foster [10] analyze the
computational complexity of their approach. They indicate
that the complexity of their approach is dominated by the
sorting required by their special encoding. Thus the algo-
rithmic complexity of their approach is O(n log n) (assuming
quicksort is adopted). They also study the scalability of their
approach. Their results indicate good scalability of the GA
up to 100 stocks (i.e., the algorithm complexity remains as
O(n log n), as expected). However, aiming to be able to
explore faster and in a more effective manner the potentially
large and highly multimodal search space of this problem,
the authors also propose a parallel model based on islands.

C. Vedarajan et al.

Vedarajan et al. [11] also adopt the two objectives from
Markowitz’s model: maximize the expected return of the
portfolio and minimize its risk. The authors adopt first a
GA with a linear aggregating function that combines the
two objectives into a single scalar value, and in which the
weights are varied in order to generate different nondom-
inated solutions. The authors also come across the same
encoding problem reported by Shoaf and Foster, and propose
two approaches to deal with it: (1) a penalty function, and (2)
a Random Keys encoding [12], which also requires that the
solutions are sorted. The GA adopts binary tournament selec-
tion, one-point crossover, and bit-flip mutation. The authors
also adopt the Nondominated Sorting Genetic Algorithm
(NSGA) [13], which is a non-elitist MOEA based on several
layers of classifications of the individuals as suggested by
Goldberg [14]. Before selection is performed, the population
is ranked on the basis of nondomination: all nondominated
individuals are classified into one category (with a dummy
fitness value, which is proportional to the population size, to
provide an equal reproductive potential for these individuals).
To maintain the diversity of the population, these classified
individuals are shared with their dummy fitness values. Then
this group of classified individuals is ignored and another
layer of nondominated individuals is considered. The process
continues until all individuals in the population are classified.
The NSGA adopts Random Keys encoding to handle the only
constraint of the problem.

For testing their algorithms, the authors consider a port-
folio consisting of five large capital stocks from different

industries (i.e., Boeing, Disney, Exxon, Mc Donald’s and
Microsoft) and compute their returns, variances, covariances,
etc. over a five years period. The authors show their results
in graphical form, although no real numerical comparison
takes place (i.e., using performance measures). The results
from the NSGA and the GA with a linear aggregating
function seem similar in quality, although the NSGA pro-
vides a much more diverse set of solutions. According to
the authors, there are, however, other advantages of using
the NSGA. When adopting quadratic programming (the
traditional mathematical programming approach) for solving
this problem, one has to work with a covariance matrix,
and such matrix needs to be positive definite at all times.
It turns out that when working with real-world problems,
as the number of portfolio holdings increases, it becomes
difficult to maintain this matrix positive definite, because
of numerical imprecissions associated to the floating point
arithmetic. This is not an issue with MOEAs, since they
do not use this matrix. Later on, the authors indicate that,
in practice, portfolio management involves other costs as
well, such as transaction costs, broker fees, etc. So, it is
desirable to minimize these costs as well, and the authors
add then another objective: minimize transaction costs. The
new problem has one additional constraint related to the
maximum transaction cost permitted. However, handling this
constraint with quadratic programming is difficult, because of
the way in which transactions normally take place in practice.
Thus, in this case, the use of a MOEA brings even more
advantages, since the NSGA was able to produce the three-
dimensional Pareto front in a single run.

D. Chang et al.

Chang et al. [15] use a GA with a linear aggregating
function that considers the same two objectives as before:
minimize the total variance (risk) associated with the port-
folio and ensure that the portfolio has a certain expected
return. An interesting aspect of this work is that the authors
adopt cardinality constraints (i.e., constraints on the exact
number of stocks to hold in a portfolio). It is important
to note that, when no cardinality constraints are imposed
on the problem, quadratic programming can be used to
solve it in an exact manner. However, when cardinality
constraints are imposed, no exact method exists for solving it.
In the multi-objective statement of this problem, the Pareto
front may be discontinuous and/or non-convex, which will
create difficulties to the use of approaches based on linear
aggregating functions. The authors use a steady state GA
with binary tournament selection, uniform crossover and
a boundary mutation operator. In this case, the issue of
the encoding is dealt with a simple repair procedure that
transforms infeasible solutions into feasible ones. Besides
using a GA, the authors also experiment with tabu search [16]
and simulated annealing [17] (all of the them using the same
linear aggregating function). For their comparative study, the
authors constructed five test data sets considering the stocks
involved in five different capital market indices from around
the world. First, an unconstrained version of the problem



is solved and results are compared with respect to those
generated by an exact method. The GA is the best overall
performer in this case, followed by simulated annealing. Tabu
search produced a very large mean percentage error with
respect to the two other approaches. In a second experiment,
the authors consider the cardinality constrained version of
the problem. This time, there is no clear winner, since some
approaches produced smaller mean percentage errors in some
problems, but greater values in others. However, regarding
the contribution of each algorithm to the Pareto optimal set
(constructed from the union of results produced), the GA
is the approach that contributed the most, followed by tabu
search and by simulated annealing.

E. Lin et al.

Lin et al. [18], [19] consider a variation of the investment
portfolio optimization problem in which fixed transaction
costs and minumum lots are adopted. The authors adopt the
Nondominated Sorting Genetic Algorithm-II (NSGA-II) [20]
with integers encoding, simulated binary crossover (SBX)
[21] and parameter-based mutation [20]. In the NSGA-II,
for each solution one has to determine how many solutions
dominate it and the set of solutions to which it dominates.
The NSGA-II estimates the density of solutions surrounding
a particular solution in the population by computing the
average distance of two points on either side of this point
along each of the objectives of the problem. This value is the
so-called crowding distance. During selection, the NSGA-II
uses a crowded-comparison operator which takes into con-
sideration both the nondomination rank of an individual in
the population and its crowding distance (i.e., nondominated
solutions are preferred over dominated solutions, but between
two solutions with the same nondomination rank, the one that
resides in the less crowded region is preferred). An interest-
ing aspect of this work is that the authors adopt GENOCOP
to handle the constraints of the problem [22]. However, since
GENOCOP requires that the initial population is feasible in
order to handle linear constraints, then the authors adopt the
same NSGA-II to find feasible solutions. The problem solved
in this case is really single-objective, but it is considered as
a special case of the multi-objective problem. When all the
individuals in the population are feasible, the NSGA-II is
stopped and they are fed into GENOCOP, which handles the
original constraints of the problem.

The authors validate their approach using data from the
OR-Library [23]. The results indicated that, by investing in
more stocks, the maximum risk was significantly decreased.
The authors also experiment with fitness scaling, which
they find to be useful to make their MOEA more efficient.
However, the results are not compared with respect to any
other approach.

F. Fieldsend et al.

Fieldsend et al. [24] deal with the cardinality constraint
portfolio selection problem studied by Chang et al. [25].
The authors indicate that if only the cardinality constraint
is imposed on the problem and the others are ignored, then

cardinality can be considered as a third objective (additional
to the traditional risk and return objectives). Then, the 2-
dimensional cardinality constrained frontier could be ex-
tracted for any particular cardinality k. However, if additional
constraints need to be considered, this approach is not viable.
The authors propose to search for each cardinality con-
strained front in parallel, and constructively use information
from these fronts to improve the search process of the others.
The MOEA adopted is a (1+1)-evolution strategy previously
used by the authors [26]. The algorithm maintains a set of
sets of the different cardinality constrained efficient frontiers,
each of which is initialized with a random portfolio. The
algorithm proceeds at each iteration by first selecting (in a
random manner) an archive with cardinality k and copying a
portfolio from it. Such a copied portfolio is then adjusted (ei-
ther only weight adjustment or also dimensionality change).
The resulting portfolio is evaluated in terms of its return
and risk and compared to the others previously stored to see
if its nondominated. Evidently, any dominated portfolios are
removed. The approach is validated using stock data from the
US S&P 100 index and emerging markets stock. Results are
compared with respect to the unconstrained problem, which
is solved using quadratic programming. Preliminary results
show that it is possible to replicate closely the mean and
variance of an efficient portfolio using a relatively number
of stocks.

G. Streichert et al.

Streichert et al. [27] consider the investment portfolio opti-
mization problem with cardinality constraints (which restrict
the maximum number of assets used in the portfolio), buy-
in thresholds constraints (which give the minimum amount
that is to be purchased), and roundlots constraints (which
give the smallest volumes that can be purchased for each
asset). The authors use the NSGA [28] with tournament
selection, fitness sharing, one-point mutation and discrete
3-point crossover. The authors experiment with both a bi-
nary encoding (with and without Gray codes) and a real-
numbers encoding. Since the authors had determined from
preliminary experiments that Pareto optimal solutions are
normally composed of a limited selection of the available
assets, they note the similarities of the problem with the one-
dimensional binary knapsack problem. Since the knapsack
problem has been solved using EAs, the authors adopt this
encoding in addition to the vector of decision variables (the
weights). So, each bit from the knapsack determines if an
asset will be used or not. The genetic operators are applied
separately to each of the two segments of the chromosome.
The authors also adopt a repair mechanism that first removes
all surplus assets from the portfolio to meet the cardinality
constraints. Then, other similar mechanisms are adopted to
satisfy the other constraints. In order to examine the effect of
this repair mechanism, the authors adopt Lamarckism (when
using Lamarckism, the repaired solution is kept; otherwise,
only its objective function values are used). Test data from
the OR-Library [23] is used by the authors. They also use
the S-metric to compute the hypervolume of the Pareto front



[29] as a performance assessment measure. The results are
quite interesting. When no Lamarckism is adopted, and no
additional constraints are imposed on the problem, the use
of the knapsack encoding clearly outperforms the standard
representation. From the different encodings adopted, the
traditional binary encoding is the best and the real-numbers
encoding is the worst. However, when cardinality constraints
are imposed on the problem, one cannot make clear dis-
tinctions in the results anymore. When using Lamarckism,
the standard GA outperforms the GA with the knapsack
encoding regarding convergence rate and reliability, for the
case in which cardinality constraints are considered. Without
cardinality constraints, the effect is less noticeable because
all the approaches perform very well, but the standard GA is
still much better than before. When additional constraints
are considered, for the case in which no Lamarckism is
considered, the standard GA presents premature convergence.
If Lamarckism is adopted, then the negative effect of the
neutral search space is apparently removed, which signif-
icantly increases the efficiency of the standard GA. Real-
numbers encoding exhibits a slightly better performance
than the binary encoding in this case. Using the knapsack
encoding, the GA does not present premature convergence,
but its performance is poor. The use of Lamarckism causes,
again, a very significant performance improvement. However,
binary encoding is better than real-numbers encoding in this
case.

H. Ehrgott et al.

Ehrgott et al. [30] propose an extension to the Markowitz
mean-variance model. The authors maximize five objectives
(derived from a cooperation with Standard and Poor’s): (1)
12-month performance of an asset, (2) 3-year performance
of an asset, (3) annual dividend of a portfolio, (4) Standard
and Poor’s star ranking, and (5) volatility. The authors also
allow the incorporation of the user’s preferences through the
construction of decision-maker specific utility functions and
an additive global utility function. Using this global utility
function as the objective function to be optimized, the authors
perform a study in which they compare four approaches: (1)
a two-phase local search algorithm, (2) simulated annealing,
(3) tabu search, and (4) a genetic algorithm. The two-phase
local algorithm, simulated annealing and tabu search, share
the same neighborhood structure. Results on a fund database
indicated that the genetic algorithm was the best performer,
followed by simulated annealing. In randomly generated
instances, however, the two-phase local search algorithm had
a better performance, followed by the genetic algorithm.

I. Armañanzas and Lozano

Armañanzas and Lozano [31] apply a greedy local search
algorithm [32], simulated annealing [17] and ant colony
optimization (ACO) [33] to portfolio optimization problems.
For the neighborhood exploration adopted by the greedy al-
gorithm and simulated annealing, the authors adopt a scheme
by which the algorithm first looks for the two assets that add
the highest risk to the base solution. Then, it selects which

of them contributes less to the total portfolio profit. Such an
asset will be the pivot asset from which the neighborhood
will be created. The ACO implementation is also interesting,
because the authors adopt a lexicographic approach by which
the objectives are optimized separately (this is similar to the
MOAQ [34]): first, they optimize the risk, then the profit,
and finally a trade-off between these two previous objectives.
The approaches are compared using test data from the OR-
Library [23]. The results indicated that ACO and simulated
annealing provided the best performance, but there was no
clear winner between them. The greedy algorithm showed
the worst performance in the experiments reported by the
authors.

J. Subbu et al.

Subbu et al. [35] propose a hybrid multiobjective optimiza-
tion approach that combines evolutionary algorithms with
linear programming for investment portfolio optimization.
The authors maximize the portfolio expected return, while
minimizing both the surplus variance and the portfolio value
at risk. They also consider duration and convexity mismatch
constraints, as well as linear portfolio investment constraints.
The authors adopt the Pareto Sorting Evolutionary Algorithm
(PSEA), which uses a small population size and an archive
that retains the nondominated solutions found along the
search. PSEA is initialized with a Randomized Linear Pro-
gramming (RLP) algorithm, which stochastically identifies
a sample of the boundaries of the search space by solving
thousands of randomized linear programs. They also use a
fast dominance filter, which decomposes a set of solutions
by working on smaller chunks of such a set of solutions.
This process is used to differentiate between dominated
and nondominated solutions. The actual search for optimal
portfolios is performed by another approach called Target
Objective Genetic Algorithm (TOGA), which is based on
both goal programming and VEGA [36]. TOGA attempts to
find solutions that are as close as possible to a pre-defined
target for one or more objectives. These approaches are all
part of a more complex system developed at General Electric
and currently used in real-world problems with hundreds to
thousands of assets. The system also allows the incorporation
of progressive preferences and provides 2-D projections of
the Pareto fronts obtained.

V. FINANCIAL TIME SERIES

Here, the idea is to find patterns in financial time series,
such that predictions can be made regarding the behavior of
a certain stock. Typically, neural networks have been applied
on this problem, but the use of different types of evolutionary
algorithms has also been reported. Next, we will describe the
use of MOEAs in this application domain.

A. Ruspini and Zwir

Ruspini and Zwir [37] & Zwir and Ruspini [38] used the
Niched-Pareto Genetic Algorithm (NPGA) [39] for automatic
derivation of qualitative descriptions of complex objects.
The NPGA uses a tournament selection scheme based on



Pareto dominance. The authors apply their methodology to
the identification of significant technical-analysis patterns in
financial time series. Two objectives are considered: quality
of fit (measures the extent to which the time-series values
correspond to a financial uptrend, downtrend, or head-and-
shoulders interval) and extent (measures, through a linear
function, the length of the interval being explained). The
NPGA is really used to determine crisp intervals5 corre-
sponding to downtrends, uptrends and head-and-shoulders
intervals. Niching and tournament selection are used in this
application.

Not many people have worked in this area using a multi-
objective approach, but there are other references in which
MOEAs are used for time series prediction, although not in a
finance-related domain (see for example [40]). Additionally,
there is also some work on predicting customers patterns
[41], which is also related to this topic.

VI. STOCK RANKING

The aim of this problem is to classify stocks as strong
or weak performers based on technical indicators and then
use this information to select stocks for investment and for
making recommendations to customers. Next, we report the
use of MOEAs in this application area.

A. Mullei and Beling

Mullei and Beling [42] use a GA with a linear combination
of weights to select rules for a classifier system adopted to
rank stocks based on profitability. Up to nine objectives are
considered by the authors, related to conjunctive attribute
rule tests. This problem is solved using a classifier system
from the so-called Pitt approach [14]. The authors use binary
representation, roulette wheel selection, one-point crossover
and uniform mutation. The approach is validated using 5
large historical (U.S.) stock data sets covering approximately
3 years (1995-1998) of weekly data on a universe of 16
stocks. Results are compared against a technique related
to the synthesis of polynomial networks called STATNET.
Results were inconclusive since no technique was able to
outperform the other in all cases.

VII. RISK-RETURN ANALYSIS

Credit portfolios handled by banks are also investment
portfolios, but they operate under different rules and, there-
fore, they are not modeled using the original Markowitz
approach. Next, we will describe applications of MOEAs
to this area.

A. Schlottmann and Seese

Schlottmann and Seese [43], [44] use an approach similar
to the NSGA-II [20] for solving portfolio selection problems
relevant to real-world banking. In the problem studied by the
authors, a bank has a fixed supervisory capital budget. This
is an upper limit for investments into a portfolio consisting
of a subset of assets (e.g., loans to be given to different

5Fuzzy logic is used to describe the model.

customers of the bank), each of which is subject to the risk
of the default (capital risk). So, in this case, besides having
an expected rate of return (as in the original Markowitz
problem), each asset also has an expected default probability
(which is set a priori) and a net exposure, within a fixed
risk horizon. The authors adopt binary decision variables to
indicate whether or not a certain net expossure is to be held
in the portfolio or not. Only if an asset is held in the portfolio,
the bank has to allocate a supervisory capital amount from
its available (but scarce) resources. Thus, the return objective
function has to be adjusted for default risk (i.e., expected
loss). The resulting problem has a discrete constrained search
space with many local optima and two conflicting objective
functions. Unlike the original NSGA-II, the authors adopt an
external archive containing the nondominated solutions found
along the search. They also incorporate a gradient-based
local search operator which is, however, rather heuristic.
For validation purposes, the authors designed their own test
cases with a structure similar to real-world data from German
banks. They compared their hybrid MOEA with respect to
the same MOEA without the local search mechanism. Results
indicated that the use of local search significantly improved
performance (the average improvement was computed to be
between 17% and 95% for the set coverage metric [29]).

B. Mukerjee et al.

Mukerjee et al. [45] use the NSGA-II [20] to determine
risk-return trade-offs for a bank loan portfolio manager.
The idea is the same as before: the bank manager aims to
maximize shareholder wealth. This implies maximizing the
net worth of the bank, which in turn involves maximizing the
net interest margin of the bank. However, there are a number
of regulatory constraints imposed on the bank, such as the
maintenance of adequate capital, interest-rate risk exposure,
etc. The authors adopt a portfolio credit risk model based on
the standard deviation of the return over the entire portfolio.
Two objectives are considered: (1) maximize mean return on
the portfolio, and (2) minimize the variance on the return.
For validating their approach, the authors adopt data from
the CreditMetrics Technical Document. The authors studied
an elastic loan demand model in which they assume that the
amount of loan applications received in a given loan category
is a function of the interest rate charged. The authors used
the NSGA-II for this model, adopting the interest rates as
their decision variables.

An interesting aspect of this work is that the authors
compare the performance of the NSGA-II with respect to the
ε-constraint method (using a simple genetic algorithm for the
individual single-objective optimizations performed by this
method). Only graphical comparisons are presented, since the
aim was to show that the NSGA-II could achieve the same
convergence of the ε-constraint method, while providing a
much wider distribution of nondominated solutions.

VIII. ECONOMIC MODELLING

Mardle et al. [46], [47] use a GA with a weighted goal
programming approach to optimize a fishery bioeconomic



model. Bioeconomic models have been developed for a
number of fisheries as a means of estimating the optimal
level of exploitation of the resource and for assessing the
effectiveness of the different management plans available,
at achieving the desirable objectives. The foundations of
fisheries bioeconomic modelling comes from the economic
theory of the open-access or common-property fishery, which
is based on a logistic population growth model. In this
case, the authors develop a model for the North Sea fish-
ery. Four objectives are considered: (1) maximize profit,
(2) maintain historic relative quota shares among countries,
(3) maintain employment in the industry and (4) minimize
discards. GENOCOP III [48] is used for the evolutionary
optimization process. Real-numbers representation and arith-
metic crossover are employed. The evolutionary approach is
compared to the application of traditional goal programming
(developed in GAMS [49] and solved with CONOPT) in
a model of the North Sea demersal fishery. The GA is
considered competitive but not necessarily better than goal
programming in this application.

We are not aware of any other applications of MOEAs in
economics, although several are certainly possible (e.g., in
negotiation strategies [50]).

IX. FUTURE APPLICATIONS

As we could see in this survey, the use of MOEAs in
economics and finance is still relatively scarce and has mostly
focused on the optimization of investment portfolios. Thus,
a lot of areas remain to be explored. Some of them are the
following:

• Model discovery: This is an interesting area in econo-
metrics in which non-parametric models are assumed,
and one tries to use an evolutionary algorithm to derive
a model for a certain type of problem (e.g., forecasting
nonlinear time series). Normally, artificial neural net-
works (ANNs) have been used for the model itself, but
several researchers have used evolutionary algorithms to
find the most appropriate ANN that models the problem
of interest.

• Data mining: The use of data mining techniques for
learning complex patterns is a very promising research
area in economics and finance. For example, the mining
of financial time-series for finding patterns that can
provide trading decision models is a very promising
topic worth exploring [5].

• Forecasting stock prices: Although long-term fore-
casting is not possible for the stock market, it is nor-
mally possible to perform short-term forecasting with
heuristics. The use of genetic programming (GP) in this
area has become increasingly popular, since GP can
be used for symbolic regression, emulating the tasks
traditionally performed by ANNs.

• Risk management: The study of risk and the reaction
of an agent to it, is a very interesting research area.
Some researchers have studied, for example, the forma-
tion process of risk preferences in financial problems
[5].

• Coevolution: The use of co-evolutionary approaches
for certain problems in economics and finance (e.g.,
for studying artificial foreign exchange markets) is a
very interesting topic that certainly deserves attention.
Coevolutionary MOEAs are still not too common, but
their potential use in financial areas may boost the
interest of researchers in paying more attention to them.

Many other possible areas exist, including the study of
consumers’ patterns, credit scoring, economic growth, and
auction games, just to mention a few.

X. CONCLUSIONS

This paper has presented a state-of-the-art survey on the
use of MOEAs for solving problems in economics and
finance. We have identified a taxonomy of applications that
consists of five large groups: investment portfolio optimiza-
tion, financial time series, stock ranking, risk-return analysis
and economic modelling. From these five groups, the first (in-
vestment portfolio optimization) is, by far, the most popular
in the current literature. However, as indicated in Section IX
many other application areas exist for MOEAs to be applied.
We expect that this paper can motivate researchers interested
in economics and finance to learn more about MOEAs, and
to apply them in more problems within these areas.
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