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Summary. In this chapter, we present a survey of constraint-handling techniques
based on evolutionary multiobjective optimization concepts. We present some basic
definitions required to make this chapter self-contained, and then we introduce the
way in which a global (single-objective) nonlinear optimization problem is trans-
formed into an unconstrained multiobjective optimization problem. A taxonomy of
methods is also proposed and each of them is briefly described. Some interesting
findings regarding common features of the approaches analyzed are also discussed.

1 Introduction

Nowadays, evolutionary algorithms (EAs) have become a popular choice to
solve different types of optimization problems [20, 33, 45]. Indeed, this chap-
ter points out the application of some ideas originally designed to solve an
specific type of optimization problems using EAs, and which are now applied
to solve a different type of problems. Despite being considered powerful search
engines, EAs, in their original versions, lack a mechanism to incorporate con-
straints into the fitness function in order to solve constrained optimization
problems. Hence, several approaches have been proposed to deal with this
issue. Michalewicz & Schoenauer [36] and Coello Coello [7] have presented
comprehensive surveys about constraint-handling techniques used with EAs.
As indicated in such surveys, the most popular method adopted to handle
constraints in EAs was taken from the mathematical programming literature:
penalty functions (mostly exterior). Penalty functions were originally pro-
posed by Courant in the 1940s [11] and later expanded by Carroll [4] and Fi-
acco & McCormick [17]. The idea of this method is to transform a constrained
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optimization problem into an uncontrained one by adding (or subtracting) a
certain value to/from the objective function based on the amount of constraint
violation present in a certain solution. This aims to favor feasible solutions
over infeasible ones during the selection process. The main advantage of the
use of penalty functions is their simplicity. However, their main shortcom-
ing is that penalty factors, which determine the severity of the punishment,
must be set by the user and their values are problem-dependent [50, 7]. This
has motivated the design of alternative techniques like those based on special
encodings and operators [34, 48] and on repair algorithms [35].

Unlike penalty functions, which combine the objective function and the
constraints values into one fitness value, there are other approaches which han-
dle these two values separately. The most representative approaches, which
work based on this idea are two: (1) the methods based on the superiority of
feasible points [41, 15] and (2) the methods based on evolutionary multiob-
jective optimization concepts.

This chapter focuses on the last type of techniques (i.e., those based on
multiobjective optimization concepts) and describes, tests and criticizes them.

In order to present our discussion of methods in a more organized way, we
propose a simple taxonomy of techniques, based on the way they transform
the nonlinear programming problem (NLP) into a multiobjective optimization
problem (MOP):

1. Approaches which transform the NLP into an unconstrained bi-objective
optimization problem (the original objective function and the sum of con-
straint violation).

2. Techniques which transform the NLP into an unconstrained MOP where
the original objective function and each constraint of the NLP are treated
as separate objectives. From this category, we observed two further sub-
categories:

a) Methods which use non-Pareto concepts (mainly based on multiple
populations) and

b) techniques which use Pareto concepts (ranking and dominance) as
their selection criteria.

The remainder of this chapter is organized as follows. In Section 2 we
present the general NLP, and we recall some multiobjective optimization con-
cepts used in this survey; we also show the transformation of a NLP into a
MOP. After that, in Section 3 the approaches which solve the NLP as a bi-
objective problem (using the original objective function and the sum of con-
straint violation) are presented. Later on, Section 4 shows techniques based on
solving the problem by taking the original objective function and each of the
constraints of the problem as different objectives, either by using Pareto and
non-Pareto concepts. In Section 5, we provide some highlights of the methods
previously discussed. A small comparative experiment using four representive
approaches (from those previously discussed) is presented in Section 6. Fi-
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nally, Section 7 presents our conclusions and some possible future paths of
research in the area.

2 Problem definition and transformation

In the following definitions we will assume (without loss of generality) mini-
mization. The general NLP is defined as to:

Find X which minimizes f(X) (1)

subject to:

gi(X) ≤ 0, i = 1, . . . , m (2)

hj(X) = 0, j = 1, . . . , p (3)

where X ∈ IRn is the vector of solutions X = [x1, x2, . . . , xn]T , where each
xi, i = 1, . . . , n is bounded by lower and upper limits Li ≤ xi ≤ Ui which
define the search space S, F is the feasible region and F ⊆ S; m is the number
of inequality constraints and p is the number of equality constraints (in both
cases, constraints could be linear or nonlinear).

When solving NLPs with EAs, equality constraints are usually transformed
into inequality constraints of the form:

gj(X) = |hj(X)| − ǫ ≤ 0, j = m + 1, m + 2, . . . , m + p (4)

where ǫ is the tolerance allowed (a very small value). In the rest of the chap-
ter we will refer only to inequality constraints because we will assume this
transformation.

As it was discussed in Chapter ??, in a multiobjective problem, the opti-
mum solution consists on a set of (“trade-off”) solutions, rather than a single
solution as in global optimization. This optimal set is known as the Pareto
Optimal set.

Based on the review of the literature that we undertook, we found that
researchers have adopted two different ways to transform the NLP into a
MOP:

1. The first approach transforms the NLP into an unconstrained bi-objective
problem. The first objective is the original objective function and the
second one is the sum of constraint violation as follows: optimize F(X) =
(f(X), G(X)), where G(X) =

∑m+p

i=1 max (0, gi(X)) and each gi(X), i =
1, . . . , m + p must be normalized.
Note however, that in this case when solving a transformed NLP, we are
not looking for a set of solutions (as described in Chapter ??). Instead,
we seek a single solution, the global constrained optimum, where: f(X) ≤
f(Y) for all feasible Y and G(X) = 0.
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2. The second approach transforms the problem into an unconstrained MOP,
in which we will have k + 1 objectives, where k is the total number of
constraints (m + p) and the additional objective is the original NLP ob-
jective function. Then, we can apply a multiobjective evolutionary al-
gorithm to the new vector F(X) = (f(X), g1(X), . . . , gm+p(X)), where
g1(X), . . . , gm+p(X) are the original constraints of the problem.
As indicated before, we are looking again for the global constrained opti-
mum instead of a set of trade-off solutions. Thus, we require the following:
gi(X) = 0 for 1 ≤ i ≤ (m + p) and f(X) ≤ f(Y) for all feasible Y.

These apparently subtle differences in the way of stating a MOP prompt
to changes in the way multiobjective concepts are applied (i.e., it influences
the way in which nondominated, Pareto ranking and multipopulation-based
techniques are actually used). In the following sections, we will describe the
approaches reported in the specialized literature to deal with this special type
of MOP that arises from a transformed NLP.

It is important to note that the use of multiobjective optimization concepts
improves the solution procedure of a constrained problem with respect to a
typical penalty function in two aspects: (1) No penalty factors must be tuned
and (2) the way to approach the feasible region becomes more robust because
of the trade-offs among objective function and constraints of the problem. In
constrast, in a typical penalty function this path to the constrained optimum
is rather rigid and fixed. In fact, a penalty function is forcing the search to
generate feasible solutions. On the other hand, by using a multiobjective ap-
proach the aim is to decrease the violation of constraints, but at the same time
we look for objective function improvement, and this behavior may lead to
reaching the feasible region from different (and maybe promising) directions.

3 Transforming the NLP into a Bi-Objective problem

Surry & Radcliffe [51] proposed COMOGA (Constrained Optimization by
Multiobjective Optimization Genetic Algorithms) where individuals are Pa-
reto-ranked based on the sum of constraint violation. Then, solutions can
be chosen using binary tournament selection based either on their rank or
their objective function value. This decision is based on a parameter called
Pcost whose value is modified dynamically. The aim of the proposed approach
to solve this bi-objective problem is based on reproducing solutions which
are good in one of the two objectives with other competitive solutions in
the other objective i.e., constraint violation (as Shaffer’s Vector Evaluated
Genetic Algorithm (VEGA) promoted to solve MOPs [47]). COMOGA was
tested on a gas network design problem providing slightly better results than
those obtained with a penalty function approach. Its main drawback is that it
requires several extra parameters. Also, to the authors’ best knowledge, this
approach has not been used by other researchers.
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Camponogara & Talukdar [3] proposed to solve the bi-objective problem in
the following way: A set of Pareto fronts in the bi-objective space is generated
by the EA. Two of them (Si and Sj , where i < j) are selected. After that,
two solutions xi ∈ Si and xj ∈ Sj where xi dominates xj are chosen. Based
in these two points, a search direction is generated as follows:

d =
(xi − xj)

|xi − xj |
(5)

A line search begins by projecting d over one variable axis on decision variable
space in order to find a new solution x which dominates both xi and xj . Other
mechanism of the approach allows, at pre-defined intervals, to replace the
worst half of the population with new random solutions to avoid premature
convergence. This indicates some of the problems of the approach to maintain
diversity. Additionally, the use of line search within a GA adds some extra
computational cost. Furthermore, it is not clear what is the impact of the
segment chosen to search on the overall performance of the algorithm.

Zhou et al. [55] proposed a ranking procedure based on Pareto strength
[56] for the bi-objective problem, i.e. to count the number of individuals which
are dominated for a given solution. Ties are solved by the sum of constraint
violation (second objective in the problem). The Simplex crossover (SPX)
operator is used to generate a set of offspring where the individual with the
highest Pareto strength and also the solution with the lowest sum of con-
straint violation are both selected to take part in the population for the next
generation. The approach was tested on a subset of a well-known benchmark
for evolutionary constrained optimization [30]. The results were competitive
but the authors had to use different sets of parameters for different functions,
which made evident the high sensitivity of the approach to the values of its
parameters.

Wang and Cai [54] used a framework similar to the one proposed by Zhou
et al. [55] because they also used the SPX with a set of parents to generate
a set of offspring. However, instead of using just two individuals from the
set of offspring, all nondominated solutions (in the bi-objective space) are
used to replace the dominated solutions in the parent population. Further-
more, they use an external archive to store infeasible solutions with a low
sum of constraint violation in order to replace some random solutions in the
current population. The idea is to maintain infeasible solutions close to the
boundaries of the feasible region in order to perform a better sampling of this
region as to find optimum solutions located there (i.e., when dealing with ac-
tive constraints) [28]. The approach provided good results in 13 well-known
test problems. However, different sets of values for the parameters were used,
depending of the dimensionality of the problem.

Venkatraman and Yen [52] proposed a generic framework to solve the NLP.
The approach is divided in two phases: The first one treats the NLP as a con-
straint satisfaction problem i.e., the goal is to find at least one feasible solution.
To achieve that, the population is ranked based only on the sum of constraint
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violation. The second phase starts when the first feasible solution has been
found. Now both objectives (the original objective function and the sum of
constraint violation) are taken into account and nondominated sorting [16] is
used to rank the population (alternatively, the authors proposed a preference
scheme based on feasibility rules [15], but in their experiments, they found
that nondominated sorting provided better results). Also, to favor diversity, a
niching scheme based on the distance of the nearest neighbors to each solution
is applied. To decrease the effect of differences in values, all constraints are
normalized before calculating the sum of those which are violated. The ap-
proach used a typical GA as a search engine with 10% elitism. The approach
provided good quality results in 11 well-known benchmark problems and in
some problems generated with the Test-Case Generator tool [32], but lacked
consistency due to the fact that the way to approach the feasible region is
mostly at random because of the first phase which only focuses on finding
a feasible solution, regardless of the region from which the feasible region is
approached.

Wang et al. [53] also solved the bi-objective problem but using selection
criteria based on feasibility very similar to those proposed by Deb [15], where
a feasible solution is preferred over an infeasible one; between two feasible so-
lutions, the one with the best objective function value is selected and, finally,
between two infeasible solutions, the one with the lowest sum of constraint vi-
olation is chosen. Furthermore, they proposed a new crossover operator based
on uniform design methods [53]. This operator is able to explore regions closer
to the parents. Finally, Gaussian noise is used as a mutation operator. The
approach was tested on a subset of a well-known benchmark used to test evo-
lutionary algorithms in constrained optimization [30]. No details are given by
the authors about the influence of the extra parameters required to control
the crossover operator (q) and the number of offspring generated (r).

4 Transforming the NLP into a multiobjective problem

with objective function and constraints as separated

objectives

As indicated before, in this case we may use non-Pareto schemes or Pareto
schemes. Each of these two sub-classes of methods will be discussed next.

4.1 Techniques based on non-Pareto schemes

Parmee & Purchase [40] used the idea proposed in VEGA [47] to guide the
search of an evolutionary algorithm to the feasible region of an optimal gas
turbine design problem with a heavily constrained search space. The aim
of VEGA is to divide the population into sub-populations, and each sub-
population has then the goal of optimizing only one objective. In this case,
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the set of objectives are the constraints of the problem. Genetic operators are
applied to all solutions regardless of the sub-population of each solution. In
Parmee’s approach, once the feasible region is reached, special operators are
used to improve the feasible solutions found. The use of these special operators
that preserve feasibility makes this approach highly specific to one application
domain rather than providing a general methodology to handle constraints.

Schoenauer & Xanthakis [49] proposed a constraint-handling technique
based on the notion of behavioral memory [13], which takes into account the
information contained in the whole population after some genetic evolution.
As it turns out, this approach consists of a form of “lexicographic ordering”
[10]. The main idea is to satisfy each constraint of the problem in a sequential
order. Once a certain number of solutions in the population satisfy the first
constraint (based on a parameter of the approach), the second constraint is
added in order to be also satisfied, but always enforcing that the solutions
satisfy the first one. In this way, solutions which satisfy the second constraint
but not the first one, will be removed from the population (like in a death-
penalty approach [7]). The success of the approach normally depends on the
order in which constraints are processed. Besides, it may not be appropriate
when solving problems with a large feasible region (with respect to the whole
search space). However, this technique may be very effective to solve problems
where constraints have a natural hierarchy to be evaluated.

Coello Coello [6] also used VEGA’s idea [47] to solve NLPs. At each gen-
eration, the population was split into m + 1 sub-populations of equal (fixed)
size, where m is the number of constraints of the problem. The additional
sub-population handled the objective function of the problem and the indi-
viduals contained within it were selected based on the unconstrained objective
function value. The m remaining sub-populations took one constraint of the
problem each as their fitness function. The aim was that each of the sub-
populations tried to reach the feasible region corresponding to one individual
constraint. By combining these different sub-populations, the approach would
then reach the feasible region of the problem considering all of its constraints.
The main drawback of the approach is that the number of sub-populations
increases linearly with respect to the number of constraints.

This issue was further tackled by Liang and Suganthan [27], where a
dynamic particle multi-swarm optimization was proposed. They also used
VEGA’s idea to split the swarm into sub-swarms and each sub-swarm op-
timized one objective. However, in this case, the sub-swarms are assigned
dynamically. In this way, the number of sub-swarms depends on the com-
plexity of the constraints to be satisfied instead of depending on the number
of constraints. The authors also included a local search mechanism based on
sequential quadratic programming to improve values of a set of randomly cho-
sen pbest values. The approach provided competitive results in the extended
version of a well-known benchmark adopted for evolutionary constrained op-
timization [27]. The main drawbacks of the approach are that it requires extra
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parameters to be tuned by the user and it also presented a strong dependency
on the local search mechanism.

4.2 Techniques based on Pareto schemes

Carlos Fonseca was apparently the first to propose the idea of using the Pareto
dominance relation to handle constraints [12, 19]. His proposal consisted of
modifying the definition of Pareto dominance in order to incorporate con-
straints. It is worth noting that this proposal was really a small component
of a multiobjective evolutionary algorithm (MOGA [18]), and was, therefore,
mainly used to solve constrained multiobjective optimization problems. Be-
cause of this, Fonseca’s proposal did not attract much interest from researchers
working with constraint-handling techniques for single-objective optimization.
Next, we will discuss several other constraint-handling techniques that directly
incorporate Pareto-based schemes.

Jiménez et al. [24] proposed an approach that transforms the NLP (and
also the constraint satisfaction and goal programming problems) into a MOP
by assigning priorities. Regarding the NLP, constraints are assigned a higher
priority than the objective function. Then, a multiobjective algorithm based
on a pre-selection scheme is applied. This algorithm generates from two par-
ents a set of offspring which will be also mutated to generate another set.
The best individual from the first set of offspring (non-mutated) and the best
one of the mutated ones, will replace each of the two parents. The idea is
to favor the generation of individuals close to their parents and to promote
implicit niching. Comparisons among individuals are made by using Pareto
dominance. A real-coded GA was used as a search engine with two types
of crossover operators (uniform and arithmetic) and two mutation operators
(uniform and non-uniform). The results on 11 problems taken from a well-
known benchmark [30] were promising. The main drawback of the approach
is the evident lack of knowledge about the effect of the parameter “q” related
with the pre-selection scheme, which the authors do not discuss in their pa-
per. Also, the authors do not provide any information regarding the number
of evaluations performed by the approach.

Coello Coello [5] proposed a ranking procedure based on a counter which
was incremented based on the number of individuals in the population which
dominated a given solution based on some criteria (feasibility, sum of con-
straint violation and number of constraints violated). The approach was tested
on a set of engineering design problems providing competitive results. An
adaptive mechanism was also implemented in order to fine tune the param-
eters of the approach. Its main drawbacks are the computational cost of the
technique and its difficulties to handle equality constraints [29].

Ray et al. [42, 44] proposed the use of a Pareto ranking approach that
operates on three spaces: objective space, constraint space and the combina-
tion of the two previous spaces. This approach also uses mating restrictions
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to ensure better constraint satisfaction in the offspring generated and a selec-
tion process that eliminates weaknesses in any of these spaces. To maintain
diversity, a niche mechanism based on Euclidean distances is used. This ap-
proach can solve both constrained or unconstrained optimization problems
with one or several objective functions. The mating restrictions used by this
method are based on the information that each individual has about its own
feasibility. Such a scheme is based on an idea proposed by Hinterding and
Michalewicz [22]. The main advantage of this approach is that it requires a
very low number of fitness function evaluations with respect to other state-
of-the-art approaches. Its main drawback is that its implementation is con-
siderably more complex than that of any of the other techniques previously
discussed.

Ray extended his work to a simulation of social behavior [1, 43], where
a societies-civilization model is proposed. Each society has its leaders which
influence their neighbors. Also, the leaders can migrate from one society to an-
other, promoting exploration of new regions of the search space. Constraints
are handled by a nondominated sorting mechanism [16] in the constraints
space. A leader centric operator is used to generate movements of the neigh-
bors influenced by their leaders. The main drawback of the approach is its
high computational cost derived from the nondominated sorting and a clus-
tering technique required to generate the societies. Results reported on some
engineering design problems are very competitive. However, to the authors’
best knowledge, this technique has not been compared against state-of-the-art
approaches adopting the same benchmark [30].

Coello Coello and Mezura-Montes [9] implemented a version of the Niched-
Pareto Genetic Algorithm (NPGA) [23] to handle constraints in single-
objective optimization problems. The NPGA is a multiobjective optimization
approach in which individuals are selected through a tournament based on
Pareto dominance. However, unlike the NPGA, Coello Coello and Mezura-
Montes’ approach does not require niches (or fitness sharing [14]) to maintain
diversity in the population. Instead, it requires an additional parameter called
Sr that controls the diversity of the population. Sr indicates the proportion
of parents selected by four comparison criteria (based on Deb’s proposal [15]),
but when both solutions are infeasible, a dominance criterion in the constraints
space is used to select the best solution. The remaining 1 − Sr parents are
selected using a purely probabilistic approach. Results indicated that the ap-
proach was robust, efficient and effective. However, it was also found that the
approach had scalability problems (its performance degraded as the number
of decision variables increased).

The use of dominance to select between two infeasible solutions was taken
to the differential evolution metaheuristic by Kukkonen and Lampinen [26].
In their approach, when the comparison between a parent vector and its child
vector is performed and both of them are infeasible, a dominance criterion is
applied. The results on the extended version of the benchmark [26] were very
competitive.
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Angantyr et al. [2] proposed to assign a fitness value to solutions based on
a two-ranking mechanism. The first rank is assigned according to the objective
function value (regardless of feasibility). The second rank is assigned by using
nondominated sorting [16] in the constraints space. These ranks have adaptive
weights when defining the fitness value. The aim is to guide the search to the
unconstrained optimum solution if there are many feasible solutions in the
current population. If the rate of feasible solutions is low, the search will be
biased to the feasible region. The goal is to promote an oscillation of the search
between the feasible and infeasible regions of the search space. A typical GA
with BLX crossover was used. The main advantage of this approach is that
it does not add any extra parameters to the algorithm. However, it presented
some problems when solving functions with equality constraints [2].

Hernandez et al. [21] proposed an approach named IS-PAES which is based
on the Pareto Archived Evolution Strategy (PAES) originally proposed by
Knowles and Corne [25]. IS-PAES uses an external memory to store the best
set of solutions found. Furthermore, IS-PAES requires a shrinking mechanism
to reduce the search space. The multiobjective concept is used in this case as
a secondary criterion (Pareto dominance is used only to decide whether or not
a new solution is inserted in the external memory). The authors acknowledge
that the most important mechanisms of IS-PAES are its shrinking procedure
and the information provided by the external memory which is used to decide
the shrinking of the search space. Furthermore, despite its good performance
as a global optimizer, IS-PAES is an approach far from simple to implement.

Runarsson and Yao [46] presented a comparison of two versions of Pareto
ranking applied in the constraints space: (1) considering the objective function
value in the ranking process and (2) without considering it. These versions
were compared against a typical over-penalized penalty function approach.
The authors found in their work that using Pareto ranking leads to bias-free
search, and thus concluded that it causes the search to spend most of the time
searching in the infeasible region. Therefore, the approach is unable to find
feasible solutions (or finds feasible solutions with a poor value of the objective
function).

Oyama et al. [39] used a similar approach to the one proposed by Coello
Coello and Mezura-Montes [9]. However, the authors proposed to use a set
of criteria based on feasibility to rank all the population (instead of using
them in a tournament [9]). Moreover, this approach is designed to solve also
constrained multiobjective optimization problems. A real-coded GA with BLX
crossover was used as the search engine. This technique was used to solve one
engineering design problem and also a real-world NLP. No further experiments
or comparisons were provided.



Constrained Optimization via MOEAs 11

5 Remarks

Based on the features found in each of the methods previously discussed, we
highlight the following findings:

• The transformation of the NLP into a multiobjective problem with con-
straints and objective function as separated objectives is a more popular
approach than the transformation of the NLP to a bi-objective optimiza-
tion problem.

• The use of sub-populations has been the least popular, although they may
present certain advantages in some particular optimization problems (see
for example [8]).

• There seems to be a certain trend towards using mean-centric crossover
operators (BLX [2, 39], random-mix [42, 44], SPX [54, 55]) over using
parent-centric crossover (uniform design methods [53], leader centric op-
erator [1, 43]) when adopting real-coded GAs. Furthermore, other authors
used more than one crossover operator (uniform and arithmetic [24]). This
choice seems to contradict the findings about competitive crossover op-
erators that have been reported by other researchers when using other
constraint-handling techniques such as GENOCOP and penalty functions
[37, 38].

• The use of diversity mechanisms is found in most approaches, which is a
clear indication of the loss of diversity experienced when adopting multi-
objective optimization schemes for handling constraints [51, 3, 54, 52, 42,
44, 1, 43, 9, 2, 21].

• The use of explicit local search mechanisms is still scarce, despite the
evident advantages that such mechanisms may bring into this area [27].

• The difficulty of using Pareto concepts when solving the NLP pointed out
by Runarsson and Yao [46] has been confirmed by other researchers like
Mezura-Montes and Coello Coello [29]. However, the methods described
in this survey provide several alternatives to deal with the inherent short-
coming for the lack of bias provided by Pareto ranking.

6 A Limited Comparative Study

Four techniques were selected from those discussed before to perform a small
comparative study that aims to illustrate some practical issues of constraint-
handling techniques based on multiobjective concepts. The techniques selected
are the following: COMOGA [51] which tranforms the constrained problem
into a bi-objective problem, the use of VEGA proposed by Coello Coello [6]
which handles a problem of “m + p + 1” objectives with the same number of
sub-populations (where m is the number of inequality constraints and p is the
number of equality constraints), the NPGA to handle constraints [9] which
calculates Pareto Dominance in the constraints space (the number of objec-
tives depends of the number of constraints of the problem) and the approach
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that uses Pareto ranking (called MOGA by us although it does not exactly
follow Fonseca’s proposal [18]) [5] where dominance is computed based on sep-
arated objectives (number of violated constraints and amount of constraint
violation).

These techniques were chosen because all of them mainly modify the parent
selection scheme of an EA and do not use additional mechanisms (specialized
crossover or mutation operators, external memory, etc.). Therefore, and be-
cause of their simplicity they can be included inside a typical EA without
further changes. In order to simplify our notation, the last three techniques
previously indicated will be called CHVEGA, CHNPGA and CHMOGA, re-
spectively (CH stands for constraint-handling).

To evaluate the performance of the techniques selected, we decided to use a
well-known benchmark found in the specialized literature [36] and also three
engineering design problems [31]. The Appendix at the end of the chapter
includes the details of all the test functions adopted.

To get an estimate of how difficult is to generate feasible points through a
purely random process, we computed the ρ metric (as suggested by Michalewicz
and Schoenauer [36]) using the following expression:

ρ = |F |/|S| (6)

where |S| is the number of random solutions generated (S = 1, 000, 000 in our
case), and |F | is the number of feasible solutions found (out of the total |S|
solutions randomly generated).

Problem n Type of function ρ LI NI LE NE

1 5 quadratic 27.0079% 0 6 0 0

2 2 non linear 0.0057% 0 2 0 0

3 10 quadratic 0.0000% 3 5 0 0

4 7 non linear 0.5199% 0 4 0 0

5 8 linear 0.0020% 3 3 0 0

6 2 quadratic 0.0973% 0 0 0 1

7 4 quadratic 2.6859% 6 1 0 0

8 4 quadratic 39.6762% 3 1 0 0

9 3 quadratic 0.7537% 1 3 0 0

Table 1. Main features of the 9 test problems used. n is the number of decision
variables, LI is the number of linear inequalities, NI the number of nonlinear in-
equalities, LE is the number of linear equalities and NE is the number of nonlinear
equalities.

The different values of ρ besides the main features of each test function
are shown in Table 1.

In our comparative study, we used a binary-gray-coded GA with two-
point crossover and uniform mutation. Equality constraints were transformed
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into inequalities using a tolerance value of 0.001 (see [7] for details of this
transformation). The number of fitness function evaluations is the same for
all the approaches under study (80, 000). The parameters adopted for each of
the methods were the following:

• COMOGA:
– Population Size = 200
– Crossover rate = 1.0
– Mutation rate = 0.05
– Desired proportion of feasible solutions = 10 %
– ǫ = 0.01

• CHVEGA:
– Population Size = 200
– Number of generations = 400
– Crossover rate = 0.6
– Mutation rate = 0.05
– Tournament size= 5

• CHNPGA:
– Population Size = 200
– Number of generations = 400
– Crossover rate = 0.6
– Mutation rate = 0.05
– Size of sample of the population = 10
– Selection Ratio = 0.8

• CHMOGA:
– Population Size = 200
– Number of generations = 400
– Crossover rate = 0.6
– Mutation rate = 0.05

A total of 100 runs per technique per problem were performed. A summary
of all results is shown in Table 2, where Pi refers to the problem solved (1 ≤
i ≤ 9).

6.1 Discussion of Results

Based on the obtained results, all of them summarized in Table 2, we will
focus our discussion on the following topics:

• Quality: Which approach provides the “best” result overall (measured by
the best result in column 4 on Table 2).

• Consistency: Which approach provides the “best” mean and standard
deviation values (measured by the mean and standard deviation (Std.
Dev.) results in columns 5 and 6, respectively on Table 2).

• Diversity: To analyze the rate of feasible solutions of each approach dur-
ing a single run.
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Statistical Results on 9 test problems.

P. Approach Optimal Best Mean St. Dev. Fp

COMOGA −30533.057 −30329.563 7.48E+1 0.24%
P1 CHVEGA −30665.539 −30647.246 −30628.469 7.88E+0 41%

CHNPGA -30661.033 -30630.883 2.05E+1 35%
CHMOGA −30649.959 −30568.918 5.35E+1 3.5%
COMOGA −6808.696 −5255.105 9.95E+2 0.20%

P2 CHVEGA −6961.814 −6942.747 −6762.048 1.02E+2 4.3%
CHNPGA −6941.307 −6644.539 3.36E+2 2%
CHMOGA −6939.440 −6678.926 1.57E+2 2%

COMOGA*(8) 485.579 1567.294 9.24E+2 0.03%
P3 CHVEGA 24.306 28.492 34.558 2.93E+0 15%

CHNPGA 26.986 31.249 2.32E+0 4.9%
CHMOGA 29.578 45.589 1.52E+1 1.3%
COMOGA 733.00 983.63 1.16E+2 1.1%

P4 CHVEGA 680.63 693.64 739.31 2.51E+1 4.5%
CHNPGA 680.95 682.34 8.36E-1 24%
CHMOGA 681.71 692.97 1.09E+1 4.9%

COMOGA1*(71) 10865.43 18924.58 3.85E+3 0.0001%
P5 CHVEGA*(63) 7049.25 9842.45 17605.59 3.87E+3 0.005%

CHNPGA*(29) 8183.30 13716.70 4.80E+3 0.05%
CHMOGA 7578.34 9504.36 1.50E+3 2%
COMOGA 0.75 0.75 4.95E-4 0.029%

P6 CHVEGA 0.75 0.75 0.80 2.58E-2 1.1%
CHNPGA 0.75 0.75 1.21E-2 2.6%
CHMOGA 0.75 0.75 5.95E-4 1.7%
COMOGA 2.471158 2.726058 1.20E-1 0.03%

P7 CHVEGA 2.381 2.386833 2.393504 3.80E-3 35%
CHNPGA 2.382860 2.420906 2.56E-2 20%
CHMOGA 2.386333 2.504377 9.90E-2 5%
COMOGA 6369.428 7795.412 7.01E+2 0.4%

P8 CHVEGA 6059.946 6064.724 6259.964 1.70E+2 43%
CHNPGA 6059.926 6172.527 1.24E+2 33%
CHMOGA 6066.967 6629.064 3.85E+2 45%
COMOGA 0.012929 0.014362 8.64E-4 2.11%

P9 CHVEGA 0.012681 0.012688 0.012886 2.09E-4 25%
CHNPGA 0.012683 0.012752 6.20E-5 10%
CHMOGA 0.012680 0.012960 3.63E-4 4.8%

Table 2. Experimental results using the four approaches with the 9 test problems.
The symbol “*” and the number between parenthesis “(n )”mean that only in n

runs feasible solutions were found , Fp is the average percentage of feasible solutions
found during a single run (with respect to the full population).

Quality of the results

CHNPGA provided the “best” best results in five problems (P1, P3, P4, P7
and P8) and slightly improved the best known solution in one of them (P8).
CHVEGA obtained the “best”best result in problem P2 and CHMOGA in
problems P5 and P9. All the four approaches reached the best solution in
problem P6.

Consistency

CHNPGA provided the most consistent results in four problems (P3, P4, P8
and P9). In problem P1, CHNPGA showed a mean value closer to the opti-
mal solution than that provided by CHVEGA; however, CHVEGA’s standard
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deviation value was smaller than CHNPGA’s. We consider that the behavior
of CHNPGA was more consistent because of its mean closeness value to the
optimal result. CHVEGA presented the “best” mean and standard deviation
values in two functions (P2 and P7). Finally, CHMOGA presented the best
consistency in problem P5. It is important to note that, for function P5, only
CHMOGA consistently found feasible solutions in each single run. The re-
maining techniques had problems to reach the feasible region in this problem.
Again, problem P6 was easily solved with a similar performance by all four
approaches.

Diversity

It is quite interesting to analyze the average of feasible solutions that each al-
gorithm maintains in a single run. The fact that the population size is the same
for all four algorithms compared gives a more fair point of comparison. For
most of the problems, the approach which consistently reached the vicinity of
the optimum, was able to handle a rate of feasible solutions above the average
rate of the four approaches: CHNPGA in P1, P3 P4, P8 and P9, CHVEGA
in P2, and P7, and CHMOGA in P5. As expected, this rate corresponds to
the approximate size of the feasible region with respect to the whole search
space (reported as ρ, fourth column in Table 1), i.e., high rates on problems
with larger feasible regions and low rates on problems with very small feasible
regions. See for example test function P1 (27% of the search space is feasible
and a 35% rate is maintained by CHNPGA) and P2 (0.0057% of the search
space is feasible and a 4.3% rate is maintained by CHVEGA).

Summary of Results

Based on the observations made on each aspect of our small set of experiments
and analysis, we now summarize our main findings:

• The Pareto dominance tournament selection promoted by CHNPGA pro-
vided the most accurate and consistent results for the set of test prob-
lems used in the experiments (P1, P3, P4, P7, P8 and P9), regardless
the features of the problem to be solved (type of objective function and
constraints, dimensionality, size of the feasible region with respect to the
whole search space).

• The population-based mechanism used by CHVEGA was very effective in
problems with a low dimensionality, small feasible regions and nonlinear
objective function (P2 and P7).

• The Pareto ranking approach based on feasibility used by CHMOGA
was very competitive in problems with average dimensionality, linear or
quadratic objective function and a very small feasible regions (P5 and P9).
In fact, CHMOGA was the only approach that consistently found feasible
solutions in problem P5.



16 Mezura-Montes & Coello Coello

• These three multiobjective-based constraint-handling mechanisms (CH-
NPGA, CHVEGA and CHMOGA) were able to maintain an appropriate
rate of feasible solutions (with respect to the size of the feasible region of
the problem) as to reach the neighborhood of the optimum.

• COMOGA was competitive only in problem P6, where all approaches were
also very competitive. This can be explained by the fact that COMOGA
was explicitly designed to solve a specific type of problem rather that being
a general constraint-handling technique.

These findings are far from being conclusive, but provide some clues about
the behavior of these types of constraint-handling mechanisms.

7 Conclusions

We have presented in this chapter a survey of constraint-handling techniques
based on multiobjective optimization concepts. A taxonomy of techniques
based on the type of transformation made from the NLP to either a bi-
objective (objective function and sum of constraint violation) or a MOP (with
the objective function and each constraint considered as separate objectives)
has been proposed. We have presented a discussion about the main features
of each method (selection criteria, diversity handling mechanism, genetic op-
erators, advantages and disadvantages, and validation). Furthermore, some
interesting findings about all methods have been summarized and briefly dis-
cussed.

In the final part of the chapter, we included a small comparative experi-
ment of four representative approaches. The aim of this study was to provide
some basic guidelines of their use to those interested in adopting these tech-
niques. In this study, emphasis was placed on relating each type of constraint-
handling scheme to the type of problem being solved.

Based precisely on these preliminary results, we foresee several potential
paths for future research in this area: (1) more intensive use of explicit local
search mechanisms coupled to constraint-handling techniques, (2) in-depth
studies of the influence of the genetic operators used in these types of meth-
ods, (3) novel and more effective proposals of diversity maintenance mecha-
nisms, (4) the combination of multiobjective concepts (Pareto methods with
population-based techniques) into one single constraint-handling approach.
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Appendix A

The details of each test function used in our experiments are presented below:

1. P1:
Minimize: f(X) = 5.3578547x2

3+0.8356891x1x5+37.293239x1−40792.141

subject to:
g1(X) = 85.334407 + 0.0056858x2x5 + 0.0006262x1x4

− 0.0022053x3x5 − 92 ≤ 0
g2(X) = −85.334407− 0.0056858x2x5 − 0.0006262x1x4

+ 0.0022053x3x5 ≤ 0
g3(X) = 80.51249 + 0.0071317x2x5 + 0.0029955x1x2

+ 0.0021813x2
3 − 110 ≤ 0

g4(X) = −80.51249− 0.0071317x2x5 − 0.0029955x1x2

− 0.0021813x2
3 + 90 ≤ 0

g5(X) = 9.300961 + 0.0047026x3x5 + 0.0012547x1x3

+ 0.0019085x3x4 − 25 ≤ 0
g6(X) = −9.300961− 0.0047026x3x5 − 0.0012547x1x3

− 0.0019085x3x4 + 20 ≤ 0

where: 78 ≤ x1 ≤ 102, 33 ≤ x2 ≤ 45, 27 ≤ xi ≤ 45 (i = 3, 4, 5). The
optimum solution is X∗ = (78, 33, 29.995256025682, 45, 36.775812905788)
where f(X∗) = −30665.539. Constraints g1 y g6 are active.

2. P2
Minimize: f(X) = (x1 − 10)3 + (x2 − 20)3

subject to:
g1(X) = −(x1 − 5)2 − (x2 − 5)2 + 100 ≤ 0
g2(X) = (x1 − 6)2 + (x2 − 5)2 − 82.81 ≤ 0

where 13 ≤ x1 ≤ 100 and 0 ≤ x2 ≤ 100. The optimum solution is
X∗ = (14.095, 0.84296) where f(X∗) = −6961.81388. Both constraints
are active.

3. P3
Minimize: f(X) = x2

1 + x2
2 + x1x2 − 14x1 − 16x2 + (x3 − 10)2 + 4(x4 −

5)2+(x5−3)2+2(x6−1)2+5x2
7+7(x8−11)2+2(x9−10)2+(x10−7)2+45

subject to:
g1(X) = −105 + 4x1 + 5x2 − 3x7 + 9x8 ≤ 0
g2(X) = 10x1 − 8x2 − 17x7 + 2x8 ≤ 0
g3(X) = −8x1 + 2x2 + 5x9 − 2x10 − 12 ≤ 0
g4(X) = 3(x1 − 2)2 + 4(x2 − 3)2 + 2x2

3 − 7x4 − 120 ≤ 0
g5(X) = 5x2

1 + 8x2 + (x3 − 6)2 − 2x4 − 40 ≤ 0
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g6(X) = x2
1 + 2(x2 − 2)2 − 2x1x2 + 14x5 − 6x6 ≤ 0

g7(X) = 0.5(x1 − 8)2 + 2(x2 − 4)2 + 3x2
5 − x6 − 30 ≤ 0

g8(X) = −3x1 + 6x2 + 12(x9 − 8)2 − 7x10 ≤ 0

where −10 ≤ xi ≤ 10 (i = 1, . . . , 10). The global optimum is X∗ =
(2.171996, 2.363683, 8.773926, 5.095984, 0.9906548, 1.430574, 1.321644,
9.828726, 8.280092, 8.375927) where f(X∗) = 24.3062091. Constraints g1,
g2, g3, g4, g5 and g6 are active.

4. P4
Minimize: f(X) = (x1 − 10)2 + 5(x2 − 12)2 + x4

3 + 3(x4 − 11)2 + 10x6
5 +

7x2
6 + x4

7 − 4x6x7 − 10x6 − 8x7

subject to:
g1(X) = −127 + 2x2

1 + 3x4
2 + x3 + 4x2

4 + 5x5 ≤ 0
g2(X) = −282 + 7x1 + 3x2 + 10x2

3 + x4 − x5 ≤ 0
g3(X) = −196 + 23x1 + x2

2 + 6x2
6 − 8x7 ≤ 0

g4(X) = 4x2
1 + x2

2 − 3x1x2 + 2x2
3 + 5x6 − 11x7 ≤ 0

where −10 ≤ xi ≤ 10 (i = 1, . . . , 7). The global optimum is X∗ =
(2.330499, 1.951372,−0.4775414, 4.365726,−0.6244870, 1.038131, 1.594227)
where f(X∗) = 680.6300573. Two constraints are active (g1 and g4).

5. P5
Minimize: f(X) = x1 + x2 + x3

subject to:
g1(X) = −1 + 0.0025(x4 + x6) ≤ 0
g2(X) = −1 + 0.0025(x5 + x7 − x4) ≤ 0
g3(X) = −1 + 0.01(x8 − x5) ≤ 0
g4(X) = −x1x6 + 833.33252x4 + 100x1 − 83333.333 ≤ 0
g5(X) = −x2x7 + 1250x5 + x2x4 − 1250x4 ≤ 0
g6(X) = −x3x8 + 1250000 + x3x5 − 2500x5 ≤ 0
where 100 ≤ x1 ≤ 10000, 1000 ≤ xi ≤ 10000, (i = 2, 3), 10 ≤ xi ≤ 1000,
(i = 4, . . . , 8). The global optimum is: X∗ = (579.19, 1360.13, 5109.92,
182.0174, 295.5985, 217.9799, 286.40, 395.5979), where f(X∗) = 7049.248.
g1, g2 and g3 are active.

6. P6
Minimize: f(X) = x2

1 + (x2 − 1)2

subject to:
h(X) = x2 − x2

1 = 0

where: −1 ≤ x1 ≤ 1, −1 ≤ x2 ≤ 1. The optimum solution is X∗ =
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(±1/
√

2, 1/2) where f(X∗) = 0.75.

7. P7: Design of a welded beam A welded beam is designed for minimum
cost subject to constraints on shear stress (τ), bending stress in the beam
(σ), buckling load on the bar (Pc), end deflection of the beam (δ), and
side constraints. There are four design variables as shown in Figure 1: h

b

b

P

l

L

t

h

Fig. 1. Welded beam.

(x1), l (x2), t (x3) and b (x4). The problem can be stated as follows:
Minimize: f(X) = 1.10471x2

1x2 + 0.04811x3x4(14.0 + x2)

Subject to:
g1(X) = τ(X) − τmax ≤ 0
g2(X) = σ(X) − σmax ≤ 0
g3(X) = x1 − x4 ≤ 0
g4(X) = 0.10471x2

1 + 0.04811x3x4(14.0 + x2) − 5.0 ≤ 0
g5(X) = 0.125 − x1 ≤ 0
g6(X) = δ(X) − δmax ≤ 0
g7(X) = P − Pc(X) ≤ 0

where τ(X) =
√

(τ ′)2 + 2τ ′τ ′′ x2

2R
+ (τ ′′)2 τ ′ = P√

2x1x2

, τ ′′ = MR
J

,

M = P
(

L + x2

2

)

, R =

√

x2

2

4 +
(

x1+x3

2

)2

J = 2
{

x1x2√
2

[

x2

2

12 +
(

x1+x3

2

)2
]}

σ(X) = 6PL
x4x2

3

, δ(X) = 4PL3

Ex3

3
x4

Pc(X) =
4.013

√

EGx2

3
x6

4

36

L2

(

1 − x3

2L

√

E
4G

)

P = 6000 lb, L = 14 in, E = 30 × 106 psi, G = 12 × 106 psi
τmax = 13, 600 psi, σmax = 30, 000 psi, δmax = 0.25 in where
0.1 ≤ x1 ≤ 2.0, 0.1 ≤ x2 ≤ 10.0, 0.1 ≤ x3 ≤ 10.0 y 0.1 ≤ x4 ≤ 2.0.
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8. P8: Design of a pressure vessel
A cylindrical vessel is capped at both ends by hemispherical heads as
shown in Figure 2. The objective is to minimize the total cost, includ-
ing the cost of the material, forming and welding. There are four design
variables: Ts (thickness of the shell), Th (thickness of the head), R (inner
radius) and L (length of the cylindrical section of the vessel, not including
the head). Ts and Th are integer multiples of 0.0625 inch, which are the
available thicknesses of rolled steel plates, and R and L are continuous.

R

Th

R

sTL

Fig. 2. Pressure vessel.

The problem can be stated as follows:
Minimize : f(X) = 0.6224x1x3x4 + 1.7781x2x

2
3 + 3.1661x2

1x4 + 19.84x2
1x3

Subject to :
g1(X) = −x1 + 0.0193x3 ≤ 0
g2(X) = −x2 + 0.00954x3 ≤ 0
g3(X) = −πx2

3x4 − 4
3πx3

3 + 1, 296, 000 ≤ 0
g4(X) = x4 − 240 ≤ 0

where 1 ≤ x1 ≤ 99, 1 ≤ x2 ≤ 99, 10 ≤ x3 ≤ 200 y 10 ≤ x4 ≤ 200.

9. P9: Minimization of the weight of a tension/compression spring
This problem consists of minimizing the weight of a tension/compression
spring (see Figure 3) subject to constraints on minimum deflection, shear
stress, surge frequency, limits on outside diameter and on design variables.
The design variables are: the mean coil diameter D (x2), the wire diam-
eter d (x1) and the number of active coils N (x3). Formally, the problem
can be expressed as:
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P P

d

D

Fig. 3. Tension-compression spring.

Minimize: (N + 2)Dd2

Subject to:

g1(X) = 1 − D3N
71785d4 ≤ 0

g2(X) = 4D2−dD
12566(Dd3−d4) + 1

5108d2 − 1 ≤ 0

g3(X) = 1 − 140.45d
D2N

≤ 0

g4(X) = D+d
1.5 − 1 ≤ 0

where 0.05 ≤ x1 ≤ 2, 0.25 ≤ x2 ≤ 1.3 y 2 ≤ x3 ≤ 15.
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