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Summary. In this chapter, we present an evolutionary approach to solve a novel
mechatronic design problem of a pinion–rack continuously variable transmission
(CVT). This problem is stated as a multiobjective optimization problem, because
we concurrently optimize, the mechanical structure and the controller performance,
in order to produce mechanical, electronic and control flexibility for the designed
system. The problem is solved first with a mathematical programming technique
called goal attainment method. Based on some shortcomings found, we propose
a differential-evolution-based approach to solve the aforementioned problem. The
performance of both approaches (the goal attainment and the modified DE) are
compared and discussed, based on quality, robustness, computational time and im-
plementation complexity. We also highlight the interpretation of the solutions ob-
tained in the context of the problem. Finally, some conclusions are established and
the future work is described.

1 Introduction

Solving real-world optimization problems is usually a challenging task. These
problems arise with relative facility, and its complexity may increase when the
problem is relatively unknown since the current systems are more complex.
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Currently, several systems can be considered as a mechatronic system due to
the integration of the mechanical and electronical elements in such systems.
Reason why, it is necessary to use new design methodologies, which consider
integral aspects of the systems.

The traditional approach for the design of mechatronic systems, considers
the mechanical behavior and the dynamic performance separately. Therefore,
the design of mechanical elements involves kinematic and static behaviors
while the design of the control system uses only the dynamic behavior. This
design approach from a dynamic point of view cannot produce an optimal
system behavior [14][23]. Recent works on mechatronic systems design propose
a concurrent design methodology which considers jointly the mechanical and
control performances.

In this concurrent design concept, some approaches have been proposed.
However, these concurrent approaches are based on an iterative process.
There, the mechanical structure is obtained in a first step and the controller in
a second step, if the resulting control structure is very difficult to implement,
the first step must be done again.

On the other hand, an alternative approach to formulate the system design
problem is to consider it in the dynamic optimization problem [2][3]. In order
to do this, the parametric optimal design of the mechatronic systems is stated
as a multiobjective dynamic optimization problem (MDOP). In this approach,
both the kinematic and the dynamic models of the mechanical structure and
the dynamic model of the controller are considered at the same time, together
with system performance criteria. This approach allows us to obtain a set of
optimal mechanical and controller parameters in only one step, which could
produce a simple system reconfiguration.

We present the parametric optimal design of a pinion–rack continuously
variable transmission (CVT). The problem is stated as a multiobjective op-
timization problem. Two approaches are used to solve it. One is based on a
mathematical programming technique called goal attainment method [11] and
the other is based on an evolutionary algorithm called differential evolution
[17]. The chapter is organized as follows: In Section 2 we detail the transfor-
mation of the original problem into a multiobjective optimization problem. In
Section 3, we present the mathematical programming method, its adaptation
to solve the problem and the obtained results. Afterwards, the evolutionary
approach is explained and tested in Section 4. Later, in Section 5, we present
a discussion of the behavior of both approaches, based on issues like qual-
ity and robustness of the approach, computational time and implementation
complexity. Finally, our conclusions and future paths of research are presented
in Section 6.
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2 Multiobjective Problem

In the concurrent design concept, the mechatronic design problem can be
stated as the following general problem:

min Φ(x, p, t) = [Φ1, Φ2, ..., Φn]
T

(1)

Φi =

∫ tf

t0

Li(x, p, t)dt i = 1, 2, ..., n

under p and subject to:

ẋ = f(x, p, t) (2)

g(x, p, t) ≤ 0 (3)

h(x, p, t) = 0 (4)

x(0) = x0

In the problem stated by (1) to (4): p is a vector of the design variables
which belongs to the mechanical and control structure, x is the vector of the
state variables and t is the time variable. On the other hand, some performance
criteria L must be selected for the mechatronic system. The dynamic model
(2) describes the state vector x at time t. Also, the design constraints of the
mechatronic system must be developed and proposed, respectively. Therefore,
the parameter vector p which is a solution of the previous problem will be
an optimal set of structure and controller parameters which minimize the
performance criteria selected for the mechatronic system and subject to the
constraints imposed by the dynamic model and the design.

Current research efforts in the field of power transmission of rotational
propulsion systems, are dedicated to obtain low energy consumption with
high mechanical efficiency. An alternative solution to this problem is the so
called continuously variable transmission (CVT), whose transmission ratio
can be continuously changed in an established range. There are many CVT’s
configurations built in industrial systems, especially in the automotive indus-
try due to the requirements to increase the fuel economy without decreasing
the system performance. The mechanical development of CVT’s is well known
and there is little to modify regarding its basic operation principles. However,
research efforts go on with the controller design and the CVT instrumentation
side. Different CVT’s types have been used in different industrial applications;
the Van Doorne belt or V-belt CVT is the most studied mechanism [19][20].
This CVT is built with two variable radii pulleys and a chain or metal-rubber
belt. Due to its friction-drive operation principle, the speed and torque losses
of rubber V-belt are a disadvantage. The Toroidal Traction-drive CVT uses
the high shear strength of viscous fluids to transmit torque between an input
torus and an output torus. However, the special fluid characteristic used in
this CVT becomes the manufacturing process expensive. A pinion-rack CVT
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which is a traction-drive mechanism is presented in [21], this CVT is built-in
with conventional mechanical elements as a gear pinion, one cam and two
pair of racks. The conventional CVT manufacture is an advantage over other
existing CVT’s. However, in the pinion-rack CVT, it has determined that the
teeth size of the gear pinion is an important factor in the performance of the
system.

Because the gear pinion is the main mechanical element of the pinion-
rack CVT, determining the optimal teeth size of such mechanical element
to obtain an optimal performance could be not easy. On the other hand, an
optimal performance system must consider a low energy consumption in the
controller. Therefore, in order to obtain an optimal performance of the pinion-
rack CVT, it is necessary to propose the parametric optimal design of such
system.

The goals of the parametric optimal design of the pinion-rack CVT are to
obtain a maximal mechanical efficiency as well as minimal controller energy.
Therefore, a MDOP for the pinion-rack CVT will be proposed.

2.1 Description and dynamic CVT model

In order to state the MDOP to the pinion-rack CVT, it is necessary to de-
velop the dynamic model of such system. The pinion-rack CVT, changes its
transmission ratio when the distance between the input and output rotation
axes is changed. This distance is called “offset” and will be denoted by “e”.
As it were said previously, this CVT is built-in with conventional mechanical
elements as a gear pinion, one cam and two pair of racks. Inside the CVT
an offset mechanism is integrated. This mechanism is built-in with a lead
screw attached by a nut to the vertical transport cam. Fig. 1 depicts the main
mechanical CVT components.

The dynamic model of a pinion-rack CVT is presented in [2]. Ordinary
differential equations (5), (6) and (7) describe the CVT dynamic behavior. In
equation (5): Tm is the input torque , J1 is the mass moment of inertia of the
gear pinion, b1 is the input shaft coefficient viscous damping, r is the gear
pinion pitch circle radius, TL is the CVT load torque, J2 is the mass moment
of inertia of the rotor, R is the planetary gear pitch circle radius, b2 is the out-
put shaft coefficient viscous damping and θ is the angular displacement of the
rotor. In equations (6) and (7): L, Rm, Kb, Kf and n represent the armature
circuit inductance, the circuit resistance, the back electro-motive force con-
stant, the motor torque constant and the gearbox gear ratio of the DC motor,
respectively. Parameters rp, λs, bc and bl denote the pitch radius, the lead an-
gle, the viscous damping coefficient of the lead screw and the viscous damping
coefficient of the offset mechanism, respectively. The control signal u (t) is the
input voltage to the DC motor. Jeq = Jc2+Mr2

p+n2Jc1 is the equivalent mass
moment of inertia, Jc1is the mass moment of inertia of the DC motor shaft,
Jc2 is the mass moment of inertia of the DC motor gearbox and d = rp tan λs,
is a lead screw function. Moreover, θR (t) = 1

2
arctan

[

tan
(

2Ωt − π
2

)]

is the
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Fig. 1. Main pinion–rack CVT mechanical elements

rack angle meshing. The combined mass to be translated is denoted by M
and P = Tm

rp
tan φ cos θR is the loading on the gear pinion teeth, where φ is

the pressure angle.

(

R

r

)

Tm − TL =

[

J2 + J1

(

R

r

)2
]

θ̈ (5)

−
[

J1

(

R

r

)

e

r
sin θR

]

θ̇2

+

[

b2 + b1

(

R
r

)2

+J1

(

R
r

)

ė
r

cos θR

]

θ̇

L
di

dt
+ Rmi = u (t) −

[

nKb

d

]

ė (6)

[

nKf

d

]

i − P =

[

M +
Jeq

d2

]

ë +

[

bl +
bc

rpd

]

ė (7)

In order to fulfill the concurrent design concept, the dynamic model of the
pinion-rack CVT must be stated with state variables as it indicates in the
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general problem stated by (1) to (4). With the state variables x1 = θ̇, x2 = i,
x3 = e, x4 = ė the dynamic model given by (5) to (7) can be written as:

ẋ1 =

ATm +
[

J1A
2x3

p1p2
sin θR

]

x2
1 − TL

−
[

b2 + b1A
2 + J1A

2x4

p1p2
cos θR

]

x1

J2 + J1A2

ẋ2 =
u (t) − (nKb

d
)x4 − Rx2

L
(8)

ẋ3 = x4

ẋ4 =
(

nKf

d
)x2 − (bl + bc

rpd
)x4 − Tm

rp
tan φ cos θR

M +
Jeq

d2

Performance criteria and objective functions

The performance of a system is measured by several criteria, one of the most
used is the system efficiency because it reflects the energy loss. In the case of
the pinion-rack CVT, the mechanical efficiency criterion of the gear systems
is used to state the MDOP. This is because the racks and the gear pinion are
the principal CVT mechanical elements.

The mathematical equation (9) for mechanical efficiency presented in [22]
is used in this work, where µ, N1, N2, m, r1 and r2 represent the coefficient
of sliding friction, the gear pinion teeth number, the spur gear teeth num-
ber, the gear module, the pitch pinion radius and the pitch spur gear radius
respectively.

η = 1 − πµ

(

1

N1

+
1

N2

)

= 1 − πµ

2m

(

1

r1

+
1

r2

)

(9)

In [2] the speed ratio equation is stated by (10), where ω is the input
angular speed and Ω is the output angular speed of the CVT.

ω

Ω
=

R

r
= 1 +

e

r
cos θR (10)

Considering r1 ≡ r and r2 ≡ R, the CVT mechanical efficiency is given by
(11).

η(t) = 1 − πµ

N1

(

1 +
1

1 + e cos θR

r

)

(11)

In order to maximize the mechanical CVT efficiency, F (·) given by (12)
must be minimized.
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F (·) =
1

N1

(

1 +
1

1 + e cos θR

r

)

(12)

Equation (12) can be written as (13) which is used to state the MDOP.

L1(·) =
1

N1

(

2r + e cos θR

r + e cos θR

)

(13)

The second objective function of the MDOP must belong to the dynamic
behavior. In order to fulfill that, a proportional and integral (PI) controller
structure is used in the MDOP. This is because, despite the development of
many control strategies, the PI controller structure remains as one of the most
popular approach for industrial processes control due to the adequate perfor-
mance. Then, in order to obtain the minimal controller energy, the objective
function for the MDOP given by (14) is used.

L2(·) =
1

2

[

−Kp(xref − x1) − KI

∫ t

0

(xref − x1)dt

]2

(14)

Objective functions established previously, fulfill the concurrent design
concept, since structural and dynamic behaviors will be considered at the
same time in the MDOP.

Constraint functions

The design constraints for the CVT optimization problem are proposed ac-
cording to geometric and strength conditions for the gear pinion of the CVT.

To prevent fracture of the annular portion between the axe bore and the
teeth root on the gear pinion, the pitch circle diameter of the pinion gear must
be greater than the bore diameter by at least 2.5 times the module [16]. Then,
in order to avoid fracture, the constraint g1 must be imposed. To achieve a
load uniform distribution on the teeth, the face width must be 6 to 12 times
the value of the module [14], this is ensured with constraints g2 and g3. To
maintain the CVT transmission ratio in the range [2r, 5r] constraints g4, g5

are imposed. Constraint g6 ensures a teeth number of the gear pinion equal
or greater than 12 [14]. A practical constraint requires that the gear pinion
face width must be equal or greater than 20mm, in order to ensure that,
constraint g7 is imposed. To constraint the distance between the corner edge
in the rotor and the edge rotor, constraint g8 is imposed. Finally to ensure a
practical design for the pinion gear, the pitch circle radius must be equal or
greater than 25.4mm, then constraint g9 is imposed.

On the other hand, it can be observed that J1, J2 are parameters which
are function of the CVT geometry. For this mechanical elements the mass
moments of inertia are defined by

J1 =
1

32
ρπm4 (N + 2)

2
N2h (15)
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J2 = ρh

[

3

4
πr4

c − 16

6
(emax + mN)

4 − 1

4
πr4

s

]

(16)

where ρ, m, N , h, emax, rc and rs are the material density, the module,
the teeth number of the gear pinion, the face width, the highest offset distance
between axes, the rotor radius and the bearing radius, respectively.

Design variables

Because the concurrent design concept considers structural an dynamic be-
haviors at the same time, the vector of the design variables must belong to the
mechanical and controller structures. In order to fulfill that, design variables
of the mechanical structure related with the standard nomenclature for a gear
tooth are used. Moreover, the controller gains KP and KI which belong to
the dynamic CVT behavior are also used.

Equation (17) establishes a parameter called module m for metric gears,
where d is the pitch diameter and N is the teeth number.

m =
d

N
=

2r

N
(17)

On the other hand, the face width h, which is the distance measured along
the axis of the gear and the highest offset distance between axes emax are
parameters which define the CVT size. Therefore, the vector pi is proposed
in order to establish the MDOP of the pinion-rack CVT.

pi = [pi
1, p

i
2, p

i
3, p

i
4, p

i
5, p

i
6]

T

= [N, m, h, emax, KP , KI ]
T (18)

2.2 Optimization problem

In order to obtain the mechanical CVT parameter optimal values, we propose
a MDOP given by equations (19) to (26). Where the control signal u(t) is
given by (20). As the objective functions must be normalized to the same
scale [15], the corresponding factors W = [0.4397, 563.3585]T were obtained
using the algorithm from Section 3 by minimizing each objective function
subject to constraints given by equations (8) and (20) to (26).

min
p∈R6

Φ(x, p, t) = [Φ1, Φ2]
T

(19)

where
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Φ1 =
1

W1

10
∫

0

[

1

p1

(

p1p2 + x3 cos θR
p1p2

2
+ x3 cos θR

)]

dt

Φ2 =
1

W2

10
∫

0

u2dt

subject to the dynamic model stated by (8) and subject to:

u(t) = −p5(xref − x1) − p6

t
∫

0

(xref − x1)dt (20)

J1 =
1

32
ρπp4

2 (p1 + 2)
2
p2
1p3 (21)

J2 =
ρp3

4

[

3πr4
c − 32

3
(p4 + p1p2)

4 − πr4
s

]

(22)

A = 1 +
2x3

p1p2

cos θR (23)

d = rp tan λs (24)

θR =
1

2
arctan

[

tan
(

2x1t −
π

2

)]

(25)

g1 = 0.01− p2 (p1 − 2.5) ≤ 0

g2 = 6 − p3

p2

≤ 0

g3 =
p3

p2

− 12 ≤ 0

g4 = p1p2 − p4 ≤ 0

g5 = p4 −
5

2
p1p2 ≤ 0 (26)

g6 = 12− p1 ≤ 0

g7 = 0.020− p3 ≤ 0

g8 = 0.020−
[

rc −
√

2(p4 + p1p2)
]

≤ 0

g9 = 0.0254− p1p2 ≤ 0

3 Mathematical Programming Optimization

As we can observe, in a general way, a MDOP is composed by continuous
functions given by the dynamic model of the system as well as the objective



10 Efrén Mezura-Montes, Edgar A. Portilla-Flores et al.

functions of the problem. In order to find the solution of the MDOP, it must
be converted into a Nonlinear Programming Problem (NLP) [4]. Two tran-
scription approaches exist: the sequential and simultaneous approach. In the
sequential approach, only the control variables are discretized, this approach
are also known as control vector parameterization. In the simultaneous ap-
proach the state and control variables are discretized resulting in a large-scale
NLP problem which requires of special algorithms of solution [1]. Because of
the diversity of algorithms of mathematical programming already established,
the transcription of the MDOP into a NLP problem is made by the sequential
approach.

The NLP problem which is used to approximate the original problem given
by (1) to (4) can be stated as:

min
p

F (p) (27)

subject to:

ci ≤ 0 (28)

ce = 0 (29)

where p is the vector of the design variables, ci are the inequality con-
straints and ce are the equality constraints, respectively. In order to obtain
the NLP problem given by (27) to (29), the sequential approach requires the
value and the gradient calculation of the objective functions, moreover the
gradient calculation of the constraints respect to the design variables must be
calculated.

3.1 Gradient calculation and sensitivity equations

To get the gradient calculation for the objective function, we use the following
equation:

∂Φi

∂pj

=

∫ tf

t0

(

∂Li

∂x

[

∂x

∂pj

(t)

]

+
∂Li

∂pj

)

dt (30)

where, it can be seen in the general problem stated by (1) to (4), Li is the
i− th objective function, x is the vector of the state variables, pj is the j − th
element of the vector of the design variables and t is the time variable. On
the other hand, in order to obtain the partial derivatives ∂x

∂pj
, it is necessary

to solve the ordinary differential equations of the sensitivity given by (31).

∂ẋ

∂pj

=
∂f

∂x

[

∂x

∂pj

]

+
∂f

∂pj

(31)

These sensitivity equations can be obtained taking the time derivatives
with respect to pj of the dynamic model. Due to ẋ is a function of the time



Evolutionary Approach to Solve a Mechatronic Problem 11

variable t as well as the design variables pj (we must consider that pj are
independent of the t), it is fulfilled that:

ẋ =
dx

dt
=

∂x

∂t
(32)

moreover

d( ∂x
∂pj

)

dt
=

∂( ∂x
∂pj

)

∂t
=

∂(∂x
∂t

)

∂pj

=
∂(dx

dt
)

∂pj

=
∂ẋ

∂pj

(33)

Finally, using the equalities (33) and proposing the following variable:

yj =
∂x

∂pj

(34)

The partial derivatives of x with respect to pj is now given by the following
ordinary differential equations:

ẏj =
∂f

∂x
yj +

∂f

∂pj

(35)

yj(0) =
∂x0

∂pj

(36)

3.2 Goal Attainment Method

As we said, in order to transcript the MDOP into a NLP problem the se-
quential approach is used.The resulting problem is solved using the Goal At-
tainment Method [11]. In the remaining of the chapter we will refer to it as
“MPM” (Mathematical Programming Method). In such technique, a subprob-
lem is obtained as follows:

min
p,λ

G (p, λ)
∆
= λ (37)

subject to:

g(p) ≤ 0

h(p) = 0

ga1(p) = Φ1 (p) − ω1λ − Φd
1 ≤ 0 (38)

ga2(p) = Φ2 (p) − ω2λ − Φd
2 ≤ 0

where λ is an artificial variable without sign constrain, g(p) and h(p) are
the constraints established in the original problem. Moreover, in the last two
constraints ω1 and ω2 are the scattering vector, Φd

1 and Φd
2 are the desired

goals for each objective function and Φ1 and Φ2 are the evaluated functions.
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3.3 Numerical method to solve the NLP problem

In order to solve the resulting NLP problem stated by (37) to (38), the Suc-
cessive Quadratic programming (SQP) method is used. There, a Quadratic
Problem (QP) which is a quadratic approximation to the Lagrangian function
optimized over a linear approximation to the constraints is solved. A vector pi

which contains the current parameter values is proposed and the NLP prob-
lem given by equations (39) and (40) is obtained, where Bi is the Broyden–
Fletcher–Goldfarb–Shanno updated (BGFS) positive definite approximation
of the Hessian matrix, and the gradient calculation is obtained using sensi-
tivity equations. Hence, if γ solves the subproblem given by (39) and (40)
and γ = 0, then the parameter vector pi is an original problem optimal solu-
tion. Otherwise, we set pi+1 = pi + γ and with this new vector the process is
repeated again.

min
γ

QP (pi) = G
(

pi
)

+ ∇GT
(

pi
)

γ +
1

2
γT Biγ (39)

subject to

g(pi) + ∇gT
(

pi
)

γ ≤ 0

h(pi) + ∇hT
(

pi
)

γ = 0

ga1(p
i) + ∇gT

a1

(

pi
)

γ ≤ 0 (40)

ga2(p
i) + ∇gT

a2

(

pi
)

γ ≤ 0

3.4 Experiments and Results of the Mathematical Programming

Method

In order to carry out the parametric optimal design of the pinion-rack CVT,
we performed 10 independent runs, all of them by using a PC with a 2.8 GHz
Pentium IV processor with 1 GB of Memory using Mathlab 6.5.0 Release 13.
The system parameters used in numerical simulations were: b1 = 1.1Nms/rad,
b2 = 0.05Nms/rad, r = 0.0254m, Tm = 8.789Nm, TL = 0Nm, λs = 5.4271,
φ = 20, M = 10Kg, rp = 4.188E − 03m, Kf = 63.92E − 03Nm/A,
Kb = 63.92E − 03V s/rad, R = 10Ω, L = 0.01061H , bl = 0.015Ns/m,
bc = 0.025Nms/rad and n = ((22 ∗ 40 ∗ 33)/(9 ∗ 8 ∗ 9)). The initial con-
ditions vector was [x1(0), x2(0), x3(0), x4(0)]T = [7.5, 0, 0, 0]T and the output
reference was considered to be xref = 3.2.

Because the goal attainment method requires the goal for each one of the
objective functions. The goal for Φ1 was obtained by minimizing this function
subject to equations (8) and (20) to(26). The optimal solution vector p1 is
shown in Table 1. The goal for Φ2 was obtained by minimizing this function
subject to equations (8) and (20) to(26). The optimal solution vector p2 for
this problem is also shown in Table 1.
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Varying the scattering vector can produce different nondominated solu-
tions. In Table 1, two cases are presented: p∗

A is obtained with ω = [0.5, 0.5]T ,
p∗B is obtained with ω = [0.4, 0.6]T .

[N∗, m∗, h∗, e∗max, K∗

P
, K∗

I
] ΦN (•) = [Φ1(•), Φ2(•)] Φ(•) = [Φ1(•), Φ2(•)]

p1 = [38, 0.0017, 0.02, 0.0636, 10.000, 1.00] ΦN (p1) = [1.0000, 4.7938] Φ(p1) = [0.4397, 2700.6279]

p2 = [13.4459, 0.0019, 0.02, 0.0826, 5.000, 0.01] ΦN (p2) = [2.8017, 1.0000] Φ(p2) = [1.2319, 563.3585]
p∗

A
= [26.7805, 0.0017, 0.02, 0.0826, 5.000, 0.01] ΦN (p∗

A
) = [1.4696, 1.4696] Φ(p∗

A
) = [0.6461, 827.9116]

p∗

B = [29.0171, 0.0017, 0.02, 0.0789, 5.000, 0.01] ΦN (p∗

B) = [1.3646, 1.5469] Φ(p∗

B) = [0.6000, 871.4592]

Table 1. Details of the solutions obtained by the MPM.

Initial search point Scattering vector

[13.4459, 0.0019, 0.02, 0.0826, 5.000, 0.01] [0.5, 0.5]
[38, 0.0017, 0.02, 0.0636, 10.000, 1.00] [0.5, 0.5]
[38, 0.0017, 0.02, 0.0636, 10.000, 1.00] [0.4, 0.6]
[38, 0.0017, 0.02, 0.0636, 10.000, 1.00] [0.6, 0.4]
[28.8432, 0.0017, 0.02, 0.0550, 5.024, 0.017] [0.5, 0.5]
[13.4459, 0.0019, 0.02, 0.0826, 5.000, 0.01] [0.4, 0.6]
[28.8432, 0.0017, 0.02, 0.0550, 5.024, 0.017] [0.4, 0.6]
[28.8432, 0.0017, 0.02, 0.0550, 5.024, 0.017] [0.6, 0.4]
[30.77, 0.0017, 0.02, 0.0694, 5.121, 0.010] [0.5, 0.5]
[30.77, 0.0017, 0.02, 0.0694, 5.121, 0.010] [0.4, 0.6]

Table 2. Initial points used for the MPM. Also shown is the corresponding scattering
vector.

Run Time required

1 Diverged
2 23.78 Min
3 Diverged
4 Diverged
5 Diverged
6 Diverged
7 Diverged
8 Diverged
9 Diverged
10 48.5 Min

Average 36.365 Min

Table 3. Time required by each run of the MPM. Note that only two runs could
converge to a solution. The remaining 8 runs could not provide any result.

As it can be seen in the results in Table 3, 80% of the runs diverged. This
behavior shows a high sensitivity of the MPM to the starting point (detailed in
Figure 2) because it must be carefully chosen in order to allow the approach
to reach a good solution. The information about the time required by the
MPM per independent run is also summarized in Table 3.

Figure 2 show the mechanical efficiency and the input control of the pinion-
rack CVT with both solutions obtained by the MPM (p1, p2 and p∗A respec-
tively). The solution p∗A was selected because it has the same over achievement
of the proposed goal for each objective function.
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As we can observe in figure 2, when the teeth number is increased (p∗

1) and
their size is decreased (p∗2), a higher CVT mechanical efficiency is obtained.
Also we can observe perturbations in the mechanical efficiency, these are be-
cause of a tip-to-tip momentary contact prior to full engagement between
teeth can be produced. With the optimal solution this tip-to-tip contact is
reduced because a better CVT planetary gear is obtained when the teeth size
is decreased. Concluding, the optimal solution implies a lower sensitivity of
the mechanical efficiency with respect to reference changes.On the other hand,
a more compact CVT size is obtained since (p∗

3) is decreased. Furthermore, a
minimal controller energy is obtained when the controller gains (p∗

5) and (p∗6)
are decreased. In figure 2 it can be observed that the optimal vector minimizes
the initial overshoot of the control input.

Despite the sensitivity of the NLP method, the optimal solutions obtained
are good from the mechanical and controller point of view.
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Fig. 2. Mechanical efficiency and Control input for the pinion-rack CVT obtained
by the MPM.

4 Evolutionary Optimization

The high sensitivity of the MPM to its initial conditions and its implementa-
tion complexity motivated us to solve the problem by using an evolutionary
algorithm (EA) because one of its advantages is that competitive results are
obtained regardless its initial conditions (i.e. a set of solutions is randomly
generated). We selected Differential Evolution [17] because (1) it is an EA
which has provided very competitive results when compared with traditional
EAs like genetic algorithms, evolution strategies, etc. in real-world problems
[6], (2) it is very simple to implement [17] and (3) its parameters for the
crossover and mutation operators generally do not require a fine-tuning [13].

DE is an evolutionary direct-search algorithm to solve optimization prob-
lems. DE shares similarities with traditional EAs. However it does not use



Evolutionary Approach to Solve a Mechatronic Problem 15

binary encoding as a simple genetic algorithm [8] and it does not use a prob-
ability density function to self-adapt its parameters as an Evolution Strategy
[18]. Instead, DE performs mutation based on the distribution of the solutions
in the current population. In this way, search directions and possible stepsizes
depend on the location of the individuals selected to calculate the mutation
values.

Several DE variants have been proposed [17]. The most popular is called
“DE/rand/1/bin”, where “DE” means Differential Evolution, the word “rand”
indicates that individuals selected to compute the mutation values are chosen
at random, “1” is the number of pairs of solutions chosen to calculate the
differences for the mutation operator and finally “bin” means that a binomial
recombination is used. A detailed pseudocode of this variant is presented in
Figure 3

Four parameters must be defined in DE: (1) the population size, (2) the
number of generations, (3) the factor F ∈ [0.0, 1.0] which scales the value of
the differences computed from randomly selected individuals (typically three,
where two are used to compute the difference and the other is only added)
from the population (row 11 in Figure 3). A value of F = 1.0 indicates that
the complete difference value is used; and finally, (4) the CR ∈ [0.0, 1.0]
parameter, which controls the influence of the parent on its corresponding
offspring; a value of CR = 0.0 means that the offspring will take its values from
its parent instead of taking their values from the mutation values generated by
the combination of the differences of the individuals chosen at random (rows
9-15 in Figure 3).

DE was originally proposed to solve global optimization problems. More-
over, as other EA’s, DE lacks a mechanism to handle the constraints of a
given optimization problem. Hence, we decided to modify DE to solve con-
strained multiobjective optimization problems. It is worth remarking that the
goal when performing these modifications was to maintain the simpleness of
DE.

Three modifications were made to the original DE:

1. The selection criterion between parent and its corresponding offspring was
modified in order to handle multiobjective optimization problems.

2. A constraint-handling technique to guide the approach to the feasible
region of the search space.

3. A simple external archive to save those nondominated solutions found
during the process.

4.1 Selection Criterion

We changed the original criterion to select between parent and offspring (rows
16-20 in Figure 3) based only on the objective function value. As in multiob-
jective optimization we are looking for a set of trade-off solutions, we used, as
traditionally adopted in Evolutionary Multiobjective Optimization [5], Pareto



16 Efrén Mezura-Montes, Edgar A. Portilla-Flores et al.

1 Begin

2 G=0
3 Create a random initial population Xi,G ∀i, i = 1, . . . , NP

4 Evaluate f(Xi,G) ∀i, i = 1, . . . , NP

5 For G=1 to MAX GEN Do

6 For i=1 to NP Do

7 Select randomly r1 6= r2 6= r3 :
8 jrand = randint(1, D)
9 For j=1 to D Do

10 If (randj [0, 1) < CR or j = jrand) Then

11 ui,j,G+1 = xr3,j,G + F (xr1,j,G − xr2,j,G)
12 Else

13 ui,j,G+1 = xi,j,G

14 End If

15 End For

16 If (f(Ui,G+1) ≤ f(Xi,G)) Then

17 Xi,G+1 = Ui,G+1

18 Else

19 Xi,G+1 = Xi,G

20 End If

21 End For

22 G = G + 1
23 End For

24 End

Fig. 3. “DE/rand/1/bin” algorithm. randint(min,max) is a function that returns
an integer number between min and max. rand[0, 1) is a function that returns a
real number between 0 and 1. Both are based on a uniform probability distribu-
tion. “NP”, “MAX GEN”, “CR” and “F” are user-defined parameters. “D” is the
dimensionality of the problem.

Dominance as the criterion to select between the parent and its correspond-
ing offspring. The aim is to keep those nondominated solutions in the current
population.

A vector U = (u1, . . . , uk) is said to dominate V = (v1, . . . , vk) (denoted
by U � V) if and only if U is partially less than V, i.e. ∀i ∈ {1, . . . , k}, ui ≤
vi ∧ ∃i ∈ {1, . . . , k} : ui < vi. If we denote the feasible region of the search
space as F , the evolutionary multiobjective algorithm will look for the Pareto
optimal set (P∗) defined as:

P∗ := {x ∈ F | ¬∃ x′ ∈ F F(x′) � F(x)}. (41)

In our case, k = 2 as we are optimizing two objectives.
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4.2 Constraint-Handling

The most popular approach to incorporate the feasibility information to the
fitness function of an EA is the use of a penalty function. The aim is to
decrease the fitness value of those infeasible individuals (which do not satisfy
the constraints of the problem). In this way, feasible solutions will have more
probabilities to be selected and the EA will approach the feasible region of
the search space. However, the main drawback of penalty functions if that
they require the definition of penalty factors. These factors will determine the
degree of penalization. If the penalty value is very high, the feasible region
will be approached mostly at random and the feasible global optimum will
be hard to get. On the other hand, if the penalty is too low, the probability
of not reaching the feasible region will be high. Based on the aforementioned
disadvantage, we decided to avoid the use of a penalty function. Instead, we
incorporate a set of criteria based on feasibility originally proposed by Deb
[7] and extended to other EA’s [9, 10, 12]:

• Between 2 feasible solutions, the one which dominates the other wins.
• If one solution is feasible and the other one is infeasible, the feasible solu-

tion wins.
• If both solutions are infeasible, the one with the lowest sum of constraint

violation is preferred.

We combine the Pareto dominance and also the set of feasibility rules into
one selection criterion which substitutes rows 12-16 in Figure 3 as presented
in Figure 4:

If (Ui
G+1is better than Xi

G (based on the three selection criteria)) Then

Xi
G+1 = Ui

G+1

Else

Xi
G+1 = Xi

G

End If

Fig. 4. Modified selection mechanism added to DE to solve our multiobjective
optimization problem.

4.3 External Archive

One of the features that distinguish a second generation evolutionary multiob-
jective optimization algorithm is the concept of elitism [5]. In our modified DE,
we included an external archive which includes the set of nondominated solu-
tions found during the evolutionary process. This archive is updated at each
generation in such a way that all nondominated solutions from the population
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will be included in the archive. After that, a nondominance checking is per-
formed with all solutions (the newcomers and also the particles in the archive).
Those nomdominated solutions among them will remain in the archive. When
the search ends, the set of nondominated solutions in the archive will be re-
ported as the final set of solutions obtained by the approach.

4.4 Results of the EA Approach

The following experiments were performed: 10 independent runs. A fixed set
of values for the parameters was used in all runs and they were defined as
follows: Population size NP = 200, MAX GENERATIONS = 100; param-
eters F and CR were randomly generated within an interval. The parameter
F was generated per generation in the range [0.3, 0.9] (the differences can be
scaled in different proportions without affecting the performance of the ap-
proach) and CR was generated per run in the range [0.8, 1.0] (more influence
of the mutation operator instead the parent when generating the offspring).
These values were empirically derived. This way to define the values for F
and CR shows that they do not require to be fine-tuned. We will refer to the
evolutionary approach as “EA” (Evolutionary Algorithm).

The experiments were performed in the same platform where the goal
attainment experiments were carried out. This was done to have a common
point of comparison for the computational time required by each approach.

In table 4 we present the number of nondominated solutions and also the
time required per run.

Run Time required Nondominated
solutions

1 18.53 Hrs. 17
2 20.54 Hrs. 15
3 18.52 Hrs. 25
4 18.63 Hrs. 16
5 18.55 Hrs. 17
6 17.57 Hrs. 19
7 18.15 Hrs. 18
8 18.47 Hrs. 24
9 18.67 Hrs. 16
10 20.24 Hrs. 18

Average 18.78 Hrs 18.5 solutions

Table 4. Time required and number of nondominated solutions found at each in-
dependent run by the EA.

The 10 different Pareto fronts obtained are presented in Figure 5.
In order to help the decision maker, we filtered the 10 different set of

solutions in order to obtain the final set of nondominated solutions. The final
Pareto front obtained from the 10 runs contains 28 nondominated points and
it is presented in Figure 6. Finally, the details of the 28 solutions are presented
in Table 5.

Figure 7 shows the mechanical efficiency and the input control of the
pinion-rack CVT with the optimal solution obtained in the MPM and the solu-
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Fig. 5. Different Pareto fronts obtained by the EA in 10 independent runs.
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Fig. 6. Final set of solutions obtained by the EA in 10 independent runs

[N∗, m∗, h∗, e∗max, K∗

P
, K∗

I
] [Φ1(•), Φ2(•)]

[32.949617, 0.001780, 0.020413, 0.063497, 5.131464, 0.022851] [0.534496, 1033.243548]
[25.022005, 0.001699, 0.020103, 0.052385, 5.087026, 0.024991] [0.687214, 837.167059]
[24.764331, 0.001723, 0.020662, 0.048119, 5.104801, 0.011072] [0.694969, 828.856396]
[32.203853, 0.001793, 0.021356, 0.066703, 5.033164, 0.012833] [0.547385, 984.149814]
[30.774167, 0.001710, 0.020092, 0.069459, 5.129618, 0.010260] [0.568131, 950.480089]
[34.231339, 0.001756, 0.020974, 0.065426, 5.104461, 0.023469] [0.515604, 1042.009590]
[31.072336, 0.001760, 0.020295, 0.072332, 5.018621, 0.024963] [0.564775, 964.310541]
[27.647589, 0.001685, 0.020151, 0.069264, 5.001687, 0.031805] [0.627021, 877.670407]
[27.548056, 0.001696, 0.020083, 0.067970, 5.006868, 0.017859] [0.629913, 864.206663]
[30.866972, 0.001735, 0.020305, 0.058766, 5.002777, 0.032694] [0.567519, 960.120458]
[28.913492, 0.001747, 0.020478, 0.058322, 5.021887, 0.027174] [0.603222, 923.771423]
[28.843277, 0.001764, 0.020282, 0.055027, 5.024443, 0.017157] [0.605340, 915.753294]
[30.185435, 0.001700, 0.020075, 0.059569, 5.133269, 0.019914] [0.577733, 949.842309]
[29.448640, 0.001755, 0.020601, 0.063276, 5.019318, 0.033931] [0.593085, 944.906551]
[20.002905, 0.001697, 0.020098, 0.053235, 5.114809, 0.018447] [0.844657, 715.605541]
[26.373053, 0.001718, 0.020176, 0.068410, 5.031773, 0.014986] [0.656264, 849.215816]
[32.227085, 0.001764, 0.020567, 0.070369, 5.178989, 0.026127] [0.544721, 1030.722785]
[23.476167, 0.001731, 0.020618, 0.057264, 5.050345, 0.010533] [0.730990, 790.412654]
[23.853314, 0.001696, 0.020054, 0.063646, 5.097374, 0.040464] [0.717403, 827.978369]
[23.936736, 0.001767, 0.020179, 0.054081, 5.026456, 0.013965] [0.719347, 810.685134]
[18.094865, 0.001754, 0.020097, 0.033930, 5.263513, 0.012051] [0.926890, 700.251032]
[15.287561, 0.001836, 0.020539, 0.065247, 5.001634, 0.077960] [1.086582, 648.563140]
[20.410186, 0.001689, 0.020082, 0.067889, 5.0055020.046545] [0.828891, 729.481066]
[29.319668, 0.001754, 0.020557, 0.057790, 5.140154, 0.012875] [0.595073, 944.511281]
[28.165197, 0.001722, 0.020449, 0.069922, 5.035457, 0.013965] [0.617721, 886.468167]
[34.733111, 0.001738, 0.020849, 0.064827, 5.470063, 0.078838] [0.504179, 1230.655492]
[18.028162, 0.001753, 0.021026, 0.075356, 5.185506, 0.027797] [0.930299, 697.362827]
[21.642511, 0.001694, 0.020196, 0.061009, 5.040619, 0.029378] [0.785859, 752.464167]

Table 5. Details of the trade-off solutions found by the EA. All solutions are feasible.

tion ([30.185435, 0.017, 0.020075, 0.059569, 5.133269,0.019914]) in the middle
of the filtered Pareto front obtained with the EA (Figure 6). We can observe
that the mechanical efficiency found by the EA is better than MPM solution.
We can also see a smooth behavior of the mechanical efficiency for the EA,
maintaining a more compact CVT size for the EA solution. However the ini-
tial overshoot of the input control is greater than MPM’s. These behaviors
are obtained with all solutions in the middle of the Pareto front, because a
higher teeth number and a corresponding smaller size are obtained (p∗

1 was
increased and p∗2 was decreased) whereas the input energy controller is greater
(p∗5 and p∗6 were increased) in these optimal solutions. In conclusion, from a
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mechanical point of view, solutions in the middle of the Pareto front, offer
many possible system reconfigurations of the pinion-rack CVT.
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Fig. 7. Mechanical efficiency and Control input for the pinion-rack CVT. obtained
by the EA approach

5 Advantages and Disadvantages of Both Approaches

5.1 Quality and Robustness

As we can see, the results provided by the EA were as good as the obtained by
the MPM method because the solutions of the last were also nondominated
with respect to those found by the EA. However, the EA was not sensitive to
the initial conditions (always a randomly generated set of solutions were used).
Then, the EA approach provided a more robust behavior than that showed by
the MPM. Despite the fact that the results obtained by both approaches are
considered similar (from a mechanical and control point of view), as the EA
obtains several solutions from a single run, it gives the designer the chance to
select from them, the best choice based on his preferences.

5.2 Computational Cost

It is clear, based on the results shown in Tables 3 and 4 for the MPM and
the EA approaches respectively, that the EA is the most expensive. However,
as it was pointed out in Table 4, the EA obtains a set of nondominated
solutions per single run. In contrast, the MP method always returns a single
solution per run. Therefore, based on the average time (18.78 Hrs). and the
average number of solutions obtained (18.5 solutions), approximately, one
solution per hour is obtained. On the other hand, the MPM obtained a solution
in spending approximately 36 minutes. Then, we can conclude that the EA
requires, roughly, twice the time used by the MPM to find a single solution.
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5.3 Implementation Issues

As it was mentioned in Section 3.3, in order to solve the multiobjective op-
timization problem by using the MPM, a sequential quadratic programming
method is used. There, a quadratic programming problem, which is an ap-
proximation to the original CVT problem is solved. Based on this issues,
some difficulties were detected.

• This method requires the gradient calculation, sensitivity equations and
gradient equations of the constraints. In a general way, the number of
sensitivity equations is the product between the number of state variables
and the number of the design variables. Moreover, gradient equations are
related with the number of the design variables. Summarizing, we must
calculate: two equations of the objective functions, twenty four sensitivity
equations, six gradient equations and fifty four gradient equations of the
constraints. On the other hand, with the EA only two equations of the
objective functions must be calculated. Therefore, the EA presents an
easy reconfiguration.

• Due to the QP problem is an approximation to the original problem and
that the constraints are a linear approximation, this problem might be
unbounded or infeasible, whereas the original problem is not. With the
EA, the original problem is solved. Therefore, the search of the optimal
solution is performed indeed in the feasible region of the search space,
directly. In this way, in the case of the EA, new structural parameters can
be obtained when additional mechanical constraints to the design problem
are added. These mechanical constraints could be consider directly in the
constraint-handling of the algorithm and no further changes are needed.

It is worth reminding that another additional step related with the use
of the MPM is that it requires the minimization process of each objective
function independently. This is because the goal attainment method requires
a goal for each function to be optimized. This step is not required by the EA.
Finally, the EA showed no significant sensitivity to its parameters.

5.4 Goal Attainment to Refine Solutions

It is important to mention that we carried out a set of runs of the MPM
by using a nondominated solution obtained by the EA as an starting point.
However, the approach was unable to improve the solution in all runs.

6 Conclusions and Future Work

We have presented the multiobjective optimization of a pinion–rack continu-
ously variable transmission (CVT). The aim is to maximize the mechanical



Evolutionary Approach to Solve a Mechatronic Problem 23

efficiency and to mininize the corresponding control. The problem is sub-
ject to geometric and strength conditions for the gear pinion of the CVT.
Two different approaches were used to solve the problem: A Mathematical
Programming method called Goal Attainment and also an evolutionary algo-
rithm. The first one was very sensitive to the initial point of the search (the
point must be given by the user and it must be selected carefully), but the
computational time required was about 30 minutes to provide a solution. On
the other hand, the evolutionary algorithm, which in our case was differential
evolution, showed no sensitivity to the initial conditions i.e. a set of solutions
generated randomly were used. Besides, the approach did not shown any sen-
sitivity to the values of the parameters related to the crossover and mutation
operators. Furthermore, the EA returned a set of solutions in each single run,
which gave the designer more options to select the best solutions, based on
his preferences. The computational time required for the EA was about 60
minutes to find a solution. The obtained results from both approaches were
similar based on quality, but the EA was more robust (in each single run it
obtained feasible results). Finally, the EA was clearly easier to implement,
which was one of the most clear advantages of the approach.

Our future work consists on designing a preferences-handling mechanism,
in order to let the EA to concentrate the search on those regions of the Pareto
front where the most convenient solutions must be located. Besides, we will
solve other mechatronic problems by using our method.
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