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Abstract

This chapter presents a comparative study of differentirgiethods on many-
objective problems. The aim of this work is to investigate #iffectiveness of dif-
ferent approaches in order to determine any possible lioita and/or advantages
of each of the ranking methods studied and, in general, peeformance. Thus, the
results may help practitioners to select a suitable rankieghod for a problem at
hand, and can serve researchers as a guideline to developanking schemes or
further extensions of the Pareto optimality relation.

1 Introduction

In many disciplines, optimization problems have two or mokgectives, which
are normally in conflict with one another, and that we wish pimaize simulta-
neously. These are calledulti-objective optimization problenf®OPs), and their
solution involves the design of algorithms different fronose adopted for dealing
with single-objective optimization problems. In singlbjective optimization, the
determination of the optimum among a set of given solutisrdear. However, in
the absence of preference information, in multi-objectiypgéimization there does
not exist a unique or straightforward way to determine if &augon is better than
other. The notion of optimality most commonly adopted is ¢ime calledPareto
optimality[27] which leads to trade-offs among the objectives. Thys)&ing this
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relation, it is not possible to obtain a single solution, imstead, we produce a set
of them called thé>areto optimal set

Nowadays, Multi-objective Evolutionary Algorithms (MOERAhave shown an
acceptable performance in many real-world problems witkirtbrigins in engi-
neering, scientific and industrial areas [4]. Nonethelessst of the publications
in this area consider problems with only two or three objedj in spite of the
fact that many real-world problems involve a larger numbkpbjectives (4 or
more)! The MOEAs that are based on traditional Pareto dominanceteatcare
the most representative and cited in the current literatwee PAES [20], NSGA-

Il [7], SPEA2 [39] and micro-GA [5]. Besides the difficulty emalyze the Pareto
front when there are more than three objectives, recentet|#l7, 18, 28, 36] have
shown that MOEASs based on Pareto optimality have difficsitiifind a good Pareto
front approximation in problems with a large number of olijees, which are called
many-objective problenfsOne of the reasons for this limitation is that the propor-
tion of nondominated solutiong€., equally good solutions regarding Pareto opti-
mality) in a population increases rapidly with the numbeobjectives. In [14] it is
shown that this number goes to infinity when the number ofailjes approaches
infinity. This implies that in the presence of a large numHeslgectives the selec-
tion of new solutions is carried out almost at random sincargd number of the
solutions are equally good.

In the current literature we can identify two approaches camly adopted to
cope with many-objective problems, namelyto propose relaxed forms of Pareto
optimality as in [2, 11, 14, 33], anii) to reduce the number of objectives of the
problem to ease the decision making or the search processgsq1].

Since relaxed forms of Pareto optimality are the most comapproach found
in literature, in this chapter we present a comparativeysthdt tries to reveal the
advantages and disadvantages of some ranking methods sisgrtimality rela-
tions in many-objective problems. That is, methods thatigeda partial order in a
set of vectors but with a finer grain resolution than the omiged by traditional
Pareto optimality. The assessment to the different rankiethods is based on the
distribution of the ranksife., the number of ranks and the number of solutions in
each rank) and on the plots of the solutions in decision spacguis their ranks.
The ranking methods considered in this study include retiiefits of the Pareto
optimality relation or methods that complement it by indwga finer ordering on
the nondominated solutions found. In Section 5, we will ftyidescribe the ranking
methods considered for this study. These methods wereedlbptause they follow
considerably different approaches, do not require extramaters and have shown
promising results.

The remainder of this chapter is organized as follows. Inie@, we provide
some basic concepts related to multi-objective optimizatiVe mention the scala-

1 See for example [23, 29] in which the use of MOEAs in circuitiopzation is discussed.

2 Although this term is commonly used in the specialized ditere, there is no consensus about
how many objectives are considered ‘many’. However, juddin the scalability difficulties shown
by Pareto-based MOEAs, we consider that we deal with a majgetive problem if it has more
than 4 objectives.
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bility problems of the Pareto optimality relation in Secti® and the optimality rela-
tions are discussed in Section 4. The ranking methods adésalissed in Sections 5
and 6. Section 7 includes the comparison and analysis ofafildirg methods. Fi-
nally, in Section 8, we provide our final remarks with resptecthe comparative
study performed.

2 Background Concepts

2.1 Multi-objective optimization problem (MOP)

The Multi-objective optimization problem can be formallgfohed as the problem
of finding:
X =[X,%5,. .. ,x;]T which satisfies then inequality constraints:

G0 <0i=1...m

the p equality constraints:

and optimizes the vector function:

f(x) = f1(x), f2(x), ..., fk(X)

In other words, we aim to determine from among the Batf all vectors (points)
which satisfy the constraints those that yield the optimates for all thek objec-
tive functions simultaneously. The constraints define gasible regior and any
pointx in the feasible region is called a feasible point.

2.2 Pareto Dominance

Pareto Dominancés formally defined as follows:

A vectoru = (ug,...,Uy) is said to dominate = (v1,...,v) if and only ifu is
partially less tharv, i.e.,Vi € (1,....k),ui <viAdi € (1,...,K) :ui < Vv; (assuming
minimization).

In order to say that a solution dominates another one, tresyeeds to be strictly
better in at least one objective, and not worse in any of themwhen we are
comparing two different solutions A and B, there are 3 pdksés:

e A dominates B
e Ais dominated by B
e A and B are nondominated
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2.3 Pareto Optimality

The formal definition ofPareto optimalityis provided next:

A solutionx, € . (where.% is the feasible region) is said to be Pareto opti-
mal if and only if there is ney € .# for whichv = f(xy) = (v1,...,V) dominates
u=f(xy) = (uy,...,u), wherek is the number of objectives.

In other words, this definition says that is Pareto optimal if there exists no
feasible vectok, which would decrease some objective without causing a sanul
neous increase in at least one other objective (assuminigniaation).

This definition does not provide us a single solution (in deci variable space),
but a set of solutions which form the so-calleareto Optimal SeP*). The vectors
that correspond to the solutions included in the Paretoradiset aramondominated

2.4 Pareto Front

When all the nhondominated solutions of a MOP are plotted ijeailve function
space, their nondominated vectors are collectively knoswihePareto Front(PF*).
Formally:

PF* = {f(x) = (f1(X), ..., k(X)) [x € P*}

Itis, in general, impossible to find an analytical expresgtmat defines the Pareto
front of a problem, so the most common way to obtain the Pdretdis to compute
a sufficient number of points in the feasible region, and fiilear out the nondomi-
nated vectors from them.

The previous definitions are graphically depicted in Figlyrehowing thdPareto
front, the Pareto Optimal Seand thedominancerelations among solutions. Please
refer to [4] for more in-depth information about multi-objeve optimization.

3 Scalability Problems when Dealing with Many Objectives

Since the implementation of the first MOEA in the mid-1980%][& wide variety
of new MOEAs have been proposed, gradually improving inaiffeness and effi-
ciency for solving MOPs. However, the typical validationsoich MOEAs is done
by adopting test problems with only two or three objectia®] soon researchers re-
alized that the traditional Pareto ranking schemes (ina&ptse today) scale poorly
when the number of objectives increases. It is thereforgtaral step to start de-
signing MOEAs that can deal with problems having a large nemaf objectives,
and therefore the importance of studies such as the onerpeelsa this chapter.
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Fig. 1 Mapping of the Pareto Optimal Solutions to the Objectivedtiam Space.

Recent experimental [17, 18, 28, 36] and analytical [6, 14, Rudies have
shown that MOEAs based on Pareto optimality scale poorly @Rg with a high
number of objectives (4 or more). Although this limitatioeesns to affect only
the Pareto-based MOEAS, optimization problems with a largaber of objectives
(also known as many-objective problems) introduce somficdifies common to
any other multi-objective optimizer. Three of the most ges difficulties due to
high dimensionality are the following:

1. Deterioration of the Search AbilityOne of the reasons for this problem is that
the proportion of nondominated solutiong(, equally good solutions) in a pop-
ulation increases rapidly with the number of objectived[2¢cording to Bent-
ley et al. [1] the number of nondominatdéddimensional vectors on a set of size
nis O(IN“"1n). This implies that in problems with a large number objective
the selection of solutions is carried out almost at randorgwded by diver-
sity criteria. In fact, Mostaghim and Schmeck [25] have shdhat a random
search optimizer achieves better results than NSGA-II{ g problem with 10
objectives.

2. Dimensionality of the Pareto fronDue to the ‘curse of dimensionality’ the
number of points required to represent accurately a Paretd increases ex-
ponentially with the number of objectives. The humber ofnp®inecessary to
represent &-dimensional Pareto front with resolutignis given byO(krk—l)
(e.g, see [32]). This poses a challenge both to the data strisctarefficiently
manage that number of points and to the density estimatashi@ve an even
distribution of the solutions along the Pareto front.

3. Visualization of the Pareto fron€Clearly, with more than three objectives is not
possible to plot the Pareto front as usual. This is a sericatsl@m since visual-
ization plays a key role for a proper decision making. Patalbordinates [38]
and self-organizing maps [26] are some of the methods pesptis ease the
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decision making in many-objective problems. However, mesearch in this
area is required.

Currently, there are mainly two approaches to solve marjgative problems,
namely:

1. Adoptor propose an optimality relation that yields a soluordering finer than
that yielded by Pareto optimality. Among these alternatilations we can find
average ranking [2]k-optimality [14], preference order ranking [11], favour
relation [33], and a method that controls the dominance [@@aBesides pro-
viding a richer ordering of the solutions, these relatiobtain an optimal set
that usually is a subset of the Pareto optimal set. Thergtuese techniques can
be used as a remedy for the first and second issues of the pseafioimeration.

2. Reduce the number of objectives of the problem during daech process or,
a posteriori during the decision making process [3, 8, 21]. The main gbal
this kind of reduction techniques is to identify the reduntdabjectives (or re-
dundant to some degree) in order to discard them. A redurudgedttive is one
that can be removed without changing the dominance refatiatuced by the
original objective set.

4 Optimality Relations to Discriminate Solutions

Optimization techniques search a problem domain for thet reffisient solution.
Some techniques focus on one solution at a time and some tetttemiques can
process a set of solutions (called “population”). The ojténlocates a single point
in the objective space, tests it, compares its fitness torivdqus best result, and
determines the next point to test. Population-based opéiraiare more complex,
because they need to identify a whole set of points in thectibgespace, test all the
points, rank their fithesses, and determine the next setlaficos to test.

An important aspect of population-based algorithms igthegd to rank the solu-
tions before they are processed by the optimizer. The rgniiacedure takes place
during the evaluation process, after the objective fumstisave been evaluated and
an array filled with result values has been created. Rankiegrs to transform the
resultant array that is produced by the multi-objectivd@ation into a resultant vec-
tor. Ranking is required because a set of solutions in thblpno domain is being
tested and the results have to be presented to the optiorizzaradigm in a uniform
structure. Ranking is fundamental to those methods bedtgisieles the search: the
best solutions in a set are given the top ranking. The opém&lies on the top ranks
to identify high-potential regions of the search space texygored. Therefore, any
ranking method that is used needs to be efficient. The rankiethod has to be
robust enough to handle multiple objectives (i.e., it messbalable). If the rank-
ing method adopted is not robust, then many different ramkiethods will have

3 The dominance relation induced by a given s& of objectives is defined by
2z={xy)Vfie. 7 fi(x) < fi(y)}.
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to be used as the number of objectives increases. To deveglepexalized ranking
method the following question has to be answered: Can assmagking method be
developed that remains consistent across a range of maegtviejs?

The taxonomy of approaches that we will cover in this comipaastudy is
shown in Figure 2. These techniques were selected becaegevtire proposed
specially for many-objective optimization problems anethepresent a substantial
difference with respect to the Pareto optimality relatiomthe literature, we can
find other optimality relations. However, they are minorigdions, whether it be of
Pareto optimality or some other optimality relation stutlfeere. For instance, the
fuzzy optimality relation presented in [37] is a variant b&t defined by Farina and
Amato [15] and the winning score relation [22] is equivalenthe average ranking
method.

In this proposed taxonomy, we divided the ranking technignetwo groups:
(1) those that do not need extra parameters to rank all thetieos, and (2) those
in which at least one parameter is required to rank the soistproperly. Each of
these two groups are discussed in this chapter.

Ranking Techniques
Without Parameters With Parameters
Average Favqur Pare_to Contraction
Ranking Ranking Ranking K-Optimality Expansilon’
Maximum Preference Order
Ranking Ranking

Fig. 2 Mapping of the Pareto Optimal Solutions to the Objectivedtiam Space.

5 Ranking Methods without Parameters

5.1 Average and Maximum Ranking Methods

Although without a specific interest in many-objective desbs, Bentley and Wake-
field [2] proposed three alternative ranking methods to t@apetimality, namely:
average ranking (AR), sum of ratios (SR) and maximum rankMg&). The AR



8 Lopez Jaimes et al.

method computes for each solution a different rank consigerach objective in-
dependently. The final rank of a solution is obtained by sumgnaill their ranks on
each objective. Table 1 illustrates the AR method with a emple with six
3-objective solutions.

Table 1 An example of the Average, Maximum, Favour and PreferenceOanking methods.

a) b) c) d)
Solution rank 1 rank 2 rank 3 Average Maximum Favour Prefeee@rder
(4,3,5 3 3 4 10 3 3 3
1,4,7 1 4 6 11 1 3 2
6,2,2) 4 2 1 7 1 1 1
(7,7,6) 5 5 5 15 5 4 5
8,1,3) 6 1 2 9 1 2 3
(3,8,4) 2 6 3 11 2 3 4

In this study, an equivalent method is used to computéRér each solution.
First, the following matrix is defined for solutions andx;:

1if fi(xi) < (X))
aijk =14 Oif fiu(xi) = fi(x;)
—1f fe(xi) > fie(xj)

From these values, the ramR for each solutiorx; is computed by:

K N
AR(Xj) = KN — Ajk;
20

whereK is the number of objectivesl the number of solutions.

The maximum ranking takes the best rank as the global ran&doh solution.
Clearly this method favors extreme solutions, i.e., sohdiwith high performance
in some of the objectives, although with poor overall parfance. Table 1 shows
an example of the use of this method.

5.2 Favour Ranking

This ranking method was proposed by Drechsler in [13] andist& of a new rela-
tion calledfavour. This technique requires no user interaction and can hanftia-
sible solutions.

x<gye[infit) <fily),1<i<n|>[j: i) <fi(y,1<j<n (1)
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This means that is favouredto y (x <; y) iff i components ok are better than
the corresponding componentsyoénd onlyj components of are better than the
corresponding componentsxfFor examplefy, = (1,1,2) andfy, = (5,3,1), then
we have thatfy <; fy,.

Also, in this model, the authors proposed that the solutamesdivided into so-
calledSatisfiability ClasseSCs) depending on their quality. Solutions of the same
quality belong to the same SC. This property helps the masimain using a graph
representation to describe properly the relafewvour(<s) , in which each element
is a node and preferences are given by edges. The relatias not transitive, thus
the relation< ¢ can generate “cycles” in the graph, causing elements tisatrite a
cycle to be denoted as not comparable and they are includbeé isame SC given
the same rank to each of the elements in that cycle. The ghagpltontains all the
populations Gz) needs to be a directed graph without internal cycles, sthall
cycles have to be identified and replaced by a single nodesepting the single
cycle.

Once we have the final directed gragby§, we know that Gz) is acyclic, and it
is possible to determinelavel sortingof the nodes. For each node@y we define
a SC. Level sorting of the nodes (B determines the ranking of the SCs; each
level contains at least one node®f. Then each level corresponds to exactly one
SC. Using the level sorting, it is possible to group nodets(sésolutions) that are
not connected by an edge in the same SC. These solutionstaremparable with
respect to relatior: s and thus they should be ranked in the same level of quality.

For the case = 2 it holds that the<; and<q are equal, where gy is the Pareto
dominance relation. So, when= 2, the favour relation is exactly the same as the
Pareto dominance relation. Relatiery can handle infeasible solutions. When an
element is infeasible, the element is considered as thetwossible value. The
computation time for the SC classification@|P|2 - n), whereP is the set of solu-
tions.

5.3 Preference Order Ranking

This is a ranking procedure that exploits the definition cfprence order (PO)
proposed by di Pierro in [12]. The preference order definiti

A pointx* € wis considered efficient in order k if(X*) is not dominated by any
member of P for any of the k-element subsets of the objectivether words, a
point is efficient of order k if it is a Pareto optimal in all tl”(é;?) subspaces of F
obtained considering only k objectives at a time.

It is clear that the efficiency of orden for an MOP with exactlyn objectives
simply enforces Pareto optimality.

The condition of efficiency of order can be used to help redbheenumber of
points in a set by retaining only those that are regarded ast‘@ompromises”. In
fact, it is intuitive that the less extreme components a tploéas, the more likely it
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is to be efficient of order. When the number of points sele@edill considerably
large, a more stringent criterion is required to sort outdretolutions.

Definition (Efficiency of orderk with degreez): A point x* is said to be efficient
of orderk with degreezif it is not dominated by any member &ffor exactlyz out
of the possiblg ) — element subsets.

At every generatioh from a populatiorP:

1.- Identify the Pareto nondominated solution$’adnd group them into the sub-
setRM, which is given rank 1.

2.-  Assign to the individuals d®Y) a rank according to a strategy based on Pref-
erence Order with Degreeand the worst given rank is.

3.- Identify the Pareto nondominated individualstof RY) and group them into
the subseR?, which will be given rankv+s.

4.- lterate (Step 2) and (Step 3) urfi\ R® = 0, whereR® is the subset that
contains the worst individuals.

6 Ranking Methods with Parameters
6.1 K-optimality

Farina and Amato [15] proposed an alternative relation Wwhakes into account
the number of improved objectives between two solutionsgs Télation employs
three quantitiesn,(x1,X2),Ne(X1,X2) andnw(X1,X2), which denote the objectives
wherex; is better, equal or worse tham, respectively. Using these, the concepts of
(1— k)-Dominanceandk-Optimalityare defined. A solutiom; (1 — k)-dominates

Xz if and only if

{ Ne(X1,X2) < M

Np(X1,Xz) > M1

In a similar way to Pareto optimality, a solutiosi is k-optimumif and only if
there is nax in the decision variable space such tk&tdominates*.

Then, this definition is fuzzificated by introducing fuzzymiers to define
Np(X1,X2), Ne(X1,X2) andny(X1,X2). Finally, they propose a further extension that
introduces a fuzzy definition for the Pareto dominance i@tetself.

6.2 Contraction - Expansion

Sato, Aguirre and Tanaka [30] proposed a method to contebttminance area
of solutions. This method can control the degree of exparngiacontraction of the
dominance area adopting a user-defined parang&t®o contract and expand the
dominance area of solutions, the authors modify the fithakgefor each objective
function by changing the user defined param&én the following equation:
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roy Fesinw+§-m .
fi(x)_—sin(s-rr) Vi=12,...,m

wherer is the norm off (x), fi(x) is the fithess value in thie- th objective, andu
is the declination angle betwed(ix) and f;(x).

If the user adopts a value & < 0.5, the dominance area is expanded and pro-
duces a more fine grained ranking of solutions and would gthem selection. On
the other hand, if the user se&s> 0.5, the dominance area is contracted from the
original one and produces a coarser ranking of solutionakeming the selection
procedure.

7 Analysis of Parameterless Ranking Methods

7.1 Ranking Distributions

One criterion to estimate the quality of a ranking methocisnalyze the distri-
bution of the ranks assigned to a set of solutions. A rankiethiwd will favor the
selection process ifitis able to generate a richer rangaris. To measure the scal-
ability of a method with respect to the number of objectivesoan determine if the
shape and range of the distribution is maintained when tineboeu of objectives is
incremented. Along with the four ranking methods descriipeSection 5, a Pareto-
based ranking method is included as a reference to compawgtier ranking meth-
ods. The Pareto-based ranking method used is Fonseca anoh§kemethod [16]
which ranks solutions based on the Pareto dominance neldtiee ranking distribu-
tions presented in this section belong to the ranking of 0d@@dom solutions for
the problems DTLZ2 and DTLZ7 described in Table 2. For eadblem we used
3,4,5, 8,10, 15 and 20 objectives.

With regard to problems DTLZ2 and DTLZ7, for every number dfjexrtives
considered, the Pareto-based ranking method concentnatgf the solutions un-
der rank 1 and the frequency for the worst ranks quickly apphes zero (see Fig-
ures 3 and 4 ). This behavior provides few different rankgelection process.
In DTLZ7, for 3 objectives, about 60% of the solutions havekrd (see Figure 4).
By observing the distributions for more objectives we caprapiate a phenomenon
previously reported in the specialized literature [17,1%,36]. That is, the number
of nondominated solutions (rank 1) increases quickly wit humber of objec-
tives. For example, for 8 objectives, around 80% of the smhstare nondominated
in both MOPs, while for 15 and 20 objectives, all the solusiane nondominated in
DTLZ7.

The distribution of the maximum ranking method (MR) for 3 ahdbjectives in
DTLZ7 is similar to that of the Pareto-based ranking methéowever only about
32% of the solutions have the best rank and, consequengiie ik a larger range
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of ranks available. This behavior changes for more than Baibes. For that num-
ber of objectives, most of the solutions are assigned medanks, some solutions
have the worst rank, and just a few solutions have rank 1 (¥y. When the num-
ber of objectives is increased, the number of solutions thighbest rank decreases
while the number of solutions with the worst rank increas®s.10 objectives, for
instance, 80% of the solutions have the worst rank and onlya9é the best rank.
We believe that a distribution where the worst solutiongespnt the majority of
the population may hinder the progress towards the Paretd.fFor instance, if
we carried out a tournament selection, most of the tournasneould include bad
solutions. Good solutions would have small chances of gakviVith respect to
DTLZ2, MR produces a distribution with two tails until 10 egfives, since when
the number of objectives is increased the range of rankihgeegas reduced (see Fig-
ure 3). For 10 or more objectives, approximately 80% of tHatgmns have the best
rank. This means that the maximum ranking method, althoogles better than the
Pareto-based method, has poor scalability with respebetother methods studied.

In both problems, the preference order ranking (POR) metisd presents a
skewed right distribution where the frequency of the randardases slowly. Nonen-
theless, in contrast with the previous ranking methodsPO& method’s distribu-
tion is conserved for all the objectives considered, algiothe range of the dis-
tribution is reduced as the number of objectives is increie@nThis distribution
suggests that the POR method scales well with the numberjeftbkes.

The favour ranking method maintains well the shape and ramgs rank dis-
tribution through all the objectives considered and fortiie problems. However,
it is the only ranking method that shows for all objectivedighdly skewed left
distribution where all the ranks have a similar frequenaritiution.

In DTLZ7, the AR presents a bell-shaped distribution whishmore defined
as the number of objectives is increased. In contrast to tiwer sanking methods,
the range of the AR’s distribution is increased with the nemdf objectives. With
respect to DTLZ2, for a high number of objectives this methoatiuces a slightly
skewed distribution.
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7.2 Ranking Landscapes

Similar to the fithess landscapes used in single-objectitienization, it is possible

to visualize the behavior of a ranking method by plotting ¥heables against the
ranking values assigned to each point of the decision sfaaaake this visualiza-
tion possible the MOP should have at most two variables.ilgdtudy we adopted
two multiobjective problems with only two variables. A 3jebtive problem defined
by Viennet [35] and a 5-objective problem proposed by [2&juFes 5-9 and 10-14
show the ranking landscape generated by each ranking methioel Viennet's and

Miettinen’s problems respectively. Each ranking landscepaccompanied by its
isocontour plot where the Pareto optimal set is shown withealed region.

The ranking landscape for Viennet's MOP presents a smoathuaimodal sur-
face for all the ranking methods except for the maximum ragknethod (see Fig-
ure 6). It is interesting to note that, since this method faxaxtreme solutions, the
surface for this method has three local optima, one for edgbctive of the prob-
lem. Even so, the surface generated for all the methods vediold an optimizer to
converge easily towards the optimal solutions.

With respect to Miettinen’s MOP (see Figures 10-14), th&iragnlanscape gen-
erated by all the ranking methods presents a multi-modéser All the surfaces
have peaks and plateaus which hinder the convergence tewaedptimal solu-
tions. There are some interesting observations about taegeng landscapes. First,
the isocontour plots show clearly that the ranking methams/erge only to some
regions of the Pareto optimal set and, consequently, sogien®of the correspond-
ing Pareto front. For example, the average and favour rankiathods only cover
the upper part of the Pareto optimal set. The preference cad&ing method is the
only one that converges to a region more similar to the Pametional set. Secondly,
if we see the peaks near the optimal regions we can realizestime solutions
(those in the top of the peaks) may receive worst ranks thasetkolutions behind
the peaks but farther from the optimal region. That is, thekgeact as a barrier that
keeps them from reaching the optimal solutions. It is irgéng to note that the
maximum ranking method generates a smoother surface wighooe peak before
the optimal region. This fact suggests that the maximumirgninethod is useful
for approaching quickly the Pareto optimal solution, altgb without covering the
whole set.
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Table 2: MOP Test Functions

[Function [Definition

DTLZ2 [9, 10] F = (f1(x), f2(x),..., fu (X)), where:

(%) = (L+(xw)) €08 1 x1) OS5 %) . COS( 1 Xu-2) COS X -1)

f2(0) = (L+g(xw)) €08 1 1) COS( 5 Xp) . COS( X2 Sin( 5 Xur-1)

f3() = (L+(xw))cOS 5x1) 08 5 %) . COL 5 Xw-2)

fu_1(x) = (1+g(xu))cog gxl)sin( gxz)

f(x) = (L+g0a)) sin(5 %)
where:
gom) = 3 (x-08)?

X EXM
x€[0,1 Vi=12...,n
n=M+k—1, k=10

DTLZ7 [9, 10] F = (f1(x), f2(x),..., fu (X)), where:

fl(X) = X1
f2(x) = %
fa(x) = X3

fm-1(X) = Xm-1
fm(X) = (L+9g(xm))h(f1, f2,..., fm—1,9(x))
where:
9

X) =1+ — X
g(x) o] i

XlCXM
M-1 3
P(f e fus000) = M= 5 (i 1+ sintamt))
£ 1+9(x)
X €1[0,1] Vi=12...,n
n=M+k—1, k=10

Viennet [35] F = (f1(x), f2(x), f3(x)), where:

f1(%,y) = 0.5% (5 +y?) +sin( +y?),

_ 2 _ 2
fa(xy) = (3 Zy—o—A) +<X ;;1) +15,
1 2
fa(x,y) = [Casr) —1.1e%¥)
xe[-3,3

ye[-3,3
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Table 2: (continued)

[Function [Definition
Miettinen [24] F = (f1(x), f2(x), f3(x), fa(x), f5(x)), where:

fl(Xl.Xz =
fa(x, %

)
)
f3(x1,%2)
)
)

f(x1,%2),

f(x1 —1.2,x, — 1.5),
f(x1+0.3,%2 — 3.0),
f(x1 —1.0,%2 4+ 0.5),
f(x1 —0.5,x — 1.7),

fa(X1,%2
fs (X1, %) =

where:
f(X1, %) = —Us(X1,X2) — Up(X1,X2) — Ug(Xg,X2) + 10
U (x1,%) = 3(1—xq)2exp(—x¢ — (x2+1)?)

( )
(X1, %) = —10((1/4)x — ¢ —X3) exp(—x§ — x3)
Us(xa. ) = (1/3)exp(—(x+1)*—x)
X, € [—4.9,3.2)
%2 € [~3.5,6]

8 Conclusion and Future Work

In this study we have compared some ranking methods witheotgp their rank
distribution and their ranking landscape which is the stefgenerated by the ranks
assigned to solutions. The inspection of the rank distidiouprovided a guide to
determine the scalability of the ranking methods and thessible disadvantages
in the search process. The ranking landscapes allowed usstne easily how the
ranking method could assist or hinder the progress towae®areto optimal set.

One of our findings is that the preference order ranking isntle¢hod with the
best scalability among all the methods included in thisstédso it shows a dis-
tribution similar to the one produced by Pareto-based rajnkiethods with two or
three objectives. This behavior suggests that the intibaluof preference order
ranking would perform effectively if incorporated into a NE2.. Another finding is
that although maximum ranking does not induce a promisingirg distribution,
its ranking landscape suggests that it can be used to reacklygsome regions of
the Pareto optimal set. In addition, the ranking landscafie® us to see that each
ranking method converges to a different subset of the Pangtimal set. That is,
some methods cover the Pareto front better than othersniddss that if we want
to find the whole Pareto front using some of these ranking cu=thve have to use
an additional technique or to modify the method to achieis th

As part of our future work we want to incorporate the rankingthods included
in this chapter into a MOEA in order to correlate some featwleserved here with
convergence capabilities.
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Fig. 7 Favour Ranking - Viennet
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Fig. 9 Pareto Ranking - Viennet
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Fig. 12 Favour Ranking -
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Fig. 14 Pareto Ranking - Miettinen



