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Abstract
This chapter presents a comparative study of different ranking methods on many-

objective problems. The aim of this work is to investigate the effectiveness of dif-
ferent approaches in order to determine any possible limitations and/or advantages
of each of the ranking methods studied and, in general, theirperformance. Thus, the
results may help practitioners to select a suitable rankingmethod for a problem at
hand, and can serve researchers as a guideline to develop newranking schemes or
further extensions of the Pareto optimality relation.

1 Introduction

In many disciplines, optimization problems have two or moreobjectives, which
are normally in conflict with one another, and that we wish to optimize simulta-
neously. These are calledmulti-objective optimization problems(MOPs), and their
solution involves the design of algorithms different from those adopted for dealing
with single-objective optimization problems. In single-objective optimization, the
determination of the optimum among a set of given solutions is clear. However, in
the absence of preference information, in multi-objectiveoptimization there does
not exist a unique or straightforward way to determine if a solution is better than
other. The notion of optimality most commonly adopted is theone calledPareto
optimality [27] which leads to trade-offs among the objectives. Thus, by using this
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relation, it is not possible to obtain a single solution, butinstead, we produce a set
of them called thePareto optimal set.

Nowadays, Multi-objective Evolutionary Algorithms (MOEAs) have shown an
acceptable performance in many real-world problems with their origins in engi-
neering, scientific and industrial areas [4]. Nonetheless,most of the publications
in this area consider problems with only two or three objectives, in spite of the
fact that many real-world problems involve a larger number of objectives (4 or
more).1 The MOEAs that are based on traditional Pareto dominance andthat are
the most representative and cited in the current literatureare: PAES [20], NSGA-
II [7], SPEA2 [39] and micro-GA [5]. Besides the difficulty toanalyze the Pareto
front when there are more than three objectives, recent studies [17, 18, 28, 36] have
shown that MOEAs based on Pareto optimality have difficulties to find a good Pareto
front approximation in problems with a large number of objectives, which are called
many-objective problems.2 One of the reasons for this limitation is that the propor-
tion of nondominated solutions (i.e., equally good solutions regarding Pareto opti-
mality) in a population increases rapidly with the number ofobjectives. In [14] it is
shown that this number goes to infinity when the number of objectives approaches
infinity. This implies that in the presence of a large number of objectives the selec-
tion of new solutions is carried out almost at random since a large number of the
solutions are equally good.

In the current literature we can identify two approaches commonly adopted to
cope with many-objective problems, namely:i) to propose relaxed forms of Pareto
optimality as in [2, 11, 14, 33], andii ) to reduce the number of objectives of the
problem to ease the decision making or the search processes [3, 8, 21].

Since relaxed forms of Pareto optimality are the most commonapproach found
in literature, in this chapter we present a comparative study that tries to reveal the
advantages and disadvantages of some ranking methods used as optimality rela-
tions in many-objective problems. That is, methods that induce a partial order in a
set of vectors but with a finer grain resolution than the one induced by traditional
Pareto optimality. The assessment to the different rankingmethods is based on the
distribution of the ranks (i.e., the number of ranks and the number of solutions in
each rank) and on the plots of the solutions in decision spaceversus their ranks.
The ranking methods considered in this study include redefinitions of the Pareto
optimality relation or methods that complement it by inducing a finer ordering on
the nondominated solutions found. In Section 5, we will briefly describe the ranking
methods considered for this study. These methods were adopted because they follow
considerably different approaches, do not require extra parameters and have shown
promising results.

The remainder of this chapter is organized as follows. In Section 2, we provide
some basic concepts related to multi-objective optimization. We mention the scala-

1 See for example [23, 29] in which the use of MOEAs in circuit optimization is discussed.
2 Although this term is commonly used in the specialized literature, there is no consensus about
how many objectives are considered ‘many’. However, judging by the scalability difficulties shown
by Pareto-based MOEAs, we consider that we deal with a many-objective problem if it has more
than 4 objectives.
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bility problems of the Pareto optimality relation in Section 3 and the optimality rela-
tions are discussed in Section 4. The ranking methods are alldiscussed in Sections 5
and 6. Section 7 includes the comparison and analysis of the ranking methods. Fi-
nally, in Section 8, we provide our final remarks with respectto the comparative
study performed.

2 Background Concepts

2.1 Multi-objective optimization problem (MOP)

The Multi-objective optimization problem can be formally defined as the problem
of finding:

x∗ = [x∗1,x
∗
2, . . . ,x

∗
n]

T which satisfies them inequality constraints:

gi(x) ≤ 0;i = 1, . . . ,m

the p equality constraints:

hi(x) = 0;i = 1, . . . , p

and optimizes the vector function:

f(x) = f1(x), f2(x), . . . , fk(x)

In other words, we aim to determine from among the setF of all vectors (points)
which satisfy the constraints those that yield the optimum values for all thek objec-
tive functions simultaneously. The constraints define the feasible regionF and any
pointx in the feasible region is called a feasible point.

2.2 Pareto Dominance

Pareto Dominanceis formally defined as follows:
A vectoru = (u1, . . . ,uk) is said to dominatev = (v1, . . . ,vk) if and only if u is

partially less thanv, i.e.,∀i ∈ (1, . . . ,k),ui ≤ vi ∧∃i ∈ (1, . . . ,k) : ui < vi (assuming
minimization).

In order to say that a solution dominates another one, this one needs to be strictly
better in at least one objective, and not worse in any of them.So when we are
comparing two different solutions A and B, there are 3 possibilities:

• A dominates B
• A is dominated by B
• A and B are nondominated
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2.3 Pareto Optimality

The formal definition ofPareto optimalityis provided next:
A solutionxu ∈ F (whereF is the feasible region) is said to be Pareto opti-

mal if and only if there is noxv ∈ F for whichv = f (xv) = (v1, . . . ,vk) dominates
u = f (xu) = (u1, . . . ,uk), wherek is the number of objectives.

In other words, this definition says thatxu is Pareto optimal if there exists no
feasible vectorxv which would decrease some objective without causing a simulta-
neous increase in at least one other objective (assuming minimization).

This definition does not provide us a single solution (in decision variable space),
but a set of solutions which form the so-calledPareto Optimal Set(P∗). The vectors
that correspond to the solutions included in the Pareto optimal set arenondominated.

2.4 Pareto Front

When all the nondominated solutions of a MOP are plotted in objective function
space, their nondominated vectors are collectively known as thePareto Front(PF∗).
Formally:

PF∗ := {f(x) = ( f1(x), . . . , fk(x))|x ∈ P∗}

It is, in general, impossible to find an analytical expression that defines the Pareto
front of a problem, so the most common way to obtain the Paretofront is to compute
a sufficient number of points in the feasible region, and thenfilter out the nondomi-
nated vectors from them.

The previous definitions are graphically depicted in Figure1, showing thePareto
front, thePareto Optimal Setand thedominancerelations among solutions. Please
refer to [4] for more in-depth information about multi-objective optimization.

3 Scalability Problems when Dealing with Many Objectives

Since the implementation of the first MOEA in the mid-1980s [31], a wide variety
of new MOEAs have been proposed, gradually improving in effectiveness and effi-
ciency for solving MOPs. However, the typical validation ofsuch MOEAs is done
by adopting test problems with only two or three objectives,and soon researchers re-
alized that the traditional Pareto ranking schemes (in spread use today) scale poorly
when the number of objectives increases. It is therefore, a natural step to start de-
signing MOEAs that can deal with problems having a large number of objectives,
and therefore the importance of studies such as the one presented in this chapter.
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Fig. 1 Mapping of the Pareto Optimal Solutions to the Objective Function Space.

Recent experimental [17, 18, 28, 36] and analytical [6, 19, 34] studies have
shown that MOEAs based on Pareto optimality scale poorly in MOPs with a high
number of objectives (4 or more). Although this limitation seems to affect only
the Pareto-based MOEAs, optimization problems with a largenumber of objectives
(also known as many-objective problems) introduce some difficulties common to
any other multi-objective optimizer. Three of the most serious difficulties due to
high dimensionality are the following:

1. Deterioration of the Search Ability. One of the reasons for this problem is that
the proportion of nondominated solutions (i.e., equally good solutions) in a pop-
ulation increases rapidly with the number of objectives [14]. According to Bent-
ley et al. [1] the number of nondominatedk-dimensional vectors on a set of size
n is O(lnk−1n). This implies that in problems with a large number objectives,
the selection of solutions is carried out almost at random orguided by diver-
sity criteria. In fact, Mostaghim and Schmeck [25] have shown that a random
search optimizer achieves better results than NSGA-II [7] in a problem with 10
objectives.

2. Dimensionality of the Pareto front. Due to the ‘curse of dimensionality’ the
number of points required to represent accurately a Pareto front increases ex-
ponentially with the number of objectives. The number of points necessary to
represent ak-dimensional Pareto front with resolutionr is given byO(krk−1)
(e.g., see [32]). This poses a challenge both to the data structures to efficiently
manage that number of points and to the density estimators toachieve an even
distribution of the solutions along the Pareto front.

3. Visualization of the Pareto front. Clearly, with more than three objectives is not
possible to plot the Pareto front as usual. This is a serious problem since visual-
ization plays a key role for a proper decision making. Parallel coordinates [38]
and self-organizing maps [26] are some of the methods proposed to ease the
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decision making in many-objective problems. However, moreresearch in this
area is required.

Currently, there are mainly two approaches to solve many-objective problems,
namely:

1. Adopt or propose an optimality relation that yields a solution ordering finer than
that yielded by Pareto optimality. Among these alternativerelations we can find
average ranking [2],k-optimality [14], preference order ranking [11], favour
relation [33], and a method that controls the dominance area[30]. Besides pro-
viding a richer ordering of the solutions, these relations obtain an optimal set
that usually is a subset of the Pareto optimal set. Therefore, these techniques can
be used as a remedy for the first and second issues of the previous enumeration.

2. Reduce the number of objectives of the problem during the search process or,
a posteriori, during the decision making process [3, 8, 21]. The main goalof
this kind of reduction techniques is to identify the redundant objectives (or re-
dundant to some degree) in order to discard them. A redundantobjective is one
that can be removed without changing the dominance relation3 induced by the
original objective set.

4 Optimality Relations to Discriminate Solutions

Optimization techniques search a problem domain for the most efficient solution.
Some techniques focus on one solution at a time and some othertechniques can
process a set of solutions (called “population”). The optimizer locates a single point
in the objective space, tests it, compares its fitness to the previous best result, and
determines the next point to test. Population-based optimizers are more complex,
because they need to identify a whole set of points in the objective space, test all the
points, rank their fitnesses, and determine the next set of solutions to test.

An important aspect of population-based algorithms is their need to rank the solu-
tions before they are processed by the optimizer. The ranking procedure takes place
during the evaluation process, after the objective functions have been evaluated and
an array filled with result values has been created. Ranking means to transform the
resultant array that is produced by the multi-objective evaluation into a resultant vec-
tor. Ranking is required because a set of solutions in the problem domain is being
tested and the results have to be presented to the optimization paradigm in a uniform
structure. Ranking is fundamental to those methods becauseit guides the search: the
best solutions in a set are given the top ranking. The optimizer relies on the top ranks
to identify high-potential regions of the search space to beexplored. Therefore, any
ranking method that is used needs to be efficient. The rankingmethod has to be
robust enough to handle multiple objectives (i.e., it must be scalable). If the rank-
ing method adopted is not robust, then many different ranking methods will have

3 The dominance relation induced by a given setF of objectives is defined by
�F = {(x,y)|∀ fi ∈ F : fi(x) ≤ fi(y)}.
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to be used as the number of objectives increases. To develop ageneralized ranking
method the following question has to be answered: Can a single ranking method be
developed that remains consistent across a range of many objectives?

The taxonomy of approaches that we will cover in this comparative study is
shown in Figure 2. These techniques were selected because they were proposed
specially for many-objective optimization problems and they represent a substantial
difference with respect to the Pareto optimality relation.In the literature, we can
find other optimality relations. However, they are minor variations, whether it be of
Pareto optimality or some other optimality relation studied here. For instance, the
fuzzy optimality relation presented in [37] is a variant of that defined by Farina and
Amato [15] and the winning score relation [22] is equivalentto the average ranking
method.

In this proposed taxonomy, we divided the ranking techniques in two groups:
(1) those that do not need extra parameters to rank all the solutions, and (2) those
in which at least one parameter is required to rank the solutions properly. Each of
these two groups are discussed in this chapter.

Ranking Techniques

Without Parameters With Parameters

K-Optimality
Contraction,
Expansion

Average
Ranking

Maximum
Ranking

Favour
Ranking

Preference Order
Ranking

Pareto
Ranking

Fig. 2 Mapping of the Pareto Optimal Solutions to the Objective Function Space.

5 Ranking Methods without Parameters

5.1 Average and Maximum Ranking Methods

Although without a specific interest in many-objective problems, Bentley and Wake-
field [2] proposed three alternative ranking methods to Pareto optimality, namely:
average ranking (AR), sum of ratios (SR) and maximum ranking(MR). The AR
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method computes for each solution a different rank considering each objective in-
dependently. The final rank of a solution is obtained by summing all their ranks on
each objective. Table 1 illustrates the AR method with a small example with six
3-objective solutions.

Table 1 An example of the Average, Maximum, Favour and Preference Order ranking methods.

a) b) c) d)
Solution rank 1 rank 2 rank 3 Average Maximum Favour Preference Order
(4, 3, 5) 3 3 4 10 3 3 3
(1, 4, 7) 1 4 6 11 1 3 2
(6, 2, 2) 4 2 1 7 1 1 1
(7, 7, 6) 5 5 5 15 5 4 5
(8, 1, 3) 6 1 2 9 1 2 3
(3, 8, 4) 2 6 3 11 2 3 4

In this study, an equivalent method is used to compute theAR for each solution.
First, the following matrix is defined for solutionsxi andx j :

ai jk =







1 if fk(xi) < fk(x j)
0 if fk(xi) = fk(x j)

−1 if fk(xi) > fk(x j)

From these values, the rankARfor each solutionxi is computed by:

AR(xi) = KN−
K

∑
k=1

N

∑
j 6=i

ai jk ,

whereK is the number of objectives,N the number of solutions.
The maximum ranking takes the best rank as the global rank foreach solution.

Clearly this method favors extreme solutions, i.e., solutions with high performance
in some of the objectives, although with poor overall performance. Table 1 shows
an example of the use of this method.

5.2 Favour Ranking

This ranking method was proposed by Drechsler in [13] and consists of a new rela-
tion calledfavour. This technique requires no user interaction and can handleinfea-
sible solutions.

x < f y⇔ |i : fi(x) < fi(y),1≤ i ≤ n| > | j : f j (x) < f j(y),1≤ j ≤ n| (1)
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This means thatx is favouredto y (x < f y) iff i components ofx are better than
the corresponding components ofy and only j components ofy are better than the
corresponding components ofx. For example:fx1 = (1,1,2) and fx2 = (5,3,1), then
we have that:fx1 < f fx2 .

Also, in this model, the authors proposed that the solutionsare divided into so-
calledSatisfiability Classes(SCs) depending on their quality. Solutions of the same
quality belong to the same SC. This property helps the mechanism in using a graph
representation to describe properly the relationfavour(< f ) , in which each element
is a node and preferences are given by edges. The relation< f is not transitive, thus
the relation< f can generate “cycles” in the graph, causing elements that describe a
cycle to be denoted as not comparable and they are included inthe same SC given
the same rank to each of the elements in that cycle. The graph that contains all the
populations (GZ) needs to be a directed graph without internal cycles, so allthe
cycles have to be identified and replaced by a single node representing the single
cycle.

Once we have the final directed graph (GZ), we know that (GZ) is acyclic, and it
is possible to determine alevel sortingof the nodes. For each node inGZ we define
a SC. Level sorting of the nodes inGZ determines the ranking of the SCs; each
level contains at least one node ofGZ. Then each level corresponds to exactly one
SC. Using the level sorting, it is possible to group nodes (sets of solutions) that are
not connected by an edge in the same SC. These solutions are not comparable with
respect to relation< f and thus they should be ranked in the same level of quality.

For the casen = 2 it holds that the< f and<d are equal, where<d is the Pareto
dominance relation. So, whenn = 2, the favour relation is exactly the same as the
Pareto dominance relation. Relation< f can handle infeasible solutions. When an
element is infeasible, the element is considered as the worst possible value. The
computation time for the SC classification isO(|P|2 ·n), whereP is the set of solu-
tions.

5.3 Preference Order Ranking

This is a ranking procedure that exploits the definition of preference order (PO)
proposed by di Pierro in [12]. The preference order definition is:

A pointx∗ ∈ ω is considered efficient in order k if f(x∗) is not dominated by any
member of P for any of the k-element subsets of the objectives. In other words, a
point is efficient of order k if it is a Pareto optimal in all the

(

m
k

)

subspaces of F
obtained considering only k objectives at a time.

It is clear that the efficiency of orderm for an MOP with exactlym objectives
simply enforces Pareto optimality.

The condition of efficiency of order can be used to help reducethe number of
points in a set by retaining only those that are regarded as “best compromises”. In
fact, it is intuitive that the less extreme components a point has, the more likely it
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is to be efficient of order. When the number of points selectedis still considerably
large, a more stringent criterion is required to sort out better solutions.

Definition(Efficiency of orderk with degreez): A point x∗ is said to be efficient
of orderk with degreez if it is not dominated by any member ofP for exactlyz out
of the possible

(

m
k

)

− element subsets.
At every generationt from a populationP:

1.- Identify the Pareto nondominated solutions ofP and group them into the sub-
setR(1), which is given rank 1.

2.- Assign to the individuals ofR(1) a rank according to a strategy based on Pref-
erence Order with Degreezand the worst given rank isw.

3.- Identify the Pareto nondominated individuals ofP\R(1) and group them into
the subsetR(2), which will be given rankw+s.

4.- Iterate (Step 2) and (Step 3) untilP\R(s) = /0, whereR(s) is the subset that
contains the worst individuals.

6 Ranking Methods with Parameters

6.1 K-optimality

Farina and Amato [15] proposed an alternative relation which takes into account
the number of improved objectives between two solutions. This relation employs
three quantities,nb(x1,x2),ne(x1,x2) andnw(x1,x2), which denote the objectives
wherex1 is better, equal or worse thanx2, respectively. Using these, the concepts of
(1− k)-Dominanceandk-Optimalityare defined. A solutionx1 (1− k)-dominates
x2 if and only if

{

ne(x1,x2) < M
nb(x1,x2) ≥

M−ne
k+1

In a similar way to Pareto optimality, a solutionx∗ is k-optimumif and only if
there is nox in the decision variable space such thatx k-dominatesx∗.

Then, this definition is fuzzificated by introducing fuzzy numbers to define
nb(x1,x2),ne(x1,x2) andnw(x1,x2). Finally, they propose a further extension that
introduces a fuzzy definition for the Pareto dominance relation itself.

6.2 Contraction - Expansion

Sato, Aguirre and Tanaka [30] proposed a method to control the dominance area
of solutions. This method can control the degree of expansion or contraction of the
dominance area adopting a user-defined parameterS. To contract and expand the
dominance area of solutions, the authors modify the fitness value for each objective
function by changing the user defined parameterSi in the following equation:
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f ′i (x) =
r ·sin(ωi +Si ·π)

sin(Si ·π)
∀ i = 1,2, . . . ,m

wherer is the norm off (x), fi(x) is the fitness value in thei − th objective, andωi

is the declination angle betweenf (x) and fi(x).
If the user adopts a value ofSi < 0.5, the dominance area is expanded and pro-

duces a more fine grained ranking of solutions and would strengthen selection. On
the other hand, if the user setsSi > 0.5, the dominance area is contracted from the
original one and produces a coarser ranking of solutions, weakening the selection
procedure.

7 Analysis of Parameterless Ranking Methods

7.1 Ranking Distributions

One criterion to estimate the quality of a ranking method is to analyze the distri-
bution of the ranks assigned to a set of solutions. A ranking method will favor the
selection process if it is able to generate a richer range of ranks. To measure the scal-
ability of a method with respect to the number of objectives we can determine if the
shape and range of the distribution is maintained when the number of objectives is
incremented. Along with the four ranking methods describedin Section 5, a Pareto-
based ranking method is included as a reference to compare the other ranking meth-
ods. The Pareto-based ranking method used is Fonseca and Fleming’s method [16]
which ranks solutions based on the Pareto dominance relation. The ranking distribu-
tions presented in this section belong to the ranking of 10000 random solutions for
the problems DTLZ2 and DTLZ7 described in Table 2. For each problem we used
3, 4, 5, 8, 10, 15 and 20 objectives.

With regard to problems DTLZ2 and DTLZ7, for every number of objectives
considered, the Pareto-based ranking method concentratesmost of the solutions un-
der rank 1 and the frequency for the worst ranks quickly approaches zero (see Fig-
ures 3 and 4 ). This behavior provides few different ranks to the selection process.
In DTLZ7, for 3 objectives, about 60% of the solutions have rank 1 (see Figure 4).
By observing the distributions for more objectives we can appreciate a phenomenon
previously reported in the specialized literature [17, 18,19, 36]. That is, the number
of nondominated solutions (rank 1) increases quickly with the number of objec-
tives. For example, for 8 objectives, around 80% of the solutions are nondominated
in both MOPs, while for 15 and 20 objectives, all the solutions are nondominated in
DTLZ7.

The distribution of the maximum ranking method (MR) for 3 and4 objectives in
DTLZ7 is similar to that of the Pareto-based ranking method.However only about
32% of the solutions have the best rank and, consequently, there is a larger range



12 López Jaimes et al.

of ranks available. This behavior changes for more than 5 objectives. For that num-
ber of objectives, most of the solutions are assigned mediumranks, some solutions
have the worst rank, and just a few solutions have rank 1 (only2%). When the num-
ber of objectives is increased, the number of solutions withthe best rank decreases
while the number of solutions with the worst rank increases.For 10 objectives, for
instance, 80% of the solutions have the worst rank and only 1%have the best rank.
We believe that a distribution where the worst solutions represent the majority of
the population may hinder the progress towards the Pareto front. For instance, if
we carried out a tournament selection, most of the tournaments would include bad
solutions. Good solutions would have small chances of survival. With respect to
DTLZ2, MR produces a distribution with two tails until 10 objectives, since when
the number of objectives is increased the range of ranking values is reduced (see Fig-
ure 3). For 10 or more objectives, approximately 80% of the solutions have the best
rank. This means that the maximum ranking method, although scales better than the
Pareto-based method, has poor scalability with respect to the other methods studied.

In both problems, the preference order ranking (POR) methodalso presents a
skewed right distribution where the frequency of the ranks decreases slowly. Nonen-
theless, in contrast with the previous ranking methods, thePOR method’s distribu-
tion is conserved for all the objectives considered, although the range of the dis-
tribution is reduced as the number of objectives is incremented. This distribution
suggests that the POR method scales well with the number of objectives.

The favour ranking method maintains well the shape and rangeof its rank dis-
tribution through all the objectives considered and for thetwo problems. However,
it is the only ranking method that shows for all objectives a slightly skewed left
distribution where all the ranks have a similar frequency distribution.

In DTLZ7, the AR presents a bell-shaped distribution which is more defined
as the number of objectives is increased. In contrast to the other ranking methods,
the range of the AR’s distribution is increased with the number of objectives. With
respect to DTLZ2, for a high number of objectives this methodproduces a slightly
skewed distribution.
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Fig. 3 A histogram that shows the density of the rankings per each different ranking method for the DTLZ2 test problem.
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Fig. 4 A histogram that shows the density of the rankings per each different ranking method for the DTLZ7 test problem.
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7.2 Ranking Landscapes

Similar to the fitness landscapes used in single-objective optimization, it is possible
to visualize the behavior of a ranking method by plotting thevariables against the
ranking values assigned to each point of the decision space.To make this visualiza-
tion possible the MOP should have at most two variables. In this study we adopted
two multiobjective problems with only two variables. A 3-objective problem defined
by Viennet [35] and a 5-objective problem proposed by [24]. Figures 5–9 and 10–14
show the ranking landscape generated by each ranking methodin the Viennet’s and
Miettinen’s problems respectively. Each ranking landscape is accompanied by its
isocontour plot where the Pareto optimal set is shown with a shaded region.

The ranking landscape for Viennet’s MOP presents a smooth and unimodal sur-
face for all the ranking methods except for the maximum ranking method (see Fig-
ure 6). It is interesting to note that, since this method favors extreme solutions, the
surface for this method has three local optima, one for each objective of the prob-
lem. Even so, the surface generated for all the methods wouldallow an optimizer to
converge easily towards the optimal solutions.

With respect to Miettinen’s MOP (see Figures 10–14), the ranking lanscape gen-
erated by all the ranking methods presents a multi-modal surface. All the surfaces
have peaks and plateaus which hinder the convergence towards the optimal solu-
tions. There are some interesting observations about theseranking landscapes. First,
the isocontour plots show clearly that the ranking methods converge only to some
regions of the Pareto optimal set and, consequently, some regions of the correspond-
ing Pareto front. For example, the average and favour ranking methods only cover
the upper part of the Pareto optimal set. The preference order ranking method is the
only one that converges to a region more similar to the Paretooptimal set. Secondly,
if we see the peaks near the optimal regions we can realize that some solutions
(those in the top of the peaks) may receive worst ranks than those solutions behind
the peaks but farther from the optimal region. That is, the peaks act as a barrier that
keeps them from reaching the optimal solutions. It is interesting to note that the
maximum ranking method generates a smoother surface with only one peak before
the optimal region. This fact suggests that the maximum ranking method is useful
for approaching quickly the Pareto optimal solution, although without covering the
whole set.
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Table 2: MOP Test Functions

Function Definition

DTLZ2 [9, 10] F = ( f1(x), f2(x), . . . , fM(x)), where:

f1(x) = (1+g(xM ))cos(
π
2

x1)cos(
π
2

x2) . . .cos(
π
2

xM−2)cos(
π
2

xM−1)

f2(x) = (1+g(xM ))cos(
π
2

x1)cos(
π
2

x2) . . .cos(
π
2

xM−2)sin(
π
2

xM−1)

f3(x) = (1+g(xM ))cos(
π
2

x1)cos(
π
2

x2) . . .cos(
π
2

xM−2)

.

.

.
.
.
.

fM−1(x) = (1+g(xM ))cos(
π
2

x1)sin(
π
2

x2)

fM(x) = (1+g(xM ))sin(
π
2

x1)

where:

g(xM ) = ∑
xi∈xM

(xi −0.5)2

xi ∈ [0,1] ∀ i = 1,2, . . . ,n

n = M +k−1 , k = 10

DTLZ7 [9, 10] F = ( f1(x), f2(x), . . . , fM(x)), where:

f1(x) = x1

f2(x) = x2

f3(x) = x3

.

.

.
.
.
.

fM−1(x) = xM−1

fM(x) = (1+g(xM ))h( f1, f2, . . . , fM−1,g(x))

where:

g(x) = 1+
9

|xm|
∑

x1∈xM

xi

h( f1, f2, . . . , fM−1,g(x)) = M−
M−1

∑
i=1

(

fi
1+g(x)

(1+sin(3π fi))

)

xi ∈ [0,1] ∀ i = 1,2, . . . ,n

n = M +k−1 , k = 10

Viennet [35] F = ( f1(x), f2(x), f3(x)), where:

f1(x,y) = 0.5∗ (x2 +y2)+sin(x2 +y2),

f2(x,y) =
(3x−2y+4)2

8
+

(x−y+1)2

27
+15,

f3(x,y) =
1

(x2 +y2 +1)
−1.1e(−x2−y2)

x∈ [−3,3]

y∈ [−3,3]



Ranking Methods in MOEAs 17

Table 2: (continued)

Function Definition

Miettinen [24] F = ( f1(x), f2(x), f3(x), f4(x), f5(x)), where:

f1(x1,x2) = f (x1,x2),

f2(x1,x2) = f (x1−1.2,x2 −1.5),

f3(x1,x2) = f (x1 +0.3,x2 −3.0),

f4(x1,x2) = f (x1−1.0,x2 +0.5),

f5(x1,x2) = f (x1−0.5,x2 −1.7),

where:

f (x1,x2) = −u1(x1,x2)−u2(x1,x2)−u3(x1,x2)+10

u1(x1,x2) = 3(1−x1)
2 exp(−x2

1− (x2 +1)2)

u2(x1,x2) = −10
(

(1/4)x1−x3
1−x5

2

)

exp(−x2
1−x2

2)

u3(x1,x2) = (1/3)exp
(

−(x1 +1)2−x2
2

)

x1 ∈ [−4.9,3.2]

x2 ∈ [−3.5,6]

8 Conclusion and Future Work

In this study we have compared some ranking methods with respect to their rank
distribution and their ranking landscape which is the surface generated by the ranks
assigned to solutions. The inspection of the rank distribution provided a guide to
determine the scalability of the ranking methods and their possible disadvantages
in the search process. The ranking landscapes allowed us to observe easily how the
ranking method could assist or hinder the progress towards the Pareto optimal set.

One of our findings is that the preference order ranking is themethod with the
best scalability among all the methods included in this study. Also it shows a dis-
tribution similar to the one produced by Pareto-based ranking methods with two or
three objectives. This behavior suggests that the introduction of preference order
ranking would perform effectively if incorporated into a MOEA. Another finding is
that although maximum ranking does not induce a promising ranking distribution,
its ranking landscape suggests that it can be used to reach quickly some regions of
the Pareto optimal set. In addition, the ranking landscapesallow us to see that each
ranking method converges to a different subset of the Paretooptimal set. That is,
some methods cover the Pareto front better than others. Thismeans that if we want
to find the whole Pareto front using some of these ranking methods we have to use
an additional technique or to modify the method to achieve this.

As part of our future work we want to incorporate the ranking methods included
in this chapter into a MOEA in order to correlate some features observed here with
convergence capabilities.
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