Boundary Search for Constrained Numerical
Optimization Problems

Guillermo Leguizamon and Carlos Coello Coello

Abstract The necessity of approaching the boundary between thebfeasid in-
feasible search space for many constrained optimizatioblems is a paramount
challenge for every constraint-handling technique. Itu that many of the state-
of-the-art constraint-handling techniques performs wéien facing constrained
problems. However, it is a common situation that reachimgltbundary between
the feasible and infeasible search space could be a diffasktfor some particular
problems. Firstly, this chapter shows a general overvieth@fconstraint-handling
techniques based on a boundary approach and emphasizicgre pgoposal ap-
plying a more general boundary operator. In addition, theptér includes some
particular considerations related to the implementatapeats of the boundary ap-
proach when facing problems with one o more constraintsti#eramportant issue
also considered here is about the implementation of thiscagh when taking into
account different search engines. On this direction, soasckexamples are de-
picted as guidelines for possible implementations unddrkmewn metaheuristics
as Evolutionary Algorithms (EAs), Particle Swarm Optimiaa (PSO), and Ant
Colony Optimization (ACO). To validate the boundary apmtoenplemented under
the above metaheuristics, an experimental study is pregémtwvhich well-known
problems were considered. Finally, a brief summary of tregtdr and some ideas
for future works are given which could help the researcheesésted in developing
advanced constraint-handling techniques.

Key words: Constrained Handling, Boundary Search, Particle Swarnin@gs-
tion, Ant Colony Optimization

Guillermo Leguizam6n
LIDIC - Universidad Nacional de San Luis Ejército de Los A8d950 San Luis 5700, AR-
GENTINA e-mail: legui@unsl.edu.ar

Carlos A. Coello Coello

CINVESTAV-IPN Evolutionary Computation Group (EVOCINV) dpartamento de Com-
putacion Av. IPN No. 2508. Col. San Pedro Zacatenco Méxice. 07300, MEXICO e-mail:
ccoello@cs.cinvestav.mx

25

26 Guillermo Leguizamoén and Carlos Coello Coello

1 Introduction

The boundary search can be considered as alternative appndeen facing pro-
blems with active constraints (see Sect. 2) at the optimalgir quality solutions.
This is mainly observed for that problems that include asteme equality cons-
traint. However, there exist plenty of optimization prabkewithout any equality
constraint for which many of their constraints are activetfie best feasible solu-
tions. Clearly the more appropriate situation for the bamg@pproach is when the
problem has only one equality constraint. In addition, toerimary search could
be used as a complementary mechanism of another condteainting technique
to rapidly reach or force the exploration towards the regiaround the boundary
between the feasible and infeasible search space.

Specific operators (axd hocboundary operators) could be the right candidates
to search only on the boundary region between the feasiluldrdeasible search
space. However, it is not always possible to design speafimtary operators for
each problem constraint. Furthermore, there exist onlyeefeamples of this kind
of boundary operators in the literature. Michalewicz et[&F] wrote one of the
first papers on boundary search through the use of evoluti@hgorithms for cons-
trained numerical optimization problems. The efficiencthig approach was shown
by using two constrained optimization problems: Keanergfion (also known as
G02) [10] and another function with one equality constraaisg known as503).
For solving these problems the authors proposed two genggirators which gen-
erate offspring lying on the boundary between the feasihkt iafeasible search
space. Similarly, Schoenauer and Michalewicz [19] prodasyeral evolutionary
operators capable of exploring a general surface of dimamsi- 1 (n is the num-
ber of variables). The design of these operators, testetiree problems, depends
on the surface representation: curves-based, plane-tasg@arametric represen-
tation. Although not using aad hocboundary operator, Wu et al. [23] proposed
a GA for the optimization of a water distribution system, ethis a highly cons-
trained optimization problem. The proposed approach acives and self-adapts
two penalty factors in order to guide and preserve the sdavedrds the boundary
of the feasible search space.

On the other hand, Gottlieb [9] introduces and remarks tleeifithe the bound-
ary approach for a combinatorial optimization problem, enprecisely, the multi-
ple knapsack problem. By the same year Leguizambén and Miefiez proposed
for the same problem, an Ant System which biases the searaidoy region and
gives encouraging results [15]. The maximum independémiredlem is also con-
sidered under the same approach and plenty instances @irtilem were solved
optimally [7].

The reduction of the search space is one of the most relebhanacteristics of
the boundary search approach since the exploration cassidéy the boundary of
the feasible search space. However, many of the test cass&lered in the for-
mer works only include problems with one constraint for whitis possible to
definead hocgenetic operators that fit perfectly the boundary of theibdasegion.
However, this sort of approach is impractical in an arbytoblem with many con-

Boundary Search for Constrained Numerical OptimizatiavbRms 27

straints, and it is therefore necessary to define a more glaygroach for boundary
search which can be as robust as possible to deal with diffgrges of constraints.
More recently, Leguizamon and Coello [13, 14] proposeduaniary approach that
focuses the search on the boundary region by consideringt @fsmore general

boundary operator applicable to any type of constrainte &perimental reports
show the applicability of the boundary approach using aldrgobased algorithms
as a search engine.

The next section of this chapter shows a general overvievh@fcbnstraint-
handling techniques. Sect. 3 describes the boundary sepproach and two al-
ternatives for exploring the boundary between the feasblé infeasible search
spacead hocoperators and a general operator. In the last case, emjttgaimore
recent proposal according to Leguizamoén and Coello [1B,Morder to visu-
alize some considerations about specific implementatipeais of the boundary
approach, Sect. 4 displays the pseudocode by taking intmuatdifferent search
engines. On this direction, some basic examples are ddmstguidelines for pos-
sible implementations under well-known metaheuristicsiylas Evolutionary Al-
gorithms [1, 6, 8], Particle Swarm Optimization [6, 11, 18hd Ant Colony Op-
timization [4—6] which can be have been used as a search eetgisuccessfully
implement constraint-handling techniques. Section 5 shibe results of the appli-
cation of EAs, ACO, and PSO to a well-known testbed of nuna¢ptimization
problems. Finally, a brief summary and some ideas for futvok are given which
could help the researchers interested in developing aédaocnstraint-handling
techniques.

2 A General Overview of Constraint-Handling Techniques

The general nonlinear programming problem whose aim is thXiso as to opti-
mize:
f(X) X=(X1,X2,..-,%) € R"

wherex € & C .. The set¥ c R" defines the search space and s@ts- .7
and% = . — 7 define thdeasibleandinfeasiblesearch spaces, respectively. The
search spac¢” is defined as an-dimensional rectangle iR" (domains of variables
defined by their lower and upper bounds):

(i) <x <u(i)forl1<i<n

whereas the feasible sét is defined by the intersection of and a set of additional
m > 0 constraints:
0; <0, for j=1,...,9 and hj=0 for j=q+1,...,m

At any pointx € .#, the constraintg that satisfygx(x) = O are called the active
constraints ax. Equality constraints; are active at all points of”.

28 Guillermo Leguizamoén and Carlos Coello Coello

The most common way of incorporating constraints into MHg.(eEAS, DE,
PSO) have been penalty functions which are the oldest apipusd as a constraint-
handling technique. However, due to the well-known diffigd associated with
them, researchers in MHs (mainly in EAs) have proposed rdiffeways to auto-
mate the definition of good penalty factors, which remainthasnain drawback of
using penalty functions. Additionally, several researstave developed a consid-
erable amount of alternative approaches to handle contstranainly to deal with
specific features of some complex optimization problemshictvit is difficult to
estimate good penalty factors or to even generate a singgéble solution.

A comprehensive survey of constraint-handling techniduaishave been adopted
over the years to handle all sorts of constraints (lineam;limear, equality, and in-
equality) in EAs can be found in Coello [3]. This survey cavextensively: a)
penalty functions in several of their variations that haeerbused with EAs (i.e.,
static, dynamic, annealing, adaptive, co-evolutionangl death penalties); b) the
use of special representations and genetic operators ¢@erators that preserve
feasibility at all times and decoders that transform thestw the search space); c)
repair algorithms, which are normally used in combinataimization problems
in which the traditional genetic operators tend to generdgeasible solutions all
(or at least most of) the time. Thus, "repair” refers, in tbimtext, to make valid
(or feasible) these individuals through the applicatioa certain (normally heuris-
tic) procedure; d) techniques that handle objectives andtcaints separately; and
e) discusses approaches that use hybrids with other ta@msgych as Lagrangian
multipliers or fuzzy logic as well as other more novel apites.

Although the Coello’s survey is mainly concerned with coaisit-handling tech-
niques from the perspective of EAs, the concepts depictefbom a general frame-
work to be applied with other search engines. Examples ainitve recent applica-
tions of using novels MHs (e.g., DE, PSO, ACO, etc.) for caist handling tech-
niques can be found at the web site from EVOCINV [2] which udgs upto date
references to the more representatives constraint-hegn@chniques implemented
under different search engines.

It is worth remarking that plenty of problems formulated ashe beginning of
this section, include active constraints at the best knomoptimal solutions. For
example, for problems with at least one equality constrajnthe respective opti-
mal solution will lay on the region defined by (x) = 0. Furthermore, for many
problems, the best solutions may lay on the boundary betweerfeasible and
infeasible search space of some inequality constrains,tihe region defined by
gj(x) = 0. When those conditions are met for a particular problemdtsign ofid
hoc operators or approaches that explore the search spacenfgparsthe bound-
ary region (according either to the equality and/or ineipiabnstraints) can be a
suitable alternative for including in a specific search aagir metaheuristic.

Boundary Search for Constrained Numerical OptimizatiavbRms 29

3 The Boundary Search Approach

In the following we first explain how the boundary region carepproached given a
specific search space; more precisely, a subset oftimensional spacR". Then,
we also describe the manner in which this search space cewgdored assuming
a hypothetical search engine and exploration operatovgethas the properties that
they should satisfy. Afterwards, we present in detail theppsed technique that
takes advantage of the boundary approach to explore som#ispegions of the
boundary of the feasible search space by considediigpcand a general boundary
operators.

Definition 1. Given a constrained numerical optimization problem, iteedaines

a feasible search spacg. In addition, the problem constraints determine a set
F5 C F which represent the points itF which make active at least one of the
problem constraintsZ4 = % when the problem includes only one equality cons-
traint).

To appropriately define boundary operators , we must takeaaotount that set
%4 must be closed under the application of a boundary opetatbus suppose that
Q, is ar-ary boundary operator, i.e., it takegoints in set%4; then the resulting
point must be inZ4. In other words, am-ary boundary operator can generally
be defined ag, : (#4)" — Z4. For example, when considering a “boundary”
crossover operatothat takes two parents to generate one child, it can be defined
the boundary context a3, : .74 x .%4 — 4. Fig. 1 display a set of points laying
on the boundary region with respect to a problem constraidttae application of
boundary operators that take respectively 2, 3, and 4 psiatgument. ClearlyQ;
operator could be any operator (e.g., genetic operators&4s) or equation (e.g.,
velocity and position updating of the particles in PSO) uisedifferent MHs used
for sampling new points in the search space.

— Boundary= 74
o O (bl,....bY)
r

RGN I T

Q3(b}, b3, b3)

Fig. 1: This figure shows a set of points laying f; (white circles) and the respective points
sampled on%4 (filled circles) after the application of the boundary operd2,, for r = 2,3, 4.
Notice that% 4 is closed under the application 6%

30 Guillermo Leguizamoén and Carlos Coello Coello

It is worth noting that the definition of af®, operator which makes se¥4
closed under its application could be a difficult or at leagbassible task for most
of the usual problem constraints. The most paradigmatie ashe proposal of
Michalewicz et al. [17] where different boundary operatatsere defined which
perfectly fit in our definition of the2, operatorGeometrical CrossoveSpherical
Crossover andad- hocmutation operators. However, their application is limited
to couple of problems with specific characteristics. In otdemitigate this draw-
back, the design of more general operators to expBgecould be an interesting
approach when considering a wider set of problems to beddakhder the bound-
ary approach. It must be noted that the above classificatampad hocand general
operators, is not intended to be a general rule, insteadlyitrepresents the authors
point of view in the way the boundary approach could be comcki

In the following we present two possibles alternative torefnQ, operator,
either byad hocoperators or a general operator. The main difference antosgpt
two types of operators is thatl hocoperators are defined to operate onpheno-
type spaceavhere as the general operator does it ongbrotype spacéSect. 3.2
describes these concepts in more detail).

3.1 Ad hocboundary operators

As mentioned in a previous section, the work of Michalewitale[17] represents
one of the first intents to define specifid hocoperators to explore the boundary
between the feasible and infeasible search space. Althibisyapproach to explore
the boundary region can be useful and efficient, it in not gsn@ossible to define a
specific one for any problem constraint. Indeed, for mostefdroblem constraints,
to find an adequate operator could be as difficult as solvie@tlginal problem. As
a manner of showing the way in which the boundary region caaxpéored, we
will describe in the following a classical example, the Ke'arproblem [10]. The
reason for showing this alternative through an exampledabge amd hocoperator
completely depends on the shape of the involved constraints

3.1.1 Exploration of the boundary region underad-hocoperators

The exploration of the boundary search space uadehocoperators can be vi-
sualized more clearly for a particular problem since itsrdéfin depends on the
particular constraint considered. For our example, we ldngsen a very well-
known constraint optimization problem widely used as a bemark to test differ-

ent constraint-handling techniques: the Keane’s probléis problem, also known
asG02 (see [16]) includes a non-linear objective function amd inequality con-

straints. More precisely, an optimal solution 802 aims at maximizing:

Boundary Search for Constrained Numerical OptimizatiavbRms 31

£ (x) = | 2ie2c0¢'(x) — 2L cog ()

V2 ix?

01(X) =0.75—[]L1% <0
Q2(X)=3"1%—75n<0

wheren =20 and¥ = {x € R?%|0 < x; < 10, fori = 1...20}. The best known so-
lution is atx* = (3.1623744364570B.12819975856113.09481384891456
3.06140284777303.02793443337232.99385691314992.95870651588255
2.9218218359109P.4945511861268D.4884930585857,D.48250798063845
0.47695629293229.4710846271558D.46594074852238.46157984137635
0.45721400967989.4523769688680D.44805875597718.444357724357Q7
0.44019839654132vheref (x*) = 0.80619 and constraimf is close to being ac-
tive. Fig. 2 shows a plotting of theé02'’s objective function fon = 2.

subject to:

Fig. 2: Keane’s function witim = 2. Infeasible solutions were assigned value zero

Despite of problen@02 has two constraints, one of them is just dismissed when
solving this problem since: a) the second constraint issfadi for all solutions
laying on the boundary of the first constraint and b) the fioststraint is close to
being active at best known solution (see [17]). For this fob the space”y =
{x€.7|0.75—- %, x = 0}

The search engine used in Michalewicz et al. [17] is an EA wtbe main
components are described as follows:

32 Guillermo Leguizamoén and Carlos Coello Coello

i. Initialization : Randomly choose a positive variable forand use it inverse as
a variable forx 1. The last variable is either 5 (whennis odd) or multiplied
by 0.75 (if nis even).

ii. Mutation: is a unary operator (= 1) defined by

1
Ql(x):(xla'-'vqxxiv"'vaxxjv"'axn)a

whereq is a random factor restricted to respect the bounds on tliebles and
1<, j <20 randomly chosen, with# |.

iii. Crossover is a binary operatorr (= 2) calledgeometrical crossoveland de-
fined according to our notation by

Qa(x,y) = (xfy; %, x{yn @), with1<a <1,
wherea is a random number.

By using the above initialization procedure, all points lie tinitial population
will lay on % 4. Similarly, .7 4 is closed under the application afl hocoperators
Q; andQy, therefore, all points generated will also lay on the boupndais worth
remarking that the application of boundary operators fabfgm G02 produced
at least two very important results in the area of constiaamtdling techniques.
First of all, tgood quality solutions were formerly obtathby using a boundary
operator and second, showed the usefulness and poterttie bdundary approach
for certain types of numerical optimization problems.

3.2 A general boundary operator

We describe here an alternathigeneral boundary approach (proposed in [13, 14])
which is based on the notion that each pdirdf the boundary region can be repre-
sented by means of two different poirxtandy, wherex is some feasible point and

y is some infeasible one, i.€X,y) can represent one point lying on the boundary
by applying a “binary search” on the straight line connegtine pointsx andy
(when considering an equality constraink .% iff h(z) < 0; otherwisez € %).

Fig. 3 shows a hypothetical search space including thelfes@hadowed area) and
infeasible regions. We can identify four points lying on boaindaryb,, b, bz, and

b4 which are respectively obtained frop,y1), (X2,Y2), (X3,Y3), and(X4,Y4).

The binary search applied to each pair of poiixty) is achieved following the
steps described in function BS (see Algorithm 1). For examgplpossible applica-
tion of this process can be seen in Fig. 3 where we adopt th@ppoints(xs,ys)
from which we obtain the poirtts, which lies on the boundary. The first step (la-
beled(1)) indicates that the first mid point found is feasible. Consatly, the left

11t is possible that other general operators can be visuhlizémplement under the boundary
search approach.

Boundary Search for Constrained Numerical OptimizatiavbRms 33

Y4

Fig. 3: Given one feasible and one infeasible point, theaetsge point lying on the boundary can
be easily reached by using a simple binary search. In thistivayeach point on the boundary can
be reached from at least a pair of poiftsy) with x € . andy €

side of the straight linexg) is moved to poinp;. In the next step (labele@)) we
consider the pointg; andys as extreme points for which the mid point is the infea-
sible pointp,. Thus, the new feasible point or right extreme of the lineas/ithe
pointp,. Finally, the last point generatedbg which can be either lying on or close
to the boundary. Condition ((disb_boundaryfn) <) AND Feasible(n)) defines

a threshold to stop the process of approaching the boundawever, the second
part of this condition (i.e., “Feasible)”) it is only applied when considering an
inequality constraint. In this way, functioBS guarantees than is in the feasi-
ble side regarding the corresponding inequality constraider consideration. It is
worth noticing that parametersandy are local to BS, i.e., function BS behaves as
a decoder of the pair of feasible and infeasible points phasgarameters. There-
fore, the number of “micpointsbetween’x andy before approaching the boundary
within a distance less thatis given bylogx(r) wherer = (dist(x,y)))/d. Thus, the
closer to the boundary, the lardegy(r).

3.2.1 Exploring the boundary region under a general operato

So far, we have shown how a point lying on the boundaman be represented
through a pair of pointéx,y) with x € .% andy € % . Now we need to consider the
exploration of the search space which, according to ourgsalpcan be defined as
G ={(x,y)|xe.F CcR"Ay € C R"}, that is, the set of pair of poin{x,y) as
described above. This space can be considemgehatype spacas known in the
area of evolutionary computation. Since each point fi@mepresents a point on the
boundary, it is necessary the application of the decodeesemted by functioBS

34 Guillermo Leguizamoén and Carlos Coello Coello

Algorithm 1 BS(x,y: real vector): real vector

1. m: real vector;
2: repeat

3: m = mid_pointbetweenx, y);
4: if Is.on.Boundary(n) then
5: returnm; { mis a point lying on the boundary
6: end if
7 if Feasiblef) then
8: X=m;
9: else
10: y=m;
11: end if

12: until (dist.to_boundaryn)< &) AND (Feasiblefn));
13: returnm; {The closest point to the boundary according@tg

(see Algorithm 1) to obtain the respectiphenotypei.e., the “gene expression” of
(X,y) € 4. Thus, the set# = {b|b = BSx,y)} is conformed by the set solutions on
the boundary. Each solution in this set is evaluated by fanag, which represents
a measure of solutions quality and gives as result an eleofieets = {ec Rle=
@(b)}. Fig. 4 displays the respective spaces and how they aredelath each other
by the application of functionBSand g, respectively.

G B 3

BS 4

Fig. 4: The search or genotype spa@,(phenotype spaceX), and space’, and the respective
connection through the decod@Band function evaluatiop

From the above described, is clear that the search engine deabwith the
exploration of spac&’. Fig. 5 shows a set of three hypothetical poifits1,y1),
(X2,Y2), (X3,y3)} In ¢, a problem constraint, and the respective pofitg by, b3}
on the boundary. The application of the gen&gloperator or{bs, by, b3) gives as
result a poinb on.# 4. To obtain this point on the boundary, an opergtés applied
respectively on the points off and% to obtain a new point of?, i.e.,(x,y), from
which a new point on the boundary is obtained as displaye&iridllowing:

Boundary Search for Constrained Numerical OptimizatiavbRms 35

Q3(by,ba,b3) = Q3(BS(x1,y1), BS(X2,¥2),BS(X3,Y3))
= BS(X3(X1,X2,X3), X3(Y1,Y2,¥3))
=BSx,y)
=b

4

X1 e
! y = Xa(y1,y2,Y3)

b

g b = BSX,V)

Xy =N X = X3(X1,X2,X3)
F N
X3

Fig. 5: A set of hypothetical point§(x1,y1), (X2,Y2), (X3,Y3)} in ¢, a problem constraint, and the
set respective poinths, by, bz} on the boundary. The application of the general 3-ary operat
(b1,b2,b3) gives as result a poittit on.% 5. In fact, the operatof, is a combination of operators
(x) that respectively works on spacé and%, in addition to the decoding functid®S

Indeed, operatox could be any exploration operator which will depend on the
search engine used to explore sp&cd~or example, from the perspective of evo-
lutionary algorithms, it can be created an initial popwatof individuals where
each one of them represents an element ofsefherefore, suitable operators to
be chosen could be any qualified crossover and/or mutatieratqrs for floating-
point representations. A similar approach can be adoptediifg another search
engine suitable for exploring continuous spaces, e.gticgmswarm optimization,
ant colony optimization, differential evolution, immungsgems, etc. Sect. 4 de-
scribes through three MHs the the boundary approach candily eaplemented
with just a few changes when considering different searcjines.

3.3 Focusing on the problem constraints

It is important to remember that we are assuming active canss at the global
optimum to proceed with this method which focuses the exgion on the boundary
region. However, either using @u hocor general operator (as the proposed here),

36 Guillermo Leguizamoén and Carlos Coello Coello

the main difficulty of a boundary operator is concerned witbhjpems with more
that one constraint.

Certainly, the simplest case to apply the boundary apprizaghen the problem
has only one constraint which could be either an equalitpyanaquality constraint.
Let us suppose that the problem includes only one consttatnis sayh, then the
search engine should proceed by sampling: a) when applyiragidocoperator,
a set of solutions laying on the boundary and after that,yapplthe specificad
hoc operators to explorezy directly or b) when applying the general operator, a
set of pair of points on thgenotype spac® which each one of them is mapped
via functionBSin to the boundary region, after tha% » is indirectly explored
through the exploration of spaég. In both cases, all solutions generated will be
feasible. Two examples of case (a) are certainly given inMiehalewicz et al.'s
proposal [17]. For the second case (b), Fig. 5 display a lgiwmial problem with
one constraint, some points on sp&teand the modification of this points which
give, via functionBSa new point on the boundary.

On the other hand, when facing the typical situation in whigh have more
than one constraint, it is necessary to define an approgatey to explore the
boundary as efficiently as possible since spgcgwill be now determined by a set
of constraints rather than one. In this case, it will be natgilde to define any type
of boundary operators that make clos&g; under their application.

In the following we focuses in some alternative to manageshuation consid-
ering only the use of the general operator. In fact, the sgpeoach can be applied
when considerin@d hocoperators, however, we believe that this is unlikely due
to the difficulty to define them for any type of constraint. Téfere, one possi-
bility is to explore in turn the boundary of each problem doaist. The selection
of the constraints to search for can be determined usingrdiit methods. If the
problem includes at least one equality constraint, suclal@giconstraints are the
most appropriate candidates to be selected first. Howeysssible search engine
could keep focused on a particular constraints over the evhol or may be change
from one problem constraint to another depending on a pdaticondition. In our
previous work [13] we defined a simple condition based on arpater called.
which counts the number of iterations the algorithm focuees particular cons-
traint. However, more complex condition could be considefer example, taking
into account the population diversity or the degree in whsome problem con-
straints are being violated. For the last case, the scheopoged by Schoenauer
and Xanthakis [20] could be adapted and applied when fogusnthe boundary
region. The proposed scheme consists on a multi-stepstewany process based
on behavioral memory that considers each problem constraiarn. The process
starts from the first constraint. When the current constrjais processed, the solu-
tions that violates constrainfs— 1,...,1 are given a zero fitness. Simultaneously,
when constrainf is satisfied (according to a threshail, constraintj + 1 is then
processed. The process continues until all constraings heen considered.

As an illustrative example when facing a problem with momatbne constraint,
Fig. 6 shows a hypothetical search space determined byitiegeality constraints.
Let us suppose that the search proceeds starting on congirdf the visited points

Boundary Search for Constrained Numerical OptimizatiavbRms 37

Fig. 6: Feasible search space defined by 3 inequality camtstra he search proceeds on the bound-
ary of constraing;, however, some points on the boundarygpfare infeasible when considering
the whole set of the problem constrains

are on the boundary of#, these points will also satisfy the remaining problem
constraints (filled line in Fig. 6). However, the exploratiof the boundary with
respect to constrairg; will eventually produce points violating constraimgsand
g3 (dotted line in 6). One of the simplest methods to deal with $ituation could
be for example, the application of a penalty function foritifeasible solutions. In
addition, if gy is active at the global optimum, the method will focus therskan
the boundary in order to restrict the explored regions ofithele search space. Note
however, that other (more sophisticated) constraint-tiagtechniques can also be
adopted. For example, it could be considered the includitiedstochastic Ranking
approach [18] to make the comparisons among the solutiorergted [14] and thus
avoiding the inclusion and tuning of any penalty factor fotusions evaluation.
As a manner of showing some concrete examples of the possiplécation of
the boundary approach, in the next section, we focus on ipgeimentation from
the perspective of three different search engines: Exanlatiy Algorithms, Particle
Swarm Optimization, and Ant Colony Optimization.

4 Implementation Issues

This section is aimed to explain in some detail the implematon the boundary
approach under the general boundary operator by using $eareh engines: EAs,
PSO, and ACO. Since their implementation unddrhocoperators is straightfor-
ward, i.e., they do not produce any important change on gpecive search engine,
we have decided not to include the respective implememtatio

38 Guillermo Leguizamoén and Carlos Coello Coello

The selection of the three mentioned search engines doésliowt any kind or
priority of one over the remaining ones. In first place, EAn ba considered the
more popular MHs used in optimization and particularly inmasical constrained
optimization problems. Second, PSO is a more recent MHshnhiely have been
successfully applied to solve plenty of the state-of-thds@nchmarks for numerical
optimization. Finally, we consider ACO as a possible aliie which was chosen
for two main reasons: 1) it was the first search engine usedstotihe boundary
approach using a general operator with encouraging resutt®?) more advanced
version of the ACO metaheuristic have been recently deeelaphich can suc-
cessfully be applied to problems defined over continuousaiiesrnwith or without
constraints.

Algorithm 2 A general outline of the stochastic ranking algorithm usartgubble-

sort like algorithm as defined in [18p; represents the probability of using only the
objective function for comparisons when ranking solutionthe infeasible regions

of the search space (a value o4& P; < 0.5 was reported as the most appropriate).
Parameter&N and A represent respectively the maximum number of sweeps and
number of solutions that are ranked by comparing adjacdatigos in at leasfA
sweeps, andnd € U (0, 1).

1: procedure Sort(var T)

2 1=}, Vj{L,...,A}

3: foriinl1:Ndo

4 for jinl1:A—1do
5 if (T.xi; ==T.x;,,)[[(rnd < Py)) then
6: if (T.x.J > T.x.Hl) then
7 swap(j, lj+1)
8 end if
9: else
10: if (T.x.J > T-XIM) then
11: swaplj,lji1)
12: end if
13: end if
14: end for
15: if no swap donethen
16: break
17: end if
18: end for

Before giving any detail about the respective algorithrasyorth noticing that
all the algorithms were designed including the Stochassiockihg as complemen-
tary handling technique, i.e., the solutions are rankeddbas the sorting procedure
given in Alg. 2 which receives as argument an strucflireontaining a set of so-
lutions on.#4 and the respective objective value. Thiisg; and T.g represent
respectively the solutionand its objective value. It should be noticed thaand
lj+1 are indexes that point to the structuFe In addition, it is also important to
remark that the algorithms described in the following arsigieed for the general

Boundary Search for Constrained Numerical OptimizatiavbRms 39

case, i.e., when the problem includes more than one conistkédwever, for the
simplest case (problems with only one constraint) the adesiglgorithms are still
applicable by modifying a few lines of code as will be exp&adrior each particular
search engine considered. On the other hand, each alganithudes references to
different structures calletl, T,,, andT» which respectively represent a population
of solutions in spaces’, %, and.%#4 (the same applies to the auxiliary structures
calledA andA'). Similarly, an structur@¢ is used to save the objective value for
the respective solutions if,. Finally, variable 'ctr’ indicates the current constraint
under consideration, i.e., indicates that the algorithruisently focusing the ex-
ploration on the boundary of constraint 'ctr’. Additionglesific structures used by
each search engine will be explained when necessary.

Similarly, there exist a set of common functions used thiotige three algo-
rithms which are described in the following:

e init(): is in charge of obtaining the initial population objmts in space’.

e evaluate(): assigns the respective objective value.

Boundary(): applies function BS() to all the pair of poimgT#, T) and returns
the respective decoding of those points (the returningsira is usually save in
T2).

e changeconstraint(): returns a boolean value indicating the degisf focusing
the search on a different problem constraint.

e Relnit(): when a change of constraint occurs, this functianitilize the points
in structureTs andT, when necessary (e.g., it could be useful a simple pertur-
bation operator here).

e getnextconstraint(): implements the policy for the selection o tiext cons-
traint to be considered for exploration. As indicated in éfgorithms described
further in this section, a possible policy could be Beund-Robimpolicy, how-
ever, others (more informed) policies are also possible.

Firstc(): returns the firsk solutions found in the structure given as parameter.

e Sort(): applies the Alg. 2 to further make the selection efdbt firsk solutions.
Update(): selects the best current solution€lig © Az, Ty, ©AZ)?.

4.1 Boundary by means of EAs

The application of EAs to solve any optimization problemsmtyaincludes a pro-
cedure to obtain the initial population, a selection opmtadnd a set of genetic
operators. Alg. 3 describes the more important componédras &A used to solve
constrained numerical optimization problems accordinth&éoboundary approach.
Lines 3 to 5 are aimed to obtain the initial population on ggé¢the respective
points on the boundary and their objective values. It candsexved that the selec-
tion process (function Select()) is applied considefipgandT,,, and the respec-

2 Operator @ is defined as follows: A ® B = (a,...,an) @ (by,...,bu) =

(a1, ...,an,bnta, - ., bnim) taking into accounT, and the respective objective values.

40 Guillermo Leguizamoén and Carlos Coello Coello

tive objective valuls. This process produces two intermediate structé{gsand
A, 1.e., selected points a#f which undergo genetic operators (in two independent
steps) as can be observed in lines 14 and 15. The resultingistes are then used
as decoders to obtain the respective new points on the bou(ioe 17) saved in
structureAy. The next step is consists in operate on the ranking (seeRHzaSed
function Sort()) of the union oA andT4. From this ranking, only the respective
bestk solutions from spacé& will survive for the next generation ("Update()’ is
used to keep the respective best points on s@gce

Algorithm 3 A general outline of EAy

1:t=0
2: ctr=initial_constraint // ‘ctr’ represents the problem constraint urmbasideration
3: init(T#,Ty, ctr);
4: Ty =BoundaryTs,Ty)
5. Tg =evaluate(y)
6: while (stop condition not metdo
7 if (changeconstraint())then
8: ctr= getnextctr(ctr) // The search continues considering another prolitonstraint,
9: I e.qg., following aRound-Robirpolicy.
10: Az =Reinit(Tz#, ctr);
11: Ay, =Reinit(Ty,, ctr);
12: else
13: (Az,N,,) =SelectlTz, Ty, Ts);
14: Az =Geneticops@ #, ctr);
15: A, =Geneticops@y,, ctr);
16: end if

17: Az =Boundaryf s, Az)

18: Ty =Firsi(Sort(Ty & Az))

19: T, =evaluate(y)

20: Update(#,Tx ,Ts); { According to the nevil, }
21: t=t+1

22: end while

When the problem has only one constraint (or only one is caned as in prob-
lem G02) there is no need to change from one to another constiiaémefore a few
code lines can be dismissed, not necessarily dropped, fiergegneral algorithm.
In line 2, the ’initiaLconstraint’ is the only problem constraint. The set of lifes
through 16 are dropped and replaced by lines 13 through 15.

4.2 Boundary by means of PSO

Differently to EA5, a PSO algorithm includes some other additional structiwres
addition to that used to keep the population or swarm. Thitiquéar structures
are those representing the respective particles’ vedsc(ttalled her® & for space

Z andVy, for space7’) which let the algorithm explore the respective feasible

Boundary Search for Constrained Numerical OptimizatiavbRms 41

and infeasible regions, i.e., the decoder spécélg. 4 gives a general outline of
a PSO implementing the boundary approach for solving caim&d optimization
problems. This algorithm follows the principle of PSO desighown as “Local
Best PSO”. For that reason, two proper functions of this P8@ion are added,
'Set the_bestpersonalposition()’ and 'Setthe bestlocal_position()’. It can be no-
ticed that they are first applied dp- and then, oy, . In both cases, the selection on
the local and best positions take into account the objewtlgesT, corresponding
to the points they represent dp.

Algorithm 4 A general outline of Ibest PS®

1:t=0
2: ctr=initial_constraint // ‘ctr’ represents the problem constraint urmbasideration
3: init(T4#,Ty, ctr); // Initializes feasible and infeasible swarms
4: Ty =BoundaryTs,Ty)
5. Tg =evaluate(y)
6: while (stop condition not metdo
7 for each particlé in T do
8: SetthebestpersonalpositionTz (i), Te(i))
9: Setthe bestlocal_positionTz (i), T#(i))
10: end for
11: for each particle in T, do
12: Setthe bestpersonalposition{Ty (i), Ts(i))
13: Setthe bestlocalposition{Ty (i), T#(i))
14: end for
15: if (changeconstraint())then
16: ctr= getnextctr(ctr) // The search continues considering another protgonstraint,
17: /l e.g., following eRound-Robimpolicy.
18: T2 =Reinit(T#, ctr);
19: T4 =Reinit(Ty, ctr);
20: else
21: for each particlé in Tz do
22: Updatevelocity(V¢ (i), ctr);
23: Az (i) = Updateposition{T# (i), V# (i), ctr);
24: end for
25: for each particle in T, do
26: Updatevelocity(V (i), ctr);
27: Ay, (i) = Updateposition{T (i), Vi (i), ctr);
28: end for
29: end if

30: A4 =Boundaryfz,Ay)
3L Ty =Firsk(Sort(Ty © Az))

32: Ts =evaluate(y)

33: Update(#,Ty,Tg); { According to the nevil, }
34: t=t+1

35: end while

The exploration stage for PSQis accomplished from lines 21 to 28. It can
be noticed that the application of two specific PSO stepsdat@velocity()’ and
'Update position()’. These two functions are applied on structivesand T4 for

42 Guillermo Leguizamoén and Carlos Coello Coello

the feasible part of spacé, and structure¥,, and Ty for the infeasible one. In
the case of 'Updatgosition()’, it returns the modified point position that che
assigned as in lines 23 and 27. After the obtaining of the reutiens inAs and
Ay, the process follows the same steps as fopERinally, when the problem has
only one constraint (or only one is considered as in prol§k&) there is no need to
change from one to another constraint, therefore a few dods tan be dismissed,
not necessarily dropped, from the general algorithm. ke Znthe "initial constraint’
represents the only problem constraint. The set of linehddugh 29 are replaced
by lines 21 through 28.

4.3 Boundary by means of ACO

The last search engine is one based on the ACO metaheuriatt@ularly, we have
chosen arecent and advanced version of an ACO algorithnofdinzious problems
proposed by Socha and Dorigo [22] which is called AC®here the solutions are
built by using a probability density distribution (PDF). stepi each ant generates
a random number according to a mixture of normal kernels df$#)(x;) defined

on the intervalg; < x; < by, i.e., a multimodal PDF aimed at considering several
subregions of that interval at the same time. These ideasxéeasively presented
and details concerning implementation issues are giveroah&and Dorigo [22]
through algorithm ACQ which represents the former ideas proposed by Socha [21]
regarding continuous domains. The authors presented arimental study that
considers the application of AGQto a test suite of several unconstrained continu-
ous optimization problems. Alg. 5 displays the main compisef the ACQz, an
ACOg algorithm that includes the boundary approach for constichbptimization
problems. The initialization process includes, in addit@ structureo which repre-
sents a set of weights used as part of the mixture of normatke(or PDF$' (x;)).
Function 'Build.sol()’ samples a new set of solutions according the to theaets/e
points in¢ and their ranking. Again, structure is involved on the sampling pro-
cess which uses the previous solutions to build an updatei@hobthe PDFs (more
details can be found in the description of Ag@@ Socha and Dorigo [22] as well
as in Leguizamon and Coello [13] where the adaptation of AG@ constrained
optimization problems is presented). After the samplinthefnew solutions i\
andAy,, the process follows the same steps as forgahd PSQ;.

Similarly to the above the search engines, when the probbshly one cons-
traint (or only one is considered as in probl&@®2) there is no need to change from
one to another constraint, therefore a few code lines calsb@gbed, not necessar-
ily dropped, from the general algorithm. In line 2, the “iaitconstraint’ represents
the only problem constraint. The set of lines 6 through 15-epéaced by lines 13
through 14.

Boundary Search for Constrained Numerical OptimizatiavbRms 43

Algorithm 5 A general outline of ACQ;, algorithm

1:t=0
2: ctr=initial_constraint // ‘ctr’ represents the problem constraint urmbasideration
3: init(T#, Ty, w, ctr);
4: T4 =Boundary{T#,Ty)
5. Teg =evaluate(y)
6: while (stop condition not metdo
7 if (changeconstraint())then
8: ctr= getnextctr(ctr) // The search continues considering another pralitonstraint,
9: / e.qg., following aRound-Robirpolicy.
10: Az =Reinit(T#, w, ctr);
11: Ay =Reinit(Ty,, w, ctr);
12: else
13: Az =BuildSols{T#, w, ctr);
14: Ay, =BuildSols{Ty, w, ctr);
15: end if

16: Az =Boundaryf s, Az)

17: Ty =Firsi(Sort(Ty ® Az))

18: T, =evaluate(y)

19: Update(#,T4 ,Ts); { According to the nevil }
20: t=t+1

21: end while

5 Experimental Study

This section presents a (brief) experimental study invgithe applications of the
boundary approach under the three metaheuristics deddnilitee previous section.
The problems considered are conformed by a subset of a wellsk testbed non-
linear problems used in literarure [16]. Table 1 displaysdblected problems and
the respectives optimal or best known values (column Opt/Bk

The study is divided in two parts. The first part (Section S2)ws the results
of the application of one of the three metaheuritics, narttetyACO approach, by
considering two different algorithms. One of them, the imdd ACOr enhanced
with the stochastic ranking technique to handle conssgih€O 4 »). The other
one, is the ACQ , but including the boundary approach and stochastich ngnki
(ACOy). The objective of this study is to show the benefit of the ltamg search
when included as an alternative constraint handling tegfaiTo do that, we con-
sidered just a simple version of the original AG@nd standard parameter setting
for the stochastic ranking in order to better visualize teefgrmance of the algo-
rithm when the search focuses on the boundary between thiblieand infeasible
search space. The second part (6) is aimed to compare tlwrparfce the bound-
ary approach when implemented under ACO, PSO, and EAs metaties. The
respective algorithms are: ACQ, PSQz , and EA» .

44 Guillermo Leguizamoén and Carlos Coello Coello

Table 1: Set of well-known nonlinear problems
Problem Opt/BK

GO01 -15.00
G02 1.0
GO03 | 0.80619

GO04 |-30665.539
GO05 |5126.4981
G06 |-6961.8138
G07 |24.306209

G09 | 680.630
G10 |7049.2084
Gl1 0.75
G13 |7049.2083
Gl4 | -47.764
G15 | 961.715

G17 | 8853.539
G21 | 193.7783
G23 | -400.0025
G24 | -5.5079

G25 | 16.73889

5.1 Parameter Setting

tmax= 10000t-200, only on active constraints, for all the algorithms
PSSOz

vi=wevpetort (X —xd)+c2-r2- (P - x)

|
X =x +v

c1=0.5,c2=0.5,w=0.85NP =50 (NPiskin Algorithm 3, line 18)

EA%

pc = 0.65, pm = 0.01, 1 = 50 (u is kin Algorithm 4, line 31),A =50, (u+A),
real vector representation for the individuals, arithmetiossover, and simple mu-
tation which produces a little change on the value of a pagcdimension vector.

ACOgy4

& =0.85,00.1,NK =50 (NPis kin Algorithm 5, line 17), number of ants set to
50 Referencias a los trabajos previos (ANT 2008) and (errdgies

5.2 Performance Comparison of ACQand ACO 4 »

In this section, we compare the performance of Ag@nd ACO, ». Table 2
shows the results obtained for all the problems studiedh Eatumns shows re-
spectively for each algorithm, the best found value (BFgrage and standard de-

Boundary Search for Constrained Numerical OptimizatiavbRms 45

viation (Avg.std), and number feasible solutions found out of 30 runs. Nusiber
in boldface (column BF) indicate that the optimal solutioasaobtained for the
respective algorithm. Preliminary results from AGQ; were obtained by setting
g€ {0.0001,0.01,0.1} and fixing€ = 85. ACO 4 showed a very similar behavior
(not results) to ACQ; with respect to parameter Even more, the use of a vary-
ing g showed to be the more representative for AC@ considering the overall
performance (quality and number of feasible solutions &un

Table 2: BF in bold means that the optimal value was foundHerrespective problem. It should
be noticed that the results correspond to the setiigg0.1 andé = 0.85. NA stands for “Not
Available”.

ACO4 ACO 4 4
Prob. BF Avg. ¢ |#Fed BF Avg. g |#Fed
Go1 -15.00 -15.00,0| 30 -15.0 -14.10:1108| 24
G02| 0.806190.77687L¢025| 30| 0.7280790.4315990.1145 30
GO03 1.00 1.00| 30 1.00 1.00-00| 29

GO04|-30665.539 -30665.5390| 30|-30665.58-30665.570005 30
GO5| 5126.49 513599 1454] 27| 5231.96 5231.960| 1
GO6| -6961.814 -6961.8140| 30-6061.814 -6961.8140| 2
GO7| 24.304 2453700020, 30| 24.320 25.04Lo6s| 29
GO09| 680.63) 680.6300| 30| 680.630 680.6350003 30
G10| 704932 715599940, 30| 7049.33 7659.54 50520 29
G11 0.75 0.75.0] 30 0.75 0.75.0] 8
G13| 0.053950 0.05396Q0| 26| 0.0970690.5579180 2844 11
G14| -47.76(0 -47.686.00s 30| -47.49] -46.31508131 10
G15| 961.715] O61.71540| 30| 961.7324 961.80920125 3
G17| 8863.6] 8958.3764] 30| 9011.9] 9018.8255s) 26

G21| 193.786(0 193.879400s| 20 NA NA| NA
G23| -303.54 22.5 14584 17 NA NA| NA
G24| 5.508(5.5080.0] 30| 5.508Q 5.50800| 28

G25| 16.73889 16.73889,| 30| 16.73889 16.73889¢| 7

It can be seen that ACQ 4 gives an important number of feasible solutions for
some of the problems, however was not able obtain feasihiéos for all the pro-
blems (e.g., folG21 andG23 no feasible solutions were found at all). Taking into
account the solved problems by ACQ; (G01, G06, GO7, G09, G11, G24, and
G25) its performance is inferior to the ACgfor some of the above problems when
considering the number of feasible solutions and/or awexadues (see problems
G01, G06, G11, G24, andG25). For some of the remaining problems, AGQ,
performs fairly well giving results very close to the optimaes, however, the main
difference with ACQ; is on the average values which shows a less robust algo-
rithm. In addition, for problem&05, G13, andG17; ACO 4 » showed the worst
performance regarding the solution quality. On the othedh& can be seen that
for problemsG10,G17, andG21, ACOy4 obtained values very close to the optimal
ones, whereas, for proble®23 ACOy4 , showed a poor performance with respect
to the solution quality.

46 Guillermo Leguizamoén and Carlos Coello Coello

It is worth remarking that ACQ 4 is a very simple adaptation of the original
ACOg to handling constraints. Despite of that, the results of AC®shows the
potential of the ACO approach for continuous problems.i@aletrly this potential
is exploited here by incorporating a boundary approach.

6 Comparison of ACO, PSO, and EAs under the Boundary
Approach

This section shows the performance of AGCPSQy, and EAy. Table 3 displays
the Best Found (BF) value, and the respective average anatidewalues (Avg.)
for each one of the algorithms implemented. Numbers in laglelfimeans that the
optimal (or best known) value was found. The number of fdasiblutions found
by the respective algorithms are now showed, however thee thigorithms found
very similar values to those values displayed in Table 2 f00%.

Clearly, there are a subset of problems for which the thrgerdhms performs
identically (seeG01, G03, G04, G06, G09, G11, G24, andG25). For the problem
GO05, the performance is identical with respect to the beste/fdund, however the
average values are different but not statistically sigaiftc On the other hand, the
results for problem&02,G07, andG14 show that ACQ; outperformed PS@ and
EA% when considering BF value, however, BAs more robust for this problem
(see columns BF and Avg). In the case 06507 it should be noticed that the three
algorithms perform similarly (the average value were natistically significant).

There exist other particular cases that are analyzed iroffeing. The results
for problemG10 show that ACQ; and EA4 outperformed PS@ considering both,
best found and average values. However, ACautperformed EAy in terms of the
average values (statistically significant). For problé@8 the above described sit-
uation it can also be observed, except that A¢found the optima value for this
particular problem. A different situation is for probleai7 foe which PS@, found
the best solution, however, ACgand EAz showed not statistically significant av-
erage value, but better and statistically significant wétspect to PS@. Consider-
ing the average value, the three algorithms showed siméldopnance for problem
G21, except that ACQ achieved the best value. Finally, probl&a3, no one of
the three algorithms perform well. Pg0Owvas not capable of finding any feasible
solution, whereas, ACQ and PSQ; found a few feasible solutions of bad quality.

7 Summary and Future Work

In this chapter we have presented the boundary approachateamative approach
to explore the boundary between the feasible and infeasdalech space for cons-
trained optimization problems. The boundary approach wasemted under two
perspective, either by usiragl hocoperators as presented in [17], and a more gen-

Boundary Search for Constrained Numerical OptimizatiavbRms a7

Table 3: Performance of ACQ, PSQz, and EA» on the benchmark problems. BF in boldface
means that the optimal value was found for the respectivielgmo NA stands for “Not Available”.
The respective parameter setting is described in Section 5.

ACOy4 PSQy EA»
Prob. BF AVQ.iqo BF AVQ.g BF AVQ.g
GO1 -15.00 -15.000 -15.00 -14.10i1 198 -15.00 -15.00.0
G02| 0.80619 0.77687Lgors| 0.80512 0.5939(06ss1 0.80355(0.803352 00001
GO03 1.00 1.00:9 1.00 1.00100 1.00 1.00100
G04(-30665.53 -30665.539¢(-30665.539 -30665.539(-30665.539-30665.529¢,01
GO5| 5126.49 5135.991454] 5126.49 5130.74544| 5126.64 5130.12384
GO06| -6961.814 -6961.814| -6961.814 -6961.814¢| -6961.814 -6961.814¢
GO07 24.30§ 24.5370.0.240 24.375 25.053.¢.728 24.373 24.546.0.128
G09| 680.63(680.630| 680.63(680.635 0003 680.63(680.633.0.0
G10| 7049.32617155.9948 94 924| 7093.01518040.5537 972585/ 7049.3337659.54Q 59620
G11 0.75 0.75:9 0.75 0.75:¢ 0.75 0.75:¢
G13| 0.05395 0.05396Q4| 0.053961 0.06376800103 0.053984 0.069971¢ 048
G14 -47.76(-47.686.0.08 -47.129 -43.778.163| 47.6724 47.67080022
G15| 961.7151 961.71579| 961.7151 962.197311407] 961.7151961.7149¢ 0002
G17| 8863.67 8958, 3764| 8859.95419019.25191,5776| 8866.86 9004.28891 11
G21| 193.784 193.879009| 196.397 201.034.349| 193.804 193.880.0085
G23| -303.54 22.5% 14584 NA NA| -177.16 2.67:16070
G24 5.508(5.5080.¢ 5.508(5.5080.¢ 5.508(5.5080.¢
G25| 16.73889% 16.73889,| 16.7388¢ 16.73889¢ 5.508(5.5080.¢

eral operator as proposed in previous works [13, 14] as plesalternatives to be
applied when facing constrained problems. In additioreetdifferent search ma-
chines (EAs, PSO, and ACO) were considered to show how thedawy approach
could be implemented without producing major modificationghe original algo-
rithms. Furthermore, it is worth noticing that the boundapproach is an interesting
mechanism that could applied to many constrained optimoizgtroblems, particu-
larly this observation is true for the 'general boundaryraper’ described in detail
here and proposed in earlier works.

As presented in this chapter, the boundary approach can dx alsne (as
a constraint-handling techniques itself) or in combinatiath a complementary
constraint-handling technique like penalty functions oy ather like Stochastic
Ranking which is used here to display three algorithms dinstesimplicity and for
being an efficient and very well known technique. The thrgedthms (i.e., EAy,
PSQyz, and ACQy) presented here as a guidelines show that the boundaryagbpro
is flexible enough to be implemented under different searathimes.

Finally, is important to remark that the boundary approasef as having the
possibility of using boundary operators) can be consideredn implementing a
more general constraint-handling technique under sometseagine. Particularly
when facing problems with an several constraints. For eXeytipe general operator
(as defined here) needs two points, one from the feasiblenmegid the other one
form the infeasible one. Let us suppose that a MHs implemeanatraint-handling
technique to explore the whole spage However, the boundary of a particular

48 Guillermo Leguizamoén and Carlos Coello Coello

constraint could be approached by considering points froth,lithe feasible and
infeasible one with respect to that constraint. By this wlagrgeneration of solutions
laying on the boundary could help to quickly reach (in a colled manner) the

boundary region. Nevertheless, there are still place tsiden alternative ways of
implementing @yeneral boundary operatalifferent form the proposed in this work.

Acknowledgements The first author acknowledges support from Universidad dtzadi de San
Luis and the ANPCYT (National Agency for Promotion of Scierand Technology). The second
author acknowledges support from CONACyYT project no. 45683

References

1. Th. Back, D. B. Fogel, and Z. Michalewicz, editoksandbook of Evolutionary Computation
Oxford University Press, New York, and Institute of Phydteslishing, Bristol, 1997.

2. C. Coello Coello. List of references on constraint-hargitechniques used with evolutionary
algorithms. http://www.cs.cinvestav.mx/-constraint/.

3. C. Coello Coello. Theoretical and numerical constraimdling techniques used with evolu-
tionary algorithms: A surv ey of the state of the &bmputer Methods in Applied Mechanics
and Engineering191(11-12):1245-1287, January 2002.

4. D. Corne, M. Dorigo, and F. Glover, editofdew Ideas in OptimizatiorMcGraw-Hill Inter-
national, 1999.

5. M. Dorigo and T. StutzleAnt Colony OptimizationMit-Press, 2004.

6. A.P. EngelbrechtFundamentals of Computational Swarm Intelligenden Wiley & Sons,
Ltd, 2005.

7. M. Schitz G. Leguizamon, Z. Michalewicz. An ant systemthe maximum independent
set problem. IrProceedings of the 2001 Argentinian Congress on Compuien&e pages
1027-1040, El Calafate, Argentina,, 2001.

8. F. Glover and G.A.Kochenberg, editorélandbook of Metaheuristics Kuwler Academic
Publishers, London, 2003.

9. J.Gottlieb. Evolutionary algorithms for multidimensa knapsack problems: the relevance
of the boundary of the feasible region. In Wolfgang Banziagon Daida, Agoston E. Eiben,
Max H. Garzon, Vasant Honavar, Mark Jakiela, and Robert EtiSeditors,Proc. of the Ge-
netic and Evolutionary Computation Conf. GECCQO-pfige 787, San Francisco, CA, 1999.
Morgan Kaufmann.

10. A. J. Keane. Experiences with optimizers in structuesigh. In I. C. Parmee, editdro-
ceedings of the Conference on Adaptive Computing in EngingeBesign and Contrglpages
14-27, Plymouth, UK, 1994. University of Plymouth.

11. J.Kennedy and R Eberhart. Particle swarm optimizatioiEE International Conference on
Neural Networksvolume IV, pages 1942-1948, Perth, Australia, 1995. IEEfiSe Center.

12. J. Kennedy, R.C. Eberhart, and Y. S8ivarm IntelligenceMorgan Kaufmann, 2001.

13. G. Leguizamon and C. Coello Coello. Boundary searcltdoistrained numerical optimiza-
tion problems in aco algorithms. In Marco Dorigo, Luca Ma@ambardella, Mauro Birattari,
Alcherio Martinoli, Riccardo Poli, and Thomas Stiitzleiteds, ANTS Workshgpolume 4150
of Lecture Notes in Computer Scienpages 108-119. Springer, 2006.

14. G. Leguizam6n and C. Coello-Coello. A Boundary Seammbeld ACO Algorithm Coupled
with Stochastic Ranking. 18007 IEEE Congress on Evolutionary Computation (CEC’2007)
pages 165-172, Singapore, September 2007. IEEE Press.

15. G. Leguizamén and Z. Michalewicz. A New Version of Ants&m for Subset Problems.
In Proceedings of the 1999 Congress on Evolutionary Compmurigbages 1459-1464. IEEE
Press, Piscataway, NJ, 1999.

Boundary Search for Constrained Numerical OptimizatiavbRms 49

16.

17.

18.

19.

20.

21.

22.

23.

J. J. Liang, T. P. Runarsson, E. Mezura-Montes, M. ClerdN. Suganthan, C. Coello
Coello, and K. Deb. Problem Definitions and Evaluation Cidtdfor the CEC. Tech-
nical report, Special Session on Constrained Real-Paesmnm@ptimization, School of
Electrical and Electronic Engineering Nanyang TechnaalgiUniversity, available at
http://www.ntu.edu.sg/home5/lian0012/cec2006/tecdinieport.pdf, Singapore, 2006.

Z. Michalewicz, G. Nazhiyath, and M. Michalewicz. A naie usefulness of geometrical
crossover for numerical optimization problems. In Laweerdkc Fogel, Peter J. Angeline,
and Thomas Back, editorgyvolutionary Programming V: Proc. of the Fifth Annual Coaf
Evolutionary Programmingpages 305-311, Cambridge, MA, 1996. MIT Press.

T.P. Runarsson and X. Yao. Stochastic ranking for caimgtd evolutionary optimization.
IEEE Transactions on Evolutionary Computatjei{3):284—294, 2000.

M. Schoenauer and Z. Michalewicz. Evolutionary compomaat the edge of feasibility.
In Hans-Michael Voigt, Werner Ebeling, Ingo Rechenberg] Bians-Paul Schwefel, editors,
Parallel Problem Solving from Nature — PPSN, vages 245—-254, Berlin, 1996. Springer.
M. Schoenauer and S. Xanthakis. Constrained GA opttioizaln Stephanie Forrest, editor,
Proc. of the Fifth Int. Conf. on Genetic Algorithmsages 573-580, San Mateo, CA, 1993.
Morgan Kaufmann.

K. Socha. ACO for continuos and mixed-variable optiricza In M. Dorigo, M. Birattari,
C. Blum, L. M. Gambardella, F. Mondada, and T. Stutzle,@ditAnt Colony Optimization
and Swarm Intelligence, 4th International Workshop, AND842 volume 3172 ofLNCS
pages 25-36. Springer-Verlag, Berlin, Germany, 2004.

K. Socha and M. Dorigo. Ant colony optimization for cantous domains. Euro-
pean Journal of Operational Research85(3):1115-1173, to be published in March 2008.
http://dx.doi.org/10.1016/j.ejor.2006.06.046.

Z.Y.Wu and A.R. Simpson. A self-adaptive boundary degenetic algorithm and its appli-
cation to water distribution systemdournal of Hidraulic Researgh0(2):191-203, 2002.

