
Boundary Search for Constrained Numerical
Optimization Problems

Guillermo Leguizamón and Carlos Coello Coello

Abstract The necessity of approaching the boundary between the feasible and in-
feasible search space for many constrained optimization problems is a paramount
challenge for every constraint-handling technique. It is true that many of the state-
of-the-art constraint-handling techniques performs wellwhen facing constrained
problems. However, it is a common situation that reaching the boundary between
the feasible and infeasible search space could be a difficulttask for some particular
problems. Firstly, this chapter shows a general overview ofthe constraint-handling
techniques based on a boundary approach and emphasizing a recent proposal ap-
plying a more general boundary operator. In addition, the chapter includes some
particular considerations related to the implementation aspects of the boundary ap-
proach when facing problems with one o more constraints. Another important issue
also considered here is about the implementation of this approach when taking into
account different search engines. On this direction, some basic examples are de-
picted as guidelines for possible implementations under well-known metaheuristics
as Evolutionary Algorithms (EAs), Particle Swarm Optimization (PSO), and Ant
Colony Optimization (ACO). To validate the boundary approach implemented under
the above metaheuristics, an experimental study is presented in which well-known
problems were considered. Finally, a brief summary of the chapter and some ideas
for future works are given which could help the researchers interested in developing
advanced constraint-handling techniques.

Key words: Constrained Handling, Boundary Search, Particle Swarm Optimiza-
tion, Ant Colony Optimization

Guillermo Leguizamón
LIDIC - Universidad Nacional de San Luis Ejército de Los Andes 950 San Luis 5700, AR-
GENTINA e-mail: legui@unsl.edu.ar

Carlos A. Coello Coello
CINVESTAV-IPN Evolutionary Computation Group (EVOCINV) Departamento de Com-
putación Av. IPN No. 2508. Col. San Pedro Zacatenco MéxicoD.F. 07300, ḾEXICO e-mail:
ccoello@cs.cinvestav.mx

25

26 Guillermo Leguizamón and Carlos Coello Coello

1 Introduction

The boundary search can be considered as alternative approach when facing pro-
blems with active constraints (see Sect. 2) at the optimal orhigh quality solutions.
This is mainly observed for that problems that include at least one equality cons-
traint. However, there exist plenty of optimization problems without any equality
constraint for which many of their constraints are active for the best feasible solu-
tions. Clearly the more appropriate situation for the boundary approach is when the
problem has only one equality constraint. In addition, the boundary search could
be used as a complementary mechanism of another constraint-handling technique
to rapidly reach or force the exploration towards the regions around the boundary
between the feasible and infeasible search space.

Specific operators (orad hocboundary operators) could be the right candidates
to search only on the boundary region between the feasible and infeasible search
space. However, it is not always possible to design specific boundary operators for
each problem constraint. Furthermore, there exist only a few examples of this kind
of boundary operators in the literature. Michalewicz et al.[17] wrote one of the
first papers on boundary search through the use of evolutionary algorithms for cons-
trained numerical optimization problems. The efficiency ofthis approach was shown
by using two constrained optimization problems: Keane’s function (also known as
G02) [10] and another function with one equality constraint (also known asG03).
For solving these problems the authors proposed two geneticoperators which gen-
erate offspring lying on the boundary between the feasible and infeasible search
space. Similarly, Schoenauer and Michalewicz [19] proposed several evolutionary
operators capable of exploring a general surface of dimension n−1 (n is the num-
ber of variables). The design of these operators, tested on three problems, depends
on the surface representation: curves-based, plane-based, and parametric represen-
tation. Although not using anad hocboundary operator, Wu et al. [23] proposed
a GA for the optimization of a water distribution system, which is a highly cons-
trained optimization problem. The proposed approach co-evolves and self-adapts
two penalty factors in order to guide and preserve the searchtowards the boundary
of the feasible search space.

On the other hand, Gottlieb [9] introduces and remarks the use of the the bound-
ary approach for a combinatorial optimization problem, more precisely, the multi-
ple knapsack problem. By the same year Leguizamón and Michalewicz proposed
for the same problem, an Ant System which biases the search boundary region and
gives encouraging results [15]. The maximum independent set problem is also con-
sidered under the same approach and plenty instances of thisproblem were solved
optimally [7].

The reduction of the search space is one of the most relevant characteristics of
the boundary search approach since the exploration considers only the boundary of
the feasible search space. However, many of the test cases considered in the for-
mer works only include problems with one constraint for which it is possible to
definead hocgenetic operators that fit perfectly the boundary of the feasible region.
However, this sort of approach is impractical in an arbitrary problem with many con-

Boundary Search for Constrained Numerical Optimization Problems 27

straints, and it is therefore necessary to define a more general approach for boundary
search which can be as robust as possible to deal with different types of constraints.
More recently, Leguizamón and Coello [13,14] proposed a boundary approach that
focuses the search on the boundary region by considering a sort of more general
boundary operator applicable to any type of constraints. The experimental reports
show the applicability of the boundary approach using ant colony based algorithms
as a search engine.

The next section of this chapter shows a general overview of the constraint-
handling techniques. Sect. 3 describes the boundary searchapproach and two al-
ternatives for exploring the boundary between the feasibleand infeasible search
space:ad hocoperators and a general operator. In the last case, emphasizing a more
recent proposal according to Leguizamón and Coello [13, 14]. In order to visu-
alize some considerations about specific implementation aspects of the boundary
approach, Sect. 4 displays the pseudocode by taking into account different search
engines. On this direction, some basic examples are depicted as guidelines for pos-
sible implementations under well-known metaheuristics (MHs) as Evolutionary Al-
gorithms [1, 6, 8], Particle Swarm Optimization [6, 11, 12],and Ant Colony Op-
timization [4–6] which can be have been used as a search engine to successfully
implement constraint-handling techniques. Section 5 shows the results of the appli-
cation of EAs, ACO, and PSO to a well-known testbed of numerical optimization
problems. Finally, a brief summary and some ideas for futurework are given which
could help the researchers interested in developing advanced constraint-handling
techniques.

2 A General Overview of Constraint-Handling Techniques

The general nonlinear programming problem whose aim is to find x so as to opti-
mize:

f (x) x = (x1,x2, ...,xn) ∈R
n

wherex ∈ F ⊂ S . The setS ⊂ R
n defines the search space and setsF ⊂ S

andU = S −F define thefeasibleandinfeasiblesearch spaces, respectively. The
search spaceS is defined as ann-dimensional rectangle inRn (domains of variables
defined by their lower and upper bounds):

l(i)≤ xi ≤ u(i) for 1≤ i ≤ n

whereas the feasible setF is defined by the intersection ofS and a set of additional
m≥ 0 constraints:

g j ≤ 0, for j = 1, . . . ,q and h j = 0 for j = q+1, . . . ,m.

At any pointx ∈F , the constraintsgk that satisfygk(x) = 0 are called the active
constraints atx. Equality constraintsh j are active at all points ofF .

28 Guillermo Leguizamón and Carlos Coello Coello

The most common way of incorporating constraints into MHs (e.g., EAs, DE,
PSO) have been penalty functions which are the oldest approach used as a constraint-
handling technique. However, due to the well-known difficulties associated with
them, researchers in MHs (mainly in EAs) have proposed different ways to auto-
mate the definition of good penalty factors, which remains asthe main drawback of
using penalty functions. Additionally, several researchers have developed a consid-
erable amount of alternative approaches to handle constraints, mainly to deal with
specific features of some complex optimization problems in which it is difficult to
estimate good penalty factors or to even generate a single feasible solution.

A comprehensive survey of constraint-handling techniquesthat have been adopted
over the years to handle all sorts of constraints (linear, non-linear, equality, and in-
equality) in EAs can be found in Coello [3]. This survey covers extensively: a)
penalty functions in several of their variations that have been used with EAs (i.e.,
static, dynamic, annealing, adaptive, co-evolutionary, and death penalties); b) the
use of special representations and genetic operators (e.g., operators that preserve
feasibility at all times and decoders that transform the shape of the search space); c)
repair algorithms, which are normally used in combinatorial optimization problems
in which the traditional genetic operators tend to generateinfeasible solutions all
(or at least most of) the time. Thus, ”repair” refers, in thiscontext, to make valid
(or feasible) these individuals through the application ofa certain (normally heuris-
tic) procedure; d) techniques that handle objectives and constraints separately; and
e) discusses approaches that use hybrids with other techniques such as Lagrangian
multipliers or fuzzy logic as well as other more novel approaches.

Although the Coello’s survey is mainly concerned with constraint-handling tech-
niques from the perspective of EAs, the concepts depicted conform a general frame-
work to be applied with other search engines. Examples of themore recent applica-
tions of using novels MHs (e.g., DE, PSO, ACO, etc.) for constraint handling tech-
niques can be found at the web site from EVOCINV [2] which includes upto date
references to the more representatives constraint-handling techniques implemented
under different search engines.

It is worth remarking that plenty of problems formulated as at the beginning of
this section, include active constraints at the best known or optimal solutions. For
example, for problems with at least one equality constrainth j , the respective opti-
mal solution will lay on the region defined byh j(x) = 0. Furthermore, for many
problems, the best solutions may lay on the boundary betweenthe feasible and
infeasible search space of some inequality constrains, i.e., the region defined by
g j(x) = 0. When those conditions are met for a particular problem, the design ofad
hocoperators or approaches that explore the search space focusing on the bound-
ary region (according either to the equality and/or inequality constraints) can be a
suitable alternative for including in a specific search engine or metaheuristic.

Boundary Search for Constrained Numerical Optimization Problems 29

3 The Boundary Search Approach

In the following we first explain how the boundary region can be approached given a
specific search space; more precisely, a subset of then-dimensional spaceRn. Then,
we also describe the manner in which this search space could be explored assuming
a hypothetical search engine and exploration operators, aswell as the properties that
they should satisfy. Afterwards, we present in detail the proposed technique that
takes advantage of the boundary approach to explore some specific regions of the
boundary of the feasible search space by consideringad hocand a general boundary
operators.

Definition 1. Given a constrained numerical optimization problem, its determines
a feasible search spaceF . In addition, the problem constraints determine a set
FB ⊆ F which represent the points inF which make active at least one of the
problem constraints (FB = F when the problem includes only one equality cons-
traint).

To appropriately define boundary operators , we must take into account that set
FB must be closed under the application of a boundary operator.Let us suppose that
Ωr is a r-ary boundary operator, i.e., it takesr points in setFB ; then the resulting
point must be inFB. In other words, anr-ary boundary operator can generally
be defined asΩr : (FB)r → FB. For example, when considering a “boundary”
crossover operatorthat takes two parents to generate one child, it can be definedin
the boundary context asΩ2 : FB×FB→FB. Fig. 1 display a set of points laying
on the boundary region with respect to a problem constraint and the application of
boundary operators that take respectively 2, 3, and 4 point as argument. Clearly,Ωr

operator could be any operator (e.g., genetic operators as in EAs) or equation (e.g.,
velocity and position updating of the particles in PSO) usedin different MHs used
for sampling new points in the search space.

Ω2(b2
1,b

2
2)

Ω4(b4
1,b

4
2,b

4
3,b

4
4)

Ω3(b3
1,b

3
2,b

3
3)

Boundary≡FB

Ωr (br
1, . . .,b

r
r)

(br
1, . . .,b

r
r)

Fig. 1: This figure shows a set of points laying onFB (white circles) and the respective points
sampled onFB (filled circles) after the application of the boundary operator Ωr , for r = 2,3,4.
Notice thatFB is closed under the application ofΩr

30 Guillermo Leguizamón and Carlos Coello Coello

It is worth noting that the definition of anΩr operator which makes setFB

closed under its application could be a difficult or at least impossible task for most
of the usual problem constraints. The most paradigmatic case is the proposal of
Michalewicz et al. [17] where different boundary operatorswhere defined which
perfectly fit in our definition of theΩr operator:Geometrical Crossover, Spherical
Crossover, andad- hocmutation operators. However, their application is limited
to couple of problems with specific characteristics. In order to mitigate this draw-
back, the design of more general operators to exploreFB could be an interesting
approach when considering a wider set of problems to be tackled under the bound-
ary approach. It must be noted that the above classification,i.e.,ad hocand general
operators, is not intended to be a general rule, instead, it only represents the authors’
point of view in the way the boundary approach could be conceived.

In the following we present two possibles alternative to define anΩr operator,
either byad hocoperators or a general operator. The main difference among these
two types of operators is thatad hocoperators are defined to operate on thepheno-
type spacewhere as the general operator does it on thegenotype space(Sect. 3.2
describes these concepts in more detail).

3.1 Ad hocboundary operators

As mentioned in a previous section, the work of Michalewicz et al. [17] represents
one of the first intents to define specificad hocoperators to explore the boundary
between the feasible and infeasible search space. Althoughthis approach to explore
the boundary region can be useful and efficient, it in not always possible to define a
specific one for any problem constraint. Indeed, for most of the problem constraints,
to find an adequate operator could be as difficult as solving the original problem. As
a manner of showing the way in which the boundary region can beexplored, we
will describe in the following a classical example, the Keane’s problem [10]. The
reason for showing this alternative through an example is because anad hocoperator
completely depends on the shape of the involved constraints.

3.1.1 Exploration of the boundary region underad-hocoperators

The exploration of the boundary search space underad hocoperators can be vi-
sualized more clearly for a particular problem since its definition depends on the
particular constraint considered. For our example, we havechosen a very well-
known constraint optimization problem widely used as a benchmark to test differ-
ent constraint-handling techniques: the Keane’s problem.This problem, also known
asG02 (see [16]) includes a non-linear objective function and two inequality con-
straints. More precisely, an optimal solution forG02 aims at maximizing:

Boundary Search for Constrained Numerical Optimization Problems 31

f (x) = |∑
n
i=1cos4(xi)−2∏n

i=1cos2(xi)
√

∑n
i=1 ix2

i

|

subject to:

g1(x) = 0.75−∏n
i=1xi ≤ 0

g2(x) = ∑n
i=1xi−7.5n≤ 0

wheren = 20 andS = {x ∈R
20|0≤ xi ≤ 10, for i = 1. . .20}. The best known so-

lution is atx∗ = (3.16237443645701,3.12819975856112,3.09481384891456,
3.06140284777302,3.02793443337239,2.99385691314995,2.95870651588255,
2.92182183591092,0.49455118612682,0.48849305858571,0.48250798063845,
0.47695629293225,0.47108462715587,0.46594074852233,0.46157984137635,
0.45721400967989,0.45237696886802,0.44805875597713,0.44435772435707,
0.44019839654132) where f (x∗) = 0.80619 and constraintg1 is close to being ac-
tive. Fig. 2 shows a plotting of theG02’s objective function forn = 2.

Fig. 2: Keane’s function withn = 2. Infeasible solutions were assigned value zero

Despite of problemG02 has two constraints, one of them is just dismissed when
solving this problem since: a) the second constraint is satisfied for all solutions
laying on the boundary of the first constraint and b) the first constraint is close to
being active at best known solution (see [17]). For this problem, the spaceFB =
{x ∈S |0.75−∏20

i=1xi = 0}
The search engine used in Michalewicz et al. [17] is an EA where the main

components are described as follows:

32 Guillermo Leguizamón and Carlos Coello Coello

i. Initialization : Randomly choose a positive variable forxi and use it inverse as
a variable forxi+1. The last variable is either 0.75 (whenn is odd) or multiplied
by 0.75 (if n is even).

ii. Mutation : is a unary operator (r = 1) defined by

Ω1(x) = (x1, . . . ,q×xi, . . . ,
1
q
×x j , . . . ,xn),

whereq is a random factor restricted to respect the bounds on the variables and
1≤ i, j ≤ 20 randomly chosen, withi 6= j.

iii. Crossover: is a binary operator (r = 2) calledgeometrical crossoverand de-
fined according to our notation by

Ω2(x,y) = (xα
1 y1−α

1 , . . . ,xα
n y1−α

n), with 1≤ α ≤ 1,

whereα is a random number.

By using the above initialization procedure, all points in the initial population
will lay on FB . Similarly,FB is closed under the application ofad hocoperators
Ω1 andΩ2, therefore, all points generated will also lay on the boundary. It is worth
remarking that the application of boundary operators for problemG02 produced
at least two very important results in the area of constraint-handling techniques.
First of all, tgood quality solutions were formerly obtained by using a boundary
operator and second, showed the usefulness and potential ofthe boundary approach
for certain types of numerical optimization problems.

3.2 A general boundary operator

We describe here an alternative1 general boundary approach (proposed in [13, 14])
which is based on the notion that each pointb of the boundary region can be repre-
sented by means of two different pointsx andy, wherex is some feasible point and
y is some infeasible one, i.e.,(x,y) can represent one point lying on the boundary
by applying a “binary search” on the straight line connecting the pointsx andy
(when considering an equality constraint,z ∈F iff h(z) ≤ 0; otherwise,z ∈ U).
Fig. 3 shows a hypothetical search space including the feasible (shadowed area) and
infeasible regions. We can identify four points lying on theboundaryb1, b2, b3, and
b4 which are respectively obtained from(x1,y1), (x2,y2), (x3,y3), and(x4,y4).

The binary search applied to each pair of points(x,y) is achieved following the
steps described in function BS (see Algorithm 1). For example, a possible applica-
tion of this process can be seen in Fig. 3 where we adopt the pair of points(x3,y3)
from which we obtain the pointb3, which lies on the boundary. The first step (la-
beled(1)) indicates that the first mid point found is feasible. Consequently, the left

1 It is possible that other general operators can be visualized to implement under the boundary
search approach.

Boundary Search for Constrained Numerical Optimization Problems 33

x1

x2

x3

x4

y1

y2

y3

y4

b1

b2

b3

b4

p1

p2

(1)

(2)

(3)

U

F

Fig. 3: Given one feasible and one infeasible point, the respective point lying on the boundary can
be easily reached by using a simple binary search. In this way, the each point on the boundary can
be reached from at least a pair of points(x,y) with x ∈F andy ∈U

side of the straight line (x3) is moved to pointp1. In the next step (labeled(2)) we
consider the pointsp1 andy3 as extreme points for which the mid point is the infea-
sible pointp2. Thus, the new feasible point or right extreme of the line is now the
pointp2. Finally, the last point generated isb3 which can be either lying on or close
to the boundary. Condition ((distto boundary(m) ≤ δ) AND Feasible(m)) defines
a threshold to stop the process of approaching the boundary.However, the second
part of this condition (i.e., “Feasible(m)”) it is only applied when considering an
inequality constraint. In this way, functionBS guarantees thatm is in the feasi-
ble side regarding the corresponding inequality constraint under consideration. It is
worth noticing that parametersx andy are local to BS, i.e., function BS behaves as
a decoder of the pair of feasible and infeasible points passed as parameters. There-
fore, the number of “midpointsbetween”x andy before approaching the boundary
within a distance less thatδ is given bylog2(r) wherer = (dist(x,y)))/δ . Thus, the
closer to the boundary, the largerlog2(r).

3.2.1 Exploring the boundary region under a general operator

So far, we have shown how a point lying on the boundaryb can be represented
through a pair of points(x,y) with x ∈F andy ∈U . Now we need to consider the
exploration of the search space which, according to our proposal, can be defined as
G = {(x,y)|x ∈F ⊂ R

n∧ y ∈ U ⊂ R
n}, that is, the set of pair of points(x,y) as

described above. This space can be considered agenotype spaceas known in the
area of evolutionary computation. Since each point fromG represents a point on the
boundary, it is necessary the application of the decoder represented by functionBS

34 Guillermo Leguizamón and Carlos Coello Coello

Algorithm 1 BS(x,y: real vector): real vector
1: m: real vector;
2: repeat
3: m = mid point between(x,y);
4: if Is on Boundary(m) then
5: returnm; { m is a point lying on the boundary}
6: end if
7: if Feasible(m) then
8: x = m;
9: else

10: y = m;
11: end if
12: until (dist to boundary(m)≤ δ) AND (Feasible(m));
13: returnm; {The closest point to the boundary according toδ }

(see Algorithm 1) to obtain the respectivephenotype, i.e., the “gene expression” of
(x,y) ∈ G . Thus, the setB = {b|b = BS(x,y)} is conformed by the set solutions on
the boundary. Each solution in this set is evaluated by function φ , which represents
a measure of solutions quality and gives as result an elementof setE = {e∈R|e=
φ(b)}. Fig. 4 displays the respective spaces and how they are related with each other
by the application of functionsBSandφ , respectively.

G B

BS φ

E

Fig. 4: The search or genotype space (G), phenotype space (B), and spaceE , and the respective
connection through the decoderBSand function evaluationφ

From the above described, is clear that the search engine must deal with the
exploration of spaceG . Fig. 5 shows a set of three hypothetical points{(x1,y1),
(x2,y2), (x3,y3)} in G , a problem constraint, and the respective points{b1,b2,b3}
on the boundary. The application of the generalΩ3 operator on(b1,b2,b3) gives as
result a pointb onFB . To obtain this point on the boundary, an operatorχ is applied
respectively on the points onF andU to obtain a new point onG , i.e.,(x,y), from
which a new point on the boundary is obtained as displayed in the following:

Boundary Search for Constrained Numerical Optimization Problems 35

Ω3(b1,b2,b3) = Ω3(BS(x1,y1),BS(x2,y2),BS(x3,y3))
= BS(χ3(x1,x2,x3),χ3(y1,y2,y3))
= BS(x,y)
= b

y = χ3(y1,y2,y3)

x = χ3(x1,x2,x3)

b = BS(x,y)

x1

x2

x3

y1

y2

y3

b1

b2

b3

U

F

Fig. 5: A set of hypothetical points{(x1,y1), (x2,y2), (x3,y3)} in G , a problem constraint, and the
set respective points{b1,b2,b3} on the boundary. The application of the general 3-ary operator on
(b1,b2,b3) gives as result a pointb on FB . In fact, the operatorΩr is a combination of operators
(χ) that respectively works on spaceF andU , in addition to the decoding functionBS

Indeed, operatorχ could be any exploration operator which will depend on the
search engine used to explore spaceG . For example, from the perspective of evo-
lutionary algorithms, it can be created an initial population of individuals where
each one of them represents an element of setG . Therefore, suitable operators to
be chosen could be any qualified crossover and/or mutation operators for floating-
point representations. A similar approach can be adopted ifusing another search
engine suitable for exploring continuous spaces, e.g., particle swarm optimization,
ant colony optimization, differential evolution, immune systems, etc. Sect. 4 de-
scribes through three MHs the the boundary approach can be easily implemented
with just a few changes when considering different search engines.

3.3 Focusing on the problem constraints

It is important to remember that we are assuming active constraints at the global
optimum to proceed with this method which focuses the exploration on the boundary
region. However, either using anad hocor general operator (as the proposed here),

36 Guillermo Leguizamón and Carlos Coello Coello

the main difficulty of a boundary operator is concerned with problems with more
that one constraint.

Certainly, the simplest case to apply the boundary approachis when the problem
has only one constraint which could be either an equality or an inequality constraint.
Let us suppose that the problem includes only one constraint, let us sayh, then the
search engine should proceed by sampling: a) when applying an ad hocoperator,
a set of solutions laying on the boundary and after that, applying the specificad
hoc operators to exploreFB directly or b) when applying the general operator, a
set of pair of points on thegenotype spaceG which each one of them is mapped
via function BS in to the boundary region, after that,FB is indirectly explored
through the exploration of spaceG . In both cases, all solutions generated will be
feasible. Two examples of case (a) are certainly given in theMichalewicz et al.’s
proposal [17]. For the second case (b), Fig. 5 display a hypothetical problem with
one constraint, some points on spaceG , and the modification of this points which
give, via functionBSa new point on the boundary.

On the other hand, when facing the typical situation in whichwe have more
than one constraint, it is necessary to define an appropriatepolicy to explore the
boundary as efficiently as possible since spaceFB will be now determined by a set
of constraints rather than one. In this case, it will be not possible to define any type
of boundary operators that make closedFB under their application.

In the following we focuses in some alternative to manage this situation consid-
ering only the use of the general operator. In fact, the same approach can be applied
when consideringad hocoperators, however, we believe that this is unlikely due
to the difficulty to define them for any type of constraint. Therefore, one possi-
bility is to explore in turn the boundary of each problem constraint. The selection
of the constraints to search for can be determined using different methods. If the
problem includes at least one equality constraint, such equality constraints are the
most appropriate candidates to be selected first. However, apossible search engine
could keep focused on a particular constraints over the whole run or may be change
from one problem constraint to another depending on a particular condition. In our
previous work [13] we defined a simple condition based on a parameter calledtc
which counts the number of iterations the algorithm focusesin a particular cons-
traint. However, more complex condition could be considered, for example, taking
into account the population diversity or the degree in whichsome problem con-
straints are being violated. For the last case, the scheme proposed by Schoenauer
and Xanthakis [20] could be adapted and applied when focusing on the boundary
region. The proposed scheme consists on a multi-steps evolutionary process based
on behavioral memory that considers each problem constraint in turn. The process
starts from the first constraint. When the current constraint j is processed, the solu-
tions that violates constraintsj −1, . . . ,1 are given a zero fitness. Simultaneously,
when constraintj is satisfied (according to a thresholdφ), constraintj + 1 is then
processed. The process continues until all constraints have been considered.

As an illustrative example when facing a problem with more than one constraint,
Fig. 6 shows a hypothetical search space determined by threeinequality constraints.
Let us suppose that the search proceeds starting on constraintg1. If the visited points

Boundary Search for Constrained Numerical Optimization Problems 37

F

U

g1

g2
g3

Fig. 6: Feasible search space defined by 3 inequality constraints. The search proceeds on the bound-
ary of constraintg1, however, some points on the boundary ofg1 are infeasible when considering
the whole set of the problem constrains

are on the boundary ofF , these points will also satisfy the remaining problem
constraints (filled line in Fig. 6). However, the exploration of the boundary with
respect to constraintg1 will eventually produce points violating constraintsg2 and
g3 (dotted line in 6). One of the simplest methods to deal with this situation could
be for example, the application of a penalty function for theinfeasible solutions. In
addition, if g1 is active at the global optimum, the method will focus the search on
the boundary in order to restrict the explored regions of thewhole search space. Note
however, that other (more sophisticated) constraint-handling techniques can also be
adopted. For example, it could be considered the inclusion of the Stochastic Ranking
approach [18] to make the comparisons among the solutions generated [14] and thus
avoiding the inclusion and tuning of any penalty factor for solutions evaluation.
As a manner of showing some concrete examples of the possibleapplication of
the boundary approach, in the next section, we focus on its implementation from
the perspective of three different search engines: Evolutionary Algorithms, Particle
Swarm Optimization, and Ant Colony Optimization.

4 Implementation Issues

This section is aimed to explain in some detail the implementation the boundary
approach under the general boundary operator by using threesearch engines: EAs,
PSO, and ACO. Since their implementation underad hocoperators is straightfor-
ward, i.e., they do not produce any important change on the respective search engine,
we have decided not to include the respective implementation.

38 Guillermo Leguizamón and Carlos Coello Coello

The selection of the three mentioned search engines does notfollow any kind or
priority of one over the remaining ones. In first place, EAs can be considered the
more popular MHs used in optimization and particularly in numerical constrained
optimization problems. Second, PSO is a more recent MHs which lately have been
successfully applied to solve plenty of the state-of-the-art benchmarks for numerical
optimization. Finally, we consider ACO as a possible alternative which was chosen
for two main reasons: 1) it was the first search engine used to test the boundary
approach using a general operator with encouraging resultsand 2) more advanced
version of the ACO metaheuristic have been recently developed which can suc-
cessfully be applied to problems defined over continuous domains with or without
constraints.

Algorithm 2 A general outline of the stochastic ranking algorithm usinga bubble-
sort like algorithm as defined in [18].Pf represents the probability of using only the
objective function for comparisons when ranking solutionsin the infeasible regions
of the search space (a value of 0.4< Pf < 0.5 was reported as the most appropriate).
ParametersN and λ represent respectively the maximum number of sweeps and
number of solutions that are ranked by comparing adjacent solutions in at leastλ
sweeps, andrnd ∈U(0,1).
1: procedure Sort(var T)
2: I j = j ,∀ j{1, . . .,λ}
3: for i in 1 : N do
4: for j in 1 : λ −1 do
5: if (T.xI j == T.xI j+1)||(rnd < Pf)) then
6: if (T.xI j > T.xI j+1) then
7: swap(I j , I j+1)
8: end if
9: else

10: if (T.xI j > T.xI j+1) then
11: swap(I j , I j+1)
12: end if
13: end if
14: end for
15: if no swap donethen
16: break
17: end if
18: end for

Before giving any detail about the respective algorithms, is worth noticing that
all the algorithms were designed including the Stochastic Ranking as complemen-
tary handling technique, i.e., the solutions are ranked based on the sorting procedure
given in Alg. 2 which receives as argument an structureT containing a set of so-
lutions onFB and the respective objective value. Thus,T.xi and T.ei represent
respectively the solutioni and its objective value. It should be noticed thatI j and
I j+1 are indexes that point to the structureT. In addition, it is also important to
remark that the algorithms described in the following are designed for the general

Boundary Search for Constrained Numerical Optimization Problems 39

case, i.e., when the problem includes more than one constraint. However, for the
simplest case (problems with only one constraint) the designed algorithms are still
applicable by modifying a few lines of code as will be explained for each particular
search engine considered. On the other hand, each algorithmincludes references to
different structures calledTF , TU , andTB which respectively represent a population
of solutions in spacesF , U , andFB (the same applies to the auxiliary structures
calledA andA′). Similarly, an structureTE is used to save the objective value for
the respective solutions inTB. Finally, variable ’ctr’ indicates the current constraint
under consideration, i.e., indicates that the algorithm iscurrently focusing the ex-
ploration on the boundary of constraint ’ctr’. Additional specific structures used by
each search engine will be explained when necessary.

Similarly, there exist a set of common functions used through the three algo-
rithms which are described in the following:

• init(): is in charge of obtaining the initial population of points in spaceG .
• evaluate(): assigns the respective objective value.
• Boundary(): applies function BS() to all the pair of points in (TF ,TU) and returns

the respective decoding of those points (the returning structure is usually save in
TB).

• changeconstraint(): returns a boolean value indicating the decision of focusing
the search on a different problem constraint.

• Re init(): when a change of constraint occurs, this function reinitialize the points
in structureTF andTU when necessary (e.g., it could be useful a simple pertur-
bation operator here).

• get next constraint(): implements the policy for the selection of the next cons-
traint to be considered for exploration. As indicated in thealgorithms described
further in this section, a possible policy could be theRound-Robinpolicy, how-
ever, others (more informed) policies are also possible.

• Firstk(): returns the firstk solutions found in the structure given as parameter.
• Sort(): applies the Alg. 2 to further make the selection of the set firstk solutions.
• Update(): selects the best current solutions in(TF ⊕AF ,TU ⊕AF)2.

4.1 Boundary by means of EAs

The application of EAs to solve any optimization problems mainly includes a pro-
cedure to obtain the initial population, a selection operator, and a set of genetic
operators. Alg. 3 describes the more important components of an EA used to solve
constrained numerical optimization problems according tothe boundary approach.
Lines 3 to 5 are aimed to obtain the initial population on space G , the respective
points on the boundary and their objective values. It can be observed that the selec-
tion process (function Select()) is applied consideringTF andTU , and the respec-

2 Operator ⊕ is defined as follows: A ⊕ B = (a1, . . . ,aN) ⊕ (b1, . . . ,bM) =
(a1, . . . ,aN,bN+1, . . .,bN+M) taking into accountTB and the respective objective values.

40 Guillermo Leguizamón and Carlos Coello Coello

tive objective valueTE . This process produces two intermediate structuresA′
F

and
A′

U
, i.e., selected points onG which undergo genetic operators (in two independent

steps) as can be observed in lines 14 and 15. The resulting structures are then used
as decoders to obtain the respective new points on the boundary (line 17) saved in
structureAB . The next step is consists in operate on the ranking (see the SR based
function Sort()) of the union ofAB andTB. From this ranking, only the respective
bestk solutions from spaceG will survive for the next generation (’Update()’ is
used to keep the respective best points on spaceG).

Algorithm 3 A general outline of EAB
1: t = 0
2: ctr= initial constraint // ‘ctr’ represents the problem constraint under consideration
3: init(TF ,TU , ctr);
4: TB =Boundary(TF ,TU)
5: TE =evaluate(TB)
6: while (stop condition not met)do
7: if (changeconstraint())then
8: ctr= getnext ctr(ctr) // The search continues considering another problem constraint,
9: // e.g., following aRound-Robinpolicy.

10: AF =Reinit(TF , ctr);
11: AU =Reinit(TU , ctr);
12: else
13: (A′

F
,A′

U
) =Select(TF , TU , TE);

14: AF =Geneticops(AF , ctr);
15: AU =Geneticops(AU , ctr);
16: end if
17: AB =Boundary(AF ,AU)
18: TB =Firstk(Sort(TB ⊕AB))
19: TE =evaluate(TB)
20: Update(TF ,TU ,TE); { According to the newTB}
21: t = t +1
22: end while

When the problem has only one constraint (or only one is considered as in prob-
lemG02) there is no need to change from one to another constraint,therefore a few
code lines can be dismissed, not necessarily dropped, from the general algorithm.
In line 2, the ’initial constraint’ is the only problem constraint. The set of lines7
through 16 are dropped and replaced by lines 13 through 15.

4.2 Boundary by means of PSO

Differently to EAB, a PSO algorithm includes some other additional structuresin
addition to that used to keep the population or swarm. This particular structures
are those representing the respective particles’ velocities (called hereVF for space
F andVU for spaceU) which let the algorithm explore the respective feasible

Boundary Search for Constrained Numerical Optimization Problems 41

and infeasible regions, i.e., the decoder spaceG . Alg. 4 gives a general outline of
a PSO implementing the boundary approach for solving constrained optimization
problems. This algorithm follows the principle of PSO design known as “Local
Best PSO”. For that reason, two proper functions of this PSO version are added,
’Set the bestpersonalposition()’ and ’Setthe bestlocal position()’. It can be no-
ticed that they are first applied onTF and then, onTU . In both cases, the selection on
the local and best positions take into account the objectivevaluesTE corresponding
to the points they represent onTB.

Algorithm 4 A general outline of lbest PSOB
1: t = 0
2: ctr= initial constraint // ‘ctr’ represents the problem constraint under consideration
3: init(TF ,TU , ctr); // Initializes feasible and infeasible swarms
4: TB =Boundary(TF ,TU)
5: TE =evaluate(TB)
6: while (stop condition not met)do
7: for each particlei in TF do
8: Setthe bestpersonalposition(TF (i), TE (i))
9: Setthe best local position(TF (i), TE (i))

10: end for
11: for each particlei in TU do
12: Setthe bestpersonalposition(TU (i), TE (i))
13: Setthe best local position(TU (i), TE (i))
14: end for
15: if (changeconstraint())then
16: ctr= getnext ctr(ctr) // The search continues considering another problem constraint,
17: // e.g., following aRound-Robinpolicy.
18: TF =Reinit(TF , ctr);
19: TU =Reinit(TU , ctr);
20: else
21: for each particlei in TF do
22: Updatevelocity(VF (i), ctr);
23: AF (i) = Updateposition(TF (i), VF (i), ctr);
24: end for
25: for each particlei in TU do
26: Updatevelocity(VU (i), ctr);
27: AU (i) = Updateposition(TU (i), VU (i), ctr);
28: end for
29: end if
30: AB =Boundary(AF ,AU)
31: TB =Firstk(Sort(TB ⊕AB))
32: TE =evaluate(TB)
33: Update(TF ,TU ,TE); { According to the newTB}
34: t = t +1
35: end while

The exploration stage for PSOB is accomplished from lines 21 to 28. It can
be noticed that the application of two specific PSO steps: ’Updatevelocity()’ and
’Updateposition()’. These two functions are applied on structuresVF andTF for

42 Guillermo Leguizamón and Carlos Coello Coello

the feasible part of spaceG , and structuresVU andTU for the infeasible one. In
the case of ’Updateposition()’, it returns the modified point position that canbe
assigned as in lines 23 and 27. After the obtaining of the new solutions inAF and
AU , the process follows the same steps as for EAB. Finally, when the problem has
only one constraint (or only one is considered as in problemG02) there is no need to
change from one to another constraint, therefore a few code lines can be dismissed,
not necessarily dropped, from the general algorithm. In line 2, the ’initial constraint’
represents the only problem constraint. The set of lines 15 through 29 are replaced
by lines 21 through 28.

4.3 Boundary by means of ACO

The last search engine is one based on the ACO metaheuristic.Particularly, we have
chosen a recent and advanced version of an ACO algorithm for continuous problems
proposed by Socha and Dorigo [22] which is called ACOR where the solutions are
built by using a probability density distribution (PDF). Atstepi each ant generates
a random number according to a mixture of normal kernels of PDFsPi(xi) defined
on the intervalai ≤ xi ≤ bi , i.e., a multimodal PDF aimed at considering several
subregions of that interval at the same time. These ideas areextensively presented
and details concerning implementation issues are given in Socha and Dorigo [22]
through algorithm ACOR which represents the former ideas proposed by Socha [21]
regarding continuous domains. The authors presented an experimental study that
considers the application of ACOR to a test suite of several unconstrained continu-
ous optimization problems. Alg. 5 displays the main components of the ACOB, an
ACOR algorithm that includes the boundary approach for constrained optimization
problems. The initialization process includes, in addition, a structureω which repre-
sents a set of weights used as part of the mixture of normal kernels (or PDFsPi(xi)).
Function ’Build sol()’ samples a new set of solutions according the to the respective
points inG and their ranking. Again, structureω is involved on the sampling pro-
cess which uses the previous solutions to build an updated model of the PDFs (more
details can be found in the description of ACOR in Socha and Dorigo [22] as well
as in Leguizamón and Coello [13] where the adaptation of ACOR for constrained
optimization problems is presented). After the sampling ofthe new solutions inAF

andAU , the process follows the same steps as for EAB and PSOB .
Similarly to the above the search engines, when the problem has only one cons-

traint (or only one is considered as in problemG02) there is no need to change from
one to another constraint, therefore a few code lines can be dismissed, not necessar-
ily dropped, from the general algorithm. In line 2, the ’initial constraint’ represents
the only problem constraint. The set of lines 6 through 15 arereplaced by lines 13
through 14.

Boundary Search for Constrained Numerical Optimization Problems 43

Algorithm 5 A general outline of ACOB algorithm
1: t = 0
2: ctr= initial constraint // ‘ctr’ represents the problem constraint under consideration
3: init(TF ,TU , ω, ctr);
4: TB =Boundary(TF ,TU)
5: TE =evaluate(TB)
6: while (stop condition not met)do
7: if (changeconstraint())then
8: ctr= getnext ctr(ctr) // The search continues considering another problem constraint,
9: // e.g., following aRound-Robinpolicy.

10: AF =Reinit(TF , ω, ctr);
11: AU =Reinit(TU , ω, ctr);
12: else
13: AF =BuildSols(TF , ω, ctr);
14: AU =BuildSols(TU , ω, ctr);
15: end if
16: AB =Boundary(AF ,AU)
17: TB =Firstk(Sort(TB ⊕AB))
18: TE =evaluate(TB)
19: Update(TF ,TU ,TE); { According to the newTB}
20: t = t +1
21: end while

5 Experimental Study

This section presents a (brief) experimental study involving the applications of the
boundary approach under the three metaheuristics described in the previous section.
The problems considered are conformed by a subset of a well-known testbed non-
linear problems used in literarure [16]. Table 1 displays the selected problems and
the respectives optimal or best known values (column Opt/Bk).

The study is divided in two parts. The first part (Section 5.2)shows the results
of the application of one of the three metaheuritics, namelythe ACO approach, by
considering two different algorithms. One of them, the original ACOR enhanced
with the stochastic ranking technique to handle constraints (ACON B). The other
one, is the ACOR , but including the boundary approach and stochastich ranking
(ACOB). The objective of this study is to show the benefit of the boundary search
when included as an alternative constraint handling technique. To do that, we con-
sidered just a simple version of the original ACOR and standard parameter setting
for the stochastic ranking in order to better visualize the performance of the algo-
rithm when the search focuses on the boundary between the feasible and infeasible
search space. The second part (6) is aimed to compare the performance the bound-
ary approach when implemented under ACO, PSO, and EAs metaheuristics. The
respective algorithms are: ACOB , PSOB , and EAB .

44 Guillermo Leguizamón and Carlos Coello Coello

Table 1: Set of well-known nonlinear problems
Problem Opt/BK

G01 -15.00
G02 1.0
G03 0.80619
G04 -30665.539
G05 5126.4981
G06 -6961.8138
G07 24.306209
G09 680.630
G10 7049.2083
G11 0.75
G13 7049.2083
G14 -47.764
G15 961.715
G17 8853.539
G21 193.7783
G23 -400.0025
G24 -5.5079
G25 16.73889

5.1 Parameter Setting

tmax= 10000,t=200, only on active constraints, for all the algorithms
PSOB

v j
i = w ·v j

i +c1 · r1 · (xlb
i −x j

i)+c2 · r2 · (xgb
i −x j

i)

x j
i = x j

i +v j
i

c1 = 0.5, c2 = 0.5, w = 0.85,NP= 50 (NP is k in Algorithm 3, line 18)
EAB

pc = 0.65, pm = 0.01,µ = 50 (µ is k in Algorithm 4, line 31),λ = 50,(µ + λ),
real vector representation for the individuals, arithmetic crossover, and simple mu-
tation which produces a little change on the value of a partciular dimension vector.

ACOB

ξ = 0.85,q0.1,NK = 50 (NP is k in Algorithm 5, line 17), number of ants set to
50 Referencias a los trabajos previos (ANT 2008) and (en desarrollo)

5.2 Performance Comparison of ACOB and ACON B

In this section, we compare the performance of ACOB and ACON B. Table 2
shows the results obtained for all the problems studied. Each columns shows re-
spectively for each algorithm, the best found value (BF), average and standard de-

Boundary Search for Constrained Numerical Optimization Problems 45

viation (Avg±std), and number feasible solutions found out of 30 runs. Numbers
in boldface (column BF) indicate that the optimal solution was obtained for the
respective algorithm. Preliminary results from ACON B were obtained by setting
q∈ {0.0001,0.01,0.1} and fixingξ = 85. ACON B showed a very similar behavior
(not results) to ACOB with respect to parameterq. Even more, the use of a vary-
ing q showed to be the more representative for ACON B considering the overall
performance (quality and number of feasible solutions found).

Table 2: BF in bold means that the optimal value was found for the respective problem. It should
be noticed that the results correspond to the settingq = 0.1 andξ = 0.85. NA stands for “Not
Available”.

ACOB ACON B

Prob. BF Avg±σ #Fea BF Avg±σ #Fea
G01 -15.00 -15.00±0 30 -15.00 -14.10±1.198 24
G02 0.806190.776871±0.025 30 0.7280790.431599±0.1145 30
G03 1.00 1.00±0 30 1.00 1.00±0.0 29
G04 -30665.539 -30665.539±0 30 -30665.58-30665.57±0.005 30
G05 5126.49 5135.99±14.54 27 5231.96 5231.96±0 1
G06 -6961.814 -6961.814±0 30 -6961.814 -6961.814±0 2
G07 24.306 24.5370±0.240 30 24.320 25.041±0.62 29
G09 680.630 680.630±0 30 680.630 680.635±0.003 30
G10 7049.32 7155.99±94.92 30 7049.33 7659.54±596.20 29
G11 0.75 0.75±0 30 0.75 0.75±0 8
G13 0.053950 0.053960±0 26 0.0970690.557918±0.2844 11
G14 -47.760 -47.686±0.08 30 -47.497 -46.315±0.8131 10
G15 961.7151 961.7157±0 30 961.7324 961.8092±0.125 3
G17 8863.67 8958±37.64 30 9011.91 9018.82±5.582 26
G21 193.7860 193.8794±0.09 20 NA NA NA
G23 -303.54 22.54±145.84 17 NA NA NA
G24 5.5080 5.5080±0 30 5.5080 5.5080±0 28
G25 16.73889 16.73889±0 30 16.73889 16.73889±0 7

It can be seen that ACON B gives an important number of feasible solutions for
some of the problems, however was not able obtain feasible solutions for all the pro-
blems (e.g., forG21 andG23 no feasible solutions were found at all). Taking into
account the solved problems by ACON B (G01, G06, G07, G09, G11, G24, and
G25) its performance is inferior to the ACOB for some of the above problems when
considering the number of feasible solutions and/or average values (see problems
G01, G06, G11, G24, andG25). For some of the remaining problems, ACON B

performs fairly well giving results very close to the optimal ones, however, the main
difference with ACOB is on the average values which shows a less robust algo-
rithm. In addition, for problemsG05, G13, andG17; ACON B showed the worst
performance regarding the solution quality. On the other hand, it can be seen that
for problemsG10,G17, andG21, ACOB obtained values very close to the optimal
ones, whereas, for problemG23 ACOB , showed a poor performance with respect
to the solution quality.

46 Guillermo Leguizamón and Carlos Coello Coello

It is worth remarking that ACON B is a very simple adaptation of the original
ACOR to handling constraints. Despite of that, the results of ACON B shows the
potential of the ACO approach for continuous problems. Particularly this potential
is exploited here by incorporating a boundary approach.

6 Comparison of ACO, PSO, and EAs under the Boundary
Approach

This section shows the performance of ACOB, PSOB, and EAB. Table 3 displays
the Best Found (BF) value, and the respective average and deviation values (Avg±)
for each one of the algorithms implemented. Numbers in boldface means that the
optimal (or best known) value was found. The number of feasible solutions found
by the respective algorithms are now showed, however the three algorithms found
very similar values to those values displayed in Table 2 for ACOB.

Clearly, there are a subset of problems for which the three algorithms performs
identically (seeG01, G03, G04, G06, G09, G11, G24, andG25). For the problem
G05, the performance is identical with respect to the best value found, however the
average values are different but not statistically significant. On the other hand, the
results for problemsG02,G07, andG14 show that ACOB outperformed PSOB and
EAB when considering BF value, however, EAB is more robust for this problem
(see columns BF and Avg±σ). In the case ofG07 it should be noticed that the three
algorithms perform similarly (the average value were not statistically significant).

There exist other particular cases that are analyzed in the following. The results
for problemG10 show that ACOB and EAB outperformed PSOB considering both,
best found and average values. However, ACOB outperformed EAB in terms of the
average values (statistically significant). For problemG13 the above described sit-
uation it can also be observed, except that ACOB found the optima value for this
particular problem. A different situation is for problemG17 foe which PSOB found
the best solution, however, ACOB and EAB showed not statistically significant av-
erage value, but better and statistically significant with respect to PSOB . Consider-
ing the average value, the three algorithms showed similar performance for problem
G21, except that ACOB achieved the best value. Finally, problemG23, no one of
the three algorithms perform well. PSOB was not capable of finding any feasible
solution, whereas, ACOB and PSOB found a few feasible solutions of bad quality.

7 Summary and Future Work

In this chapter we have presented the boundary approach as analternative approach
to explore the boundary between the feasible and infeasiblesearch space for cons-
trained optimization problems. The boundary approach was presented under two
perspective, either by usingad hocoperators as presented in [17], and a more gen-

Boundary Search for Constrained Numerical Optimization Problems 47

Table 3: Performance of ACOB , PSOB , and EAB on the benchmark problems. BF in boldface
means that the optimal value was found for the respective problem. NA stands for “Not Available”.
The respective parameter setting is described in Section 5.1.

ACOB PSOB EAB

Prob. BF Avg±σ BF Avg±σ BF Avg±σ
G01 -15.00 -15.00±0 -15.00 -14.10±1.198 -15.00 -15.00±0

G02 0.80619 0.776871±0.025 0.80512 0.5939±0.06661 0.8035500.803352±0.0001

G03 1.00 1.00±0 1.00 1.00±0.0 1.00 1.00±0.0

G04 -30665.539 -30665.539±0 -30665.539 -30665.539±0 -30665.539-30665.529±0.01

G05 5126.49 5135.99±14.54 5126.49 5130.74±5.44 5126.64 5130.12±3.84

G06 -6961.814 -6961.814±0 -6961.814 -6961.814±0 -6961.814 -6961.814±0

G07 24.306 24.5370±0.240 24.375 25.053±0.728 24.372 24.546±0.128

G09 680.630 680.630±0 680.630 680.635±0.003 680.630 680.633±0.0

G10 7049.32617155.9948±94.924 7093.01518040.5537±972.585 7049.3337659.540±596.20

G11 0.75 0.75±0 0.75 0.75±0 0.75 0.75±0

G13 0.053950 0.053960±0 0.053961 0.063768±0.0103 0.053984 0.069971±0.048

G14 -47.760 -47.686±0.08 -47.129 -43.778±1.68 47.6724 47.6708±0.0022

G15 961.7151 961.7157±0 961.7151 962.1973±1.1407 961.7151961.7149±0.0002

G17 8863.67 8958±37.64 8859.95419019.2519±125.776 8866.86 9004.288±91.11

G21 193.786 193.879±0.09 196.392 201.034±3.49 193.804 193.880±0.085

G23 -303.54 22.54±145.84 NA NA -177.16 2.67±160.70

G24 5.5080 5.5080±0 5.5080 5.5080±0 5.5080 5.5080±0

G25 16.73889 16.73889±0 16.73889 16.73889±0 5.5080 5.5080±0

eral operator as proposed in previous works [13, 14] as possible alternatives to be
applied when facing constrained problems. In addition, three different search ma-
chines (EAs, PSO, and ACO) were considered to show how the boundary approach
could be implemented without producing major modificationson the original algo-
rithms. Furthermore, it is worth noticing that the boundaryapproach is an interesting
mechanism that could applied to many constrained optimization problems, particu-
larly this observation is true for the ’general boundary operator’ described in detail
here and proposed in earlier works.

As presented in this chapter, the boundary approach can be used alone (as
a constraint-handling techniques itself) or in combination with a complementary
constraint-handling technique like penalty functions or any other like Stochastic
Ranking which is used here to display three algorithms due tohis simplicity and for
being an efficient and very well known technique. The three algorithms (i.e., EAB,
PSOB , and ACOB) presented here as a guidelines show that the boundary approach
is flexible enough to be implemented under different search machines.

Finally, is important to remark that the boundary approach (seen as having the
possibility of using boundary operators) can be consideredwhen implementing a
more general constraint-handling technique under some search engine. Particularly
when facing problems with an several constraints. For example, the general operator
(as defined here) needs two points, one from the feasible region and the other one
form the infeasible one. Let us suppose that a MHs implement aconstraint-handling
technique to explore the whole spaceF . However, the boundary of a particular

48 Guillermo Leguizamón and Carlos Coello Coello

constraint could be approached by considering points from both, the feasible and
infeasible one with respect to that constraint. By this way,the generation of solutions
laying on the boundary could help to quickly reach (in a controlled manner) the
boundary region. Nevertheless, there are still place to consider alternative ways of
implementing ageneral boundary operatordifferent form the proposed in this work.

Acknowledgements The first author acknowledges support from Universidad Nacional de San
Luis and the ANPCYT (National Agency for Promotion of Science and Technology). The second
author acknowledges support from CONACyT project no. 45683-Y.

References

1. Th. Bäck, D. B. Fogel, and Z. Michalewicz, editors.Handbook of Evolutionary Computation.
Oxford University Press, New York, and Institute of PhysicsPublishing, Bristol, 1997.

2. C. Coello Coello. List of references on constraint-handling techniques used with evolutionary
algorithms. http://www.cs.cinvestav.mx/-constraint/.

3. C. Coello Coello. Theoretical and numerical constraint-handling techniques used with evolu-
tionary algorithms: A surv ey of the state of the art.Computer Methods in Applied Mechanics
and Engineering, 191(11-12):1245–1287, January 2002.

4. D. Corne, M. Dorigo, and F. Glover, editors.New Ideas in Optimization. McGraw-Hill Inter-
national, 1999.

5. M. Dorigo and T. Stützle.Ant Colony Optimization. Mit-Press, 2004.
6. A.P. Engelbrecht.Fundamentals of Computational Swarm Intelligence. Jon Wiley & Sons,

Ltd, 2005.
7. M. Schütz G. Leguizamón, Z. Michalewicz. An ant system for the maximum independent

set problem. InProceedings of the 2001 Argentinian Congress on Computer Science, pages
1027–1040, El Calafate, Argentina,, 2001.

8. F. Glover and G.A.Kochenberg, editors.Handbook of Metaheuristics. Kuwler Academic
Publishers, London, 2003.

9. J.Gottlieb. Evolutionary algorithms for multidimensional knapsack problems: the relevance
of the boundary of the feasible region. In Wolfgang Banzhaf,Jason Daida, Agoston E. Eiben,
Max H. Garzon, Vasant Honavar, Mark Jakiela, and Robert E. Smith, editors,Proc. of the Ge-
netic and Evolutionary Computation Conf. GECCO-99, page 787, San Francisco, CA, 1999.
Morgan Kaufmann.

10. A. J. Keane. Experiences with optimizers in structural design. In I. C. Parmee, editor,Pro-
ceedings of the Conference on Adaptive Computing in Engineering Design and Control, pages
14–27, Plymouth, UK, 1994. University of Plymouth.

11. J. Kennedy and R Eberhart. Particle swarm optimization.In IEEE International Conference on
Neural Networks, volume IV, pages 1942–1948, Perth, Australia, 1995. IEEE Service Center.

12. J. Kennedy, R.C. Eberhart, and Y. Shi.Swarm Intelligence. Morgan Kaufmann, 2001.
13. G. Leguizamón and C. Coello Coello. Boundary search forconstrained numerical optimiza-

tion problems in aco algorithms. In Marco Dorigo, Luca MariaGambardella, Mauro Birattari,
Alcherio Martinoli, Riccardo Poli, and Thomas Stützle, editors,ANTS Workshop, volume 4150
of Lecture Notes in Computer Science, pages 108–119. Springer, 2006.

14. G. Leguizamón and C. Coello-Coello. A Boundary Search based ACO Algorithm Coupled
with Stochastic Ranking. In2007 IEEE Congress on Evolutionary Computation (CEC’2007),
pages 165–172, Singapore, September 2007. IEEE Press.

15. G. Leguizamón and Z. Michalewicz. A New Version of Ant System for Subset Problems.
In Proceedings of the 1999 Congress on Evolutionary Computation, pages 1459–1464. IEEE
Press, Piscataway, NJ, 1999.

Boundary Search for Constrained Numerical Optimization Problems 49

16. J. J. Liang, T. P. Runarsson, E. Mezura-Montes, M. Clerc,P. N. Suganthan, C. Coello
Coello, and K. Deb. Problem Definitions and Evaluation Criteria for the CEC. Tech-
nical report, Special Session on Constrained Real-Parameter Optimization, School of
Electrical and Electronic Engineering Nanyang Technological University, available at
http://www.ntu.edu.sg/home5/lian0012/cec2006/technical report.pdf, Singapore, 2006.

17. Z. Michalewicz, G. Nazhiyath, and M. Michalewicz. A noteon usefulness of geometrical
crossover for numerical optimization problems. In Lawrence J. Fogel, Peter J. Angeline,
and Thomas Bäck, editors,Evolutionary Programming V: Proc. of the Fifth Annual Conf.on
Evolutionary Programming, pages 305–311, Cambridge, MA, 1996. MIT Press.

18. T.P. Runarsson and X. Yao. Stochastic ranking for constrained evolutionary optimization.
IEEE Transactions on Evolutionary Computation, 4(3):284–294, 2000.

19. M. Schoenauer and Z. Michalewicz. Evolutionary computation at the edge of feasibility.
In Hans-Michael Voigt, Werner Ebeling, Ingo Rechenberg, and Hans-Paul Schwefel, editors,
Parallel Problem Solving from Nature – PPSN IV, pages 245–254, Berlin, 1996. Springer.

20. M. Schoenauer and S. Xanthakis. Constrained GA optimization. In Stephanie Forrest, editor,
Proc. of the Fifth Int. Conf. on Genetic Algorithms, pages 573–580, San Mateo, CA, 1993.
Morgan Kaufmann.

21. K. Socha. ACO for continuos and mixed-variable optimization. In M. Dorigo, M. Birattari,
C. Blum, L. M. Gambardella, F. Mondada, and T. Stützle, editors,Ant Colony Optimization
and Swarm Intelligence, 4th International Workshop, ANTS 2004, volume 3172 ofLNCS,
pages 25–36. Springer-Verlag, Berlin, Germany, 2004.

22. K. Socha and M. Dorigo. Ant colony optimization for continuous domains. Euro-
pean Journal of Operational Research, 185(3):1115–1173, to be published in March 2008.
http://dx.doi.org/10.1016/j.ejor.2006.06.046.

23. Z.Y. Wu and A.R. Simpson. A self-adaptive boundary search genetic algorithm and its appli-
cation to water distribution systems.Journal of Hidraulic Research, 40(2):191–203, 2002.

