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Abstract—This work introduces a hybrid between an elitist ~ their capability to speed up convergence. However, one ad-
multi-objective evolutionary algorithm and a gradient-based vantage that has not been documented so far (to the authors’
descent method, which is applied only to certain (selected) pet knowledge) is their ability to scale better than tiadil
solutions. Our proposed approach requires a low number of MOEAS in th f decisi iabl It h
objective function evaluations to converge to a few pointsiithe S In the presence of many decision variables. as
Pareto front. Then, the rest of the Pareto front is reconstricted  0een recently found that the performance of state-of-the-
using a method based on rough sets theory, which also requse art MOEAs degrades quickly as the number of decision
a low number of objective function evaluations. Emphasis is variables increases [8]. This may limit the applicability o
placed on the effectiveness of our proposed hybrid approach \1oEAs in real-world problems, since their use may require
when increasing the number of decision variables, and a styd hibitivelv hiah b f b tive functi LAt
of the scalability of our approach is also presented. a pronibrively high number ot o J_eC IV€ Tunction e_va lﬂHtS:

Thus, we suggest here that hybrids of MOEAs with gradient-
|. INTRODUCTION based methods can be a suitable choice (when applicable) to
deal with this scalability issue. Note that we do not refaehe
to scalability in objective function space which is a relaly
popular research topic [3], but which we do not cover in this

A multi-objective optimization problem (MOP) is stated
as: minimize

F(z) = (fi(e), fa(@), ..., fm(2))" paper. . : :
In order to validate our hypothesis, we will present here
where f; : R" — R for all i € 1,...,m (m is the number our own proposed hybrid of a MOEA and a gradient-based

of objective functions). Evolutionary algorithms have bee method, whose design emphasis is efficiency (measured in
found to be very effective for solving MOPs, presenting sevterms of the objective function evaluations performedy an
eral advantages with respect to mathematical programminghich will be validated using scalable problems (in degisio
techniques (e.g., they are less susceptible to the shape aagable space).
continuity of the Pareto front) [5]. The remainder of this paper is organized as follows.

In spite of the increasing popularity of multi-objectiveln Section 1, we introduce the basic concepts on which
evolutionary algorithms (MOEAs), they tend to require ahe gradient-based descent method is based. In Section I,
relatively large number of iterations to produce reasoyable introduce a two-stage algorithm namé&dadient-Based
good approximations of the Pareto optimal set of a MORMulti-objective Evolutionary Strateg{GBMES), which is
This has motivated the hybridization of MOEAs (which areour proposed hybrid of a MOEA and a gradient-based
known to be good global search engines) with local searchethod. The results obtained with our proposed hybrid
engines of different types (see [16]), aiming to speed ugpproach and a state-of-the-art MOEA (NSGA-II [7]) in two
convergence. scalable test problems are presented in Section IV. Finally

Gradient-based methods are a possible choice for designir conclusions and some possible paths for further work are
ing local search engines, in cases in which the objectivsated in Section V.
functions are differentiable. Indeed, this is an interesti
choice (when possible), since the use of gradient infoionati
can give us much more precise descent directions for the During the search of solutions that minimize a continuous
search, than the only use of the operators of an evolutionaand differentiable function, the gradient of the function
algorithm. In fact, this sort of hybrid between a MOEA andprovides information about its growth or decrement. It is
a gradient-based method has been previously studied bywall known that the maximum decrement of the functipn
number of researchers (e.g., [21], [1], [11], [22], [14]he& is obtained when following the directionV f(x), departing
hybrids proposed by these authors normally replace, add fsom the pointz.
modify existing evolutionary operators, such that the grat In the multi-objective case, and along the same line,
information is used to guide the search. we want to find a movement direction iR™ that brings

MOEAs hybridized with gradient-based methods preseimultaneously the maximum decrement —or at least a
several advantages, from which the most remarkable onedscrement— in all thef; components of. Hence, we will

call descent directiora unit vectora € R™ that intuitively
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Fliege in [9]. The basic details of this method are explainedf each of them for the method proposed here is left as

next after providing some basic definitions. future work. Even though following descent directions lead
Using the canonical coordinatewise order in R™ (this directly to good candidates for local Pareto points, penfor

is,a <bif a; < b; forall : € {i,..,n}), a pointz € R® ing a gradient-based descent could be very expensive in

dominatesy € R™, denoted as < y, if F(z) < F(y) with  terms of function calls. For example, according to the rssul

x #y. If y £xandzx £y, we say thatr andy arenot regarding the Automatic Differentiation method, reported

comparable(not dominated) denoted by} |y. [10], we are counting in our experiments one Jacobian matrix
One pointz € A C R™ is aPareto optimunif there does computation as the equivalent to five times one functioh-cal
not exist another point € A C R™ such thatz < x. effort. Then, if we have a three-objective MOP, and perform

Let JF(z) = (‘;Tf;(a:) be the Jacobian matrix of and twenty times the descent step for just a single point, we
R~ the set of negative real numbers. Then, a necessdrged at leash x 3 x 20 = 300 function calls —besides the
condition [9] for the pointz € R™ to be a local Pareto point necessary calls to calculate the step size length. Thatys wh
is that in practice, and for the sake of implementing this algorithm

range(JF(x)) N (R™)™ =0 (1) we bound the number of descent steps spent for each point.

) ] This situation will be explained in the next section.
holds. The above expression means that if we have a point

2 which is not dominated by any other point in a certain
neighborhood, in a Pareto sense, then it is not possibleathat
directionv exists, for which the directional derivative of each Our proposedGradient-Based Multi-objective Evolution-
fi could be negative —which would turn it into a descentry Strateg(GBMES) is conformed by two stages. The aim
direction. Note that the condition (1) can be fulfilled byof the first stage is getting a small set of Pareto optimal
Pareto optimal points and lgritical points as well. points. In the case of facing moderate multi-frontalitye th
Setting the above in terms of our purposes, we will assumayolutionary part of the hybrid algorithm can deal with the
that a solutionz should be improved during the solution of critical points that are not optimum; then, we assume that,
a real-valued minimization MOP. Then, dfis not a critical by the end of this first stage, all the points in this set are
point, it is possible to choose a descent directionolding part of the global front. The second stage looks for the
JF(z)v € (R)™ lr;?](;ns:ln:::tion of the entire front, starting from a few gsin

I1l. THE PROPOSEDALGORITHM

If this is the casewp can be computed [9] using the in-
formation provided by the Jacobian matrix of the problenf\. First Stage
evaluated one. As Fliege presents in [9], it is necessary to

solve the next quadratic programming problem such that Wfaa:LtFOr the first stage of the algorithm we use several popu-

ions, in a way analogous to the Micro-GA for Multiob-
jective Optimization [6]. We adopt an external population
P with a replaceable parPr and a non-replaceable part
Pn. The former population will evolve over time and the
) latter will introduce diversity into the process. We use alm
subjectto  (JF(z)v); <o, forall ie{l,...,m}  populationPt of parents,|Pt| = p randomly chosen from

Once the above problem produces a solufioh a*), the P = Pr U Pn. The individuals fromPt are recombined to

descent direction that we are looking foriis, and as Fliege Produce a set,;; of A descendants. Unlike a traditional
suggests, the step length for the movement can be obtairfplution strategy, we set ~ . because we need to bound

L 1
minimize Oz+§||v||2 2)

by an Armijo’s rule, by decreasing until the condition the number of function calls in this phase —in order to
spend most of them in the gradient-based descent part. The
F(z +tv) < F(z) + BtJF(x)v individuals used for recombination are randomly chosemfro

Pt. We use two types of recombination, arithmetic and dis-

is fulfilled. The valueg € (0,1) is a control parameter to te. choosi t them | q i o
decide how fine grained, numerically speaking, the descef\rte €, choosing one ot Iném In a random way, with a certain

will be. At this point of the process, having — z + tv, we predefined) probability. We set a higher probability foe th

are in condition of repeating the movement by calculating iscrete recombination at this stage (the proportlon '.5)'2:.1
new descent direction far! or, if this is not possible, we or the second stage of GBMES, arithmetic recombination

can assume that a critical point has been achieved. plays a more important role. .

This method, constructed by Fliege, automatically trigger Once we have selected the nqndon_mnated parIé,gltsﬁrom
a condition to know ifz! fulfills condition (1), which is ¢ Foss, We perform the next insertion process in order to
the case whem* = 0. In practice, it is necessary to setobtain the se_colndary. populatidgh and the elltg population
a tolerance parameter, 7 < 0 to stop the descent when £ £ S 5. This insertion process has two variants.
7 < a* holds; note that by construction® < 0. In the initial generatiorS = (), and for eactp € P,; we:

Several ways to calculate descent directions have beenl) Perform the gradient-based descentf@nd getpy’ as
proposed [19], [1], [2], [4], [12]. A study of the efficiency the final point of the descent.



2) Insert the elementS < S U {p’}. If the necessary  2) Selectu parents forP;.
condition for being inE' (see below) holds the® «— 3) Recombine the parents to produk®ffspring Of f.

EuU{p'}. 4) SelectP, 4 nondominated individuals from the union
The next generations the process is slightly different, as w of parents and offspring.
describe next: 5) Perform the insertion process with the gradient-based
1) SetP’, as the elements from®,, that are not domi- descent, and feed the secondary populafipthe elite
nated by anys € E. populationE, and the replaceable populatid.
2) Foreactpe P, : 6) Repeat steps 2 to 5 until having at least four individuals

in the elite population or until running out of the
' as the final point of the descent. function-calls budget allowed for this first stage.

« Removes € S such thaty’ < s. For all the problems tested here, the values doand A

« Insertp’ in S (in E if applicable). were 20, the ini_tial population size was of 130 individuals,

and the proportion between the non-replaceable and the re-

placeable parts of the initial population was 3:10. Regaydi

the dominated individuals fron®.. the value ofu, in general, it must be a trade-off because it

The secondary population is directly conformed by thgas to b? ?'g ?notjhgh n ?r?er t?( atllow ?) gtoo? tsarr:pl_lng of
points obtained after the descent. The condition for a poirﬁ?e popuiation for the evolution strategy but not too 1arge,
2 € 5 to be in E is having finished the descent with a order to avoid that too many function calls are spent.
(see Section II) value of zero —which means it is a candida®. Second Stage

to be a local Pareto point. Note that the latter could not once the Pareto front has been approached, the next step
be the case for all the points ifi. Thus, this separation is consists of applying a technique that performs a reconstruc
made because the descent could be stopped before obtainigg of the entire front departing from a few points from

a local Pareto point. This happens because, in practice, Wgch front. One possibility at this point is to use contiforat
restrict the number of steps used in the descent. Additignal yethods [20], [15]; if this is the case, only one point in the
we could also stop the descent if a certain tolerance valygnt is necessary to start, but we would have to be able
between the initial and the final points in the movement ig; 4fford the computational cost of calculating the second
achieved. Also, in order to handle box constraints, wWhegerivatives of the functions, which is high, even if clever
the computed steepest descent direction leads outside EQ@hniques are devised [13].

feasible region, the process must quit exploiting thattso In this work, we propose using Rough Sets [17], [18] for
and then take the point nearest to the boundary, betwege second stage, and we reserve at least one third of our
the feasible and infeasible regions, as the final point of th@nction-calls budget for this part. This approach (rougts}
movement. This is necessary, since it is possible that th@nsists of a stochastic technique which uses information
movement of the descent points leads to a local optimughoyt individuals that were dominated in a previous iterati
located in the infeasible region or to a local optimum lodatein orger to construct new solutions close to the nondomihate
in the boundary between the feasible and the infeasibjggividuals and far away from the dominated ones. This
region. In both cases, it is unnecessary to perform a fingims to generate new nondominated solutions and, as a
grained steepest descent, and the cost of doing it coydnsequence, fill up the missing parts of the Pareto front.

lead to an important increase in the number of functiofext, we briefly describe the approach that we use.
calls. Then, during the procedure these end points from the

descent would enter the elite population only if the elite 4 O Elite
population is empty. The algorithm’s implementation slaoul e offspring
detect the case when, after certain number of generations,
no point has entered the elite population. In this case, we
perform uniform mutation on the individuals in the secorydar
population and we only retain the nondominated solutions
as candidates for becoming the outcome of the first-stage.
In order to feed the replaceable population, we tdkg,
which is conformed by individuals fror®! , that entered the
secondary population at that generation, and we use them to
replace those individuals fron®#r that are dominated. To
select they parents to conformPt for the next generation, R True front
we take min{mu/3,|P/,|} individuals from P/, and the
remainder are randomly selected frafh ) o o

The general process of the first stage is described nextE %, T fiure shows the b famed by wo slements i tre e

1) Initialize the replaceabl#’,. and non-replaceabl®,,.,  bounded by their own coordinates-fimensional box).

parts of the population.

« Perform the gradient-based descent joand get

« Removeg € P/, such thaty’ < q.
In both cases we use the set of inserted pgihte replace




1) Preliminary Phase:Our rough sets approach requires 4) Apply v mutations to each parent and confo@hwith

an initial population P1) which is close to the true Pareto them.

front. This population is partitioned into two sef3:S, which 5) Divide the populationP1 U @’ into the newDS and
contains the dominated solutions, aN@& which contains the NS sets.

nondominated solutions. 6) If v < |NS|, we use a crowding or a clustering

At the end of the first stage of the GBMES, we assume that  technique to reduce the size to v is a user-defined
we have a few (at least four) individuals in the true Pareto parameter.
front. Then, to start the rough sets procedure, we can genera 7) If ' < |DS|, we keep the solutions that were non-
a small population in the neighborhood of these solutions in ~ dominated in the last iteration, and we choose the

the following way: For each point in the elite population, rest randomly from the dominated solutions in the
we generate am—dimensional box with each point as one population, until reaching the maximum size allowable
vertex and its nearest neighbor located in the oppositeatorn for v'. v’ is a user-defined parameter.

Then, we generate two types of offspring: first, we applyltota 8) Repeat steps 2 to 7 until a certain (predefined) number
arithmetic recombination to getdescendants in the line that of function-calls is performed.

joins the reference point and its nearest neighbor and we For the examples we present here, we uked 20, ¢ =
produce another offspring outside the box, but in the samg) ,, = 4, v = 100 for the bi-objective problemy = 150

direction as before (see Figure 1). Next, the second kind @dr the three-objective problem, and = 100 in both cases.
offspring consists of descendants which are randomly built

inside the box. For the examples presented here, we used IV. EXPERIMENTAL RESULTS

s =2 andt = 3. The performance measures used here are described next.
2) Rough SetsOnce the population is close enough to thén the following,d; denotes the minimum Euclidean distance

true Pareto front, and once is partitioned into tN&S and from the imageF(z;) € PFinown Of @ solutionz;,i =

DS sets, we perform a set of iterations until reaching the, ..., ¢ = |PFypouwn|, to the true Pareto fronP Fi,.; di;

maximum allowable by our function-calls budget. At eachs the Euclidean distance betwegiiz;) and F (). Finally,

iteration, we build a grid with: dominated points fronD.S, we define

which serve as vertices. We also tak@ndividuals from the 1Y

set of nondominated solution¥.S and we apply bounded d; == min dg;; d:= - Zdi'
mutation to them. The bounds for these mutations are set i 15
from half of the distance over each coordinate to the limitgor , ¢ R*, A, B C R®

of the grid (See Figure 2). If there is no edge bounding the -

mutation operator, we set the limit for that specific cooatin dist(u, A) == inf [|u — v||

as the natural limits of the box constraints from the problem veA

The procedure is the following: and

dist(B, A) := sup dist(u, A).
X2 f2 u€B

The performance measures are:
« Generational Distance3D, IGD)

=

The Inverted Generational Distand&D) is analogous

x1 f1 to GD but measured fronP Fy,e t0 PFrnown-
o non dominated (NS) » Spacing §)
* dominated (DS)
m  offspring Q") 1 a —
_ - A 2
S= o2 d)

Fig. 2.  This figure shows the grid for the rough sets methodnémt i=1

with the elements ofD.S serving as vertices (marked as black dots in the o
figure). The nondominated individuals (taken framS), which are used « Hausdorff's distance

as the reference solutions, are marked with gray circlegiridescendents, .. .— max{dist(PE PE dist(PE PE
produced by mutation, are marked with the letter ‘m’. H - {dist(PFirue, PRinown), (PFinown, PPiruc)}

Since we want to test the scalability of our proposed hybrid
1) Divide the populationP1 into the DS and NS sets.  approach, we adopted the two problems defined in Table I,
2) Randomly choosk elements fronD S to set the limits  which have two and three objectives, respectively. They are
of the grid. scalable in decision variable space. The final population fo
3) Randomly choosg elements fromV.S to form @ (the both algorithms was set to 100 individuals for the problem
set of parents). with two objectives and to 150 individuals for the problem



TABLE |
MOPS ADOPTED FOR OUR EXPERIMENTS

Problem 1

fi(@) = (@1 — D*+ 20 (@ — 1)2

fa(@) = 30, (@ + 1)°

with n =10

Problem 2 (DTLZ2) .

fi(w) = cos("3) cos(37) ... cos( 51 T)(1 + g(x))
Fa(x) = cos(HT) cos(22T) . sin(EZT)(1 + g(x))

ToT

1
o(@) = 3 (i = 32
i=
0<z; <1,i=1,...,n
with k=3, n=12

2

n=10

T
GBMES
NSGA I

True Front

+

60

Fig. 3. This graph shows the Pareto fronts generated by owEB and
NSGA-II for Problem 1 (withn = 10), after 3,000 function evaluations.

with three objectives (a larger value was adopted in thig cas

because of the higher number of objectives). Our results are
compared with respect to those generated by the NSGA-II
[7] using 100 and 150 individuals, respectively (same as our

approach), and performing the same number of evaluatior
as our proposed hybrid approach. Tables Il and Il shov
our comparison of results after performing 3,000 objective
function evaluations for both problems. In this case, we us
n = 10 for Problem 1, and» = 12 for Problem 2. From
Tables Il and lll, we can see that our GBMES achieve:
much better convergence than the NSGA-Il. This can b
corroborated by looking at Figure 3, in which it is clear that
the NSGA-II is unable to converge, even when Problem :
only has ten decision variables.

Then, we increased the number of decision variables of th
problem and we focused our analysis on the convergenc
of each approach (ours and the NSGA-II). Figures 3, 4, !

and 6 show the plots of the final population, corresponding
to the run in the mean obtained for IGD over 30 runs, fOEI

Problem 1, using: € {10,30,60,100} decision variables.

We can observe that, as we increase the number of decision
variables, our proposed GBMES is still able to generate

an important portion of the Pareto front (e.g., it is able to
generate the “knee” in all cases) with the same number ¢
evaluations as before (3,000). The values of the performant
measures (shown in Tables IV, V and VI) indicate that bott
approaches suffer a performance degradation as we incree
the number of decision variables. This behavior is constste

in the case of Problem 2, as well. Although the performanc
of our proposed GBMES degrades as we increase the numt
of decision variables, such degradation is less significar
than the one suffered by the NSGA-Il. Also, in all cases
(for both problems), our approach outperforms the NSGA.
Il with respect to all the performance measures used t
assess convergence (see Tables IV, V and VI). This can |
better appreciated in Figures 7 to 9 for Problem 1 and fron
Figures 10 to 12 for Problem 2, in which we show a graphical
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ig. 4. This graph shows the Pareto fronts generated by oBEBand

SGA-II for Problem 1 (withn = 30), after 3,000 function evaluations.
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comparison of the performance (regarding convergence) 5'9-65- Tfhis gf%rlih shows Lhe Pareto ffrtontg ggg(éfrated by OlNI'land
the two approaches (ours and the NSGA-II) as we increab§GA!! for Problem 1 (withn = 60), after 3,000 function evaluations.

the number of decision variables.



TABLE Il TABLE IV

COMPARISON OF RESULTS FORPROBLEM 1, USING . = 10, AND COMPARISON OF RESULTS REGARDING D FOR BOTH PROBLEMS WHEN
PERFORMING3000FUNCTION EVALUATIONS. STATISTICS WERE USINGn =original,30, 60, 100, AND AFTER PERFORMING3,000
GATHERED FROM30 INDEPENDENT RUNS THE BEST RESULTS ARE FUNCTION EVALUATIONS. THE VALUE CORRESPONDS TO THE MEAN
SHOWN IN boldface. OVER 30 INDEPENDENT RUNS THE original VALUES ADOPTED FORn IN
EACH PROBLEM ARE THOSE DEFINED INTABLE |. THE BEST RESULTS
GD ARE SHOWN INboldface.
Method Best Mean Worst
GBMES | 0.023375 | 0.049261 0.103776 GD Problem 1 Problem 2
NSGA Il 0.242919 0.415592 0.539319 n GBMES | NSGAII GBMES NSGAII
GD original 0.0493| 0.4156| 0.019648]| 0.035683
Method Best Mean Worst 30 0.3063 2.6406 | 0.032565| 0.131245
GBMES | 0.092534 | 0.222116 | 0.549907 60 0.8925| 6.8851| 0.015376| 0.308811
NSGA i 0367473 0565376 0.863660 100 1.7495 | 12.9756 | 0.029423| 0.567924
Spacing
Method Best Mean Worst
GBMES 0.004457 0.029559 0.081939 TABLE V
NSGA Il | 0.002789 | 0.022826 | 0.070167 COMPARISON OF RESULTS REGARDINGGD FOR BOTH PROBLEMS
Hausdorf's distance WHEN USINGn =original,30, 60, 100, AND AFTER PERFORMING3,000
Method Best Mean Worst FUNCTION EVALUATIONS. THE VALUE CORRESPONDS TO THE MEAN
GBMES | 3493272 | 9823990 | 21.668491 OVER 30 INDEPENDENT RUNS THE original VALUES ADOPTED FORn IN
NSGA Tl 7092420 15473611 25 665400 EACH PROBLEM ARE THOSE DEFINED INTABLE |. THE BEST RESULTS
: . : ARE SHOWN INboldface.
TABLE Il IGD Problem 1 Problem 2
COMPARISON OF RESULTS FORPROBLEM 2, USING . = 12, AND n GBMES | NSGAIl | GBMES | NSGAIl
PERFORMING3000FUNCTION EVALUATIONS. STATISTICS WERE original | 0.2221| 0.5654 | 0.000643| 0.001746
GATHERED FROM30 INDEPENDENT RUNS THE BEST RESULTS ARE 30 0.7449 | 3.0245| 0.000829| 0.006448
SHOWN IN boldface. 60 1.6436 7.6595 | 0.001116| 0.016010
100 2.8417 | 14.6620| 0.001249 | 0.029858
GD
Method Best Mean Worst

GBMES | 0.003234 | 0.019648 | 0.032110
NSGA Il 0.027392 0.035683 0.043271

IGD we believe that is shared by other hybrids between MOEAs

Method Best Mean Worst and gradient-based methdylss that it scales well as we
GBMES | 0.000421 | 0.000643 | 0.001017 increase the number of decision variables of a MOP. This is
NSGA Il | 0.001422 | 0.001746 | 0.002200 : . . :

o illustrated in the paper by two examples in which we use up
Viethod Best b %,lean Worst to 100 decision variables. Our proposed approach is found to
GBMES | 0.000737 | 0.004314 | 0.009814 degrade significantly less than a state-of-the-art MOEA (th
NSGA Il | 0.001360 | 0.005380 | 0.032598 NSGA-I1), while still performing 3,000 objective function

Hausdorff’s distance evaluations.

Method Best Mean Worst . . .
GBMES | 0.385372 | 0.842908 | 1.3351%9 As part of our future work, we are interested in extending
NSGA Tl | 0.556158 | 0.798111 | 1.170840 our hybrid approach in several ways. For example, for

problems with many critical (non Pareto-optimum) points,
our approach cannot distinguish between such points and
V. CONCLUSIONS ANDEUTURE WORK those which are Pareto optima. Thus, the gradient-based

h introduced a hvbrid h called information is not very effective in this case, and the MOEA
We have introduced a hybrid approach called GBMESyp, 4 e ysed in order to deal with this situation (e.gngisi

which is designed to take advantage of gradient-based-info({ higher mutation rate to avoid getting stuck). Otherwike, t

mation extracted for multi-objective optimization protuls. hybrid turns out to be too expensive (computationally speak

Si_nce .MOEAS. are kr_10wn to perform well in_ prOblemSing). Thus, a more careful algorithmic design is required to
with high multi-frontality, our method focuses instead OMNyeal with this sort of situation

problems in which the gradient descent is a good option to Additionally. the rouah sets mechanism can be imoroved
speed up the first stages of the search. Although obtainin Y, Y P

gradient information is an expensive process (because bg/ introducing gradient-based information into it. Howeve

requires several objective function evaluations), it isgible this should be done very carefully, because of the high

to design a gradient-based hybrid which is very eﬁicient‘fompmaﬂonal cost associated with obtaining this informa

For this sake, it is important to devise a careful interlaegvi tion. For this sake, it is possible to take advantage of the

between the MOEA and the gradient-based search engine,csod]StrUCtlon explamed in Section “I'B.l' Such COﬂStIIDIE.tI
E uld be selectively repeated and mixed with a gradient-

that we do not exceed a modest function-calls budget. Su R 4 .2
balance is achieved by our proposed GBMES, which onl ased descent applicable only to a few selected individuals
performs a total of 3,000 objective function evaluations fo

the pr(_)blems _inCIUded here. ) 1This depends on the sort of method adopted to approximateettiates
An interesting aspect of our proposed approach (whicsr the functions.
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Fig. 6. This graph shows the Pareto fronts generated by oWBB and

NSGA-II for Problem 1 (withn = 100), after 3,000 function evaluations.

Problem 1

GBMES (GD) —+— j
NSGA Il (GD) --x-- x

12+ |

10 L 4

mean distance
X

x

0 L L L L
0 20 40 60 80 100

# of variables

Fig. 7.  Graphical illustration of the performance of our GBS and
the NSGA-II in Problem 1, regarding the GD performance megsas we
increase the number of decision variables. In all cases,esferned 3,000
function evaluations.

Problem 1
16

GBMES (IGD) —+— j
NSGA 11 (IGD) - -

10 | 4

mean distance
®
T
L

L L L L
0 20 40 60 80 100
# of variables

Fig. 8. Graphical illustration of the performance of our GBSl and the
NSGA-II in Problem 1, regarding the IGD performance measa® we
increase the number of decision variables. In all cases,exfermned 3,000
function evaluations.

Problem 1

GBMES (Haussdorf) —— ' T T T
NSGA Il (Haussdorf) --x--

150 - 4

mean distance
x

100 4

1 1
0 20 40 60 80 100
# of variables

Fig. 9. Graphical illustration of the performance of our GBSl and the
NSGA-II in Problem 1, regarding Hausdorff's distance, asingease the
number of decision variables. In all cases, we performed®®,inction
evaluations.

Problem 2 (dtlz2)
08 ™ ames (GD) —— i i i !
NSGA Il (GD) ---x- e
05 1
04 g
8
s .
S o3t e g
£
02 4
.X"'
01| B
0 \ \ i \ ,
0 20 40 60 80 100
# of variables
Fig. 10. Graphical illustration of the performance of our BBS and

the NSGA-II in Problem 2, regarding the GD performance megsas we
increase the number of decision variables. In all cases,exf®ned 3,000
function evaluations.

Problem 2 (dtiz2)

T x

GBMES (IGD) ——
NSGA Il (IGD) -+-:-

0.025 - 7 g

0015 - o g

mean distance

0.005 7 q

AR

" | . .
0 20 40 60 80 100
# of variables

Fig. 11. Graphical illustration of the performance of our BBS and
the NSGA-II in Problem 2, regarding the IGD performance ruieasas we
increase the number of decision variables. In all cases,exf®med 3,000
function evaluations.



COMPARISON OF RESULTS REGARDINGIAUSDORFF S DISTANCE FOR

TABLE VI
(7]

BOTH PROBLEMS WHEN USINGn =original,30, 60, 100, AND AFTER

CORRESPONDS TO THE MEAN OVERBO INDEPENDENT RUNS THE
original VALUES ADOPTED FORn IN EACH PROBLEM ARE THOSE

PERFORMING3,000FUNCTION EVALUATIONS. THE VALUE

(8]

DEFINED IN TABLE |. THE BEST RESULTS ARE SHOWN INboldface.

Haus. dist Problem 1 Problem 2
n GBMES | NSGA-l | GBMES | NSGAI [e]
original 9.8240 | 15.4736| 0.842908| 0.798111
30 28.3035| 55.6760| 1.625643| 2.354311
60 54.7381 | 126.3136| 1.164723| 4.914662 (10]
100 80.3792 | 217.4507| 2.065171| 8.331932
[11]
Problem 2 (dtiz2)
o GBMES (Haussdorf) —— T T T
NSGA Il (Haussdorf) -+~ X
sl i
7F 4 [12]
6 [ 4
£ [13]
3+ g
2 X 4
°s 0 0 % % 100 [14]
# of variables
Fig. 12.  Graphical illustration of the performance of our BBS and
the NSGA-II in Problem 2, regarding Hausdorff’'s distance,we increase
the number of decision variables. In all cases, we perfor8)860 function
evaluations.
[15]
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