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Abstract—This work introduces a hybrid between an elitist
multi-objective evolutionary algorithm and a gradient-based
descent method, which is applied only to certain (selected)
solutions. Our proposed approach requires a low number of
objective function evaluations to converge to a few points in the
Pareto front. Then, the rest of the Pareto front is reconstructed
using a method based on rough sets theory, which also requires
a low number of objective function evaluations. Emphasis is
placed on the effectiveness of our proposed hybrid approach
when increasing the number of decision variables, and a study
of the scalability of our approach is also presented.

I. I NTRODUCTION

A multi-objective optimization problem (MOP) is stated
as: minimize

F (x) = (f1(x), f2(x), . . . , fm(x))T

wherefi : R
n → R for all i ∈ 1, . . . , m (m is the number

of objective functions). Evolutionary algorithms have been
found to be very effective for solving MOPs, presenting sev-
eral advantages with respect to mathematical programming
techniques (e.g., they are less susceptible to the shape and
continuity of the Pareto front) [5].

In spite of the increasing popularity of multi-objective
evolutionary algorithms (MOEAs), they tend to require a
relatively large number of iterations to produce reasonably
good approximations of the Pareto optimal set of a MOP.
This has motivated the hybridization of MOEAs (which are
known to be good global search engines) with local search
engines of different types (see [16]), aiming to speed up
convergence.

Gradient-based methods are a possible choice for design-
ing local search engines, in cases in which the objective
functions are differentiable. Indeed, this is an interesting
choice (when possible), since the use of gradient information
can give us much more precise descent directions for the
search, than the only use of the operators of an evolutionary
algorithm. In fact, this sort of hybrid between a MOEA and
a gradient-based method has been previously studied by a
number of researchers (e.g., [21], [1], [11], [22], [14]). The
hybrids proposed by these authors normally replace, add or
modify existing evolutionary operators, such that the gradient
information is used to guide the search.

MOEAs hybridized with gradient-based methods present
several advantages, from which the most remarkable one is
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their capability to speed up convergence. However, one ad-
vantage that has not been documented so far (to the authors’
best knowledge) is their ability to scale better than traditional
MOEAs in the presence of many decision variables. It has
been recently found that the performance of state-of-the-
art MOEAs degrades quickly as the number of decision
variables increases [8]. This may limit the applicability of
MOEAs in real-world problems, since their use may require
a prohibitively high number of objective function evaluations.
Thus, we suggest here that hybrids of MOEAs with gradient-
based methods can be a suitable choice (when applicable) to
deal with this scalability issue. Note that we do not refer here
to scalability in objective function space which is a relatively
popular research topic [3], but which we do not cover in this
paper.

In order to validate our hypothesis, we will present here
our own proposed hybrid of a MOEA and a gradient-based
method, whose design emphasis is efficiency (measured in
terms of the objective function evaluations performed), and
which will be validated using scalable problems (in decision
variable space).

The remainder of this paper is organized as follows.
In Section II, we introduce the basic concepts on which
the gradient-based descent method is based. In Section III,
we introduce a two-stage algorithm namedGradient-Based
Multi-objective Evolutionary Strategy(GBMES), which is
our proposed hybrid of a MOEA and a gradient-based
method. The results obtained with our proposed hybrid
approach and a state-of-the-art MOEA (NSGA-II [7]) in two
scalable test problems are presented in Section IV. Finally,
our conclusions and some possible paths for further work are
stated in Section V.

II. GRADIENT-BASED DESCENT

During the search of solutions that minimize a continuous
and differentiable function, the gradient of the function
provides information about its growth or decrement. It is
well known that the maximum decrement of the functionf
is obtained when following the direction−∇f(x), departing
from the pointx.

In the multi-objective case, and along the same line,
we want to find a movement direction inRn that brings
simultaneously the maximum decrement —or at least a
decrement— in all thefi components ofF. Hence, we will
call descent directiona unit vectorû ∈ R

n that intuitively
represents a decrement in all thefi, or in most of them,
and keeps the same value in the others. For our purposes
we found suitable to use the descent direction proposed by



Fliege in [9]. The basic details of this method are explained
next after providing some basic definitions.

Using the canonical coordinatewise order≤ in R
n (this

is, a ≤ b if ai ≤ bi for all i ∈ {i, .., n}), a pointx ∈ R
n

dominatesy ∈ R
n, denoted asx ≺ y, if F (x) ≤ F (y) with

x 6= y. If y 6≺ x and x 6≺ y, we say thatx and y are not
comparable(not dominated) denoted byx||y.

One pointx ∈ A ⊆ R
n is a Pareto optimumif there does

not exist another pointz ∈ A ⊆ R
n such thatz ≺ x.

Let JF (x) = δfi

δxj
(x) be the Jacobian matrix ofF and

R
− the set of negative real numbers. Then, a necessary

condition [9] for the pointx ∈ R
n to be a local Pareto point

is that
range(JF (x)) ∩ (R−)m = ∅ (1)

holds. The above expression means that if we have a point
x which is not dominated by any other point in a certain
neighborhood, in a Pareto sense, then it is not possible thata
directionv exists, for which the directional derivative of each
fi could be negative —which would turn it into a descent
direction. Note that the condition (1) can be fulfilled by
Pareto optimal points and bycritical points as well.

Setting the above in terms of our purposes, we will assume
that a solutionx should be improved during the solution of
a real-valued minimization MOP. Then, ifx is not a critical
point, it is possible to choose a descent directionv holding

JF (x)v ∈ (R−)m

If this is the case,v can be computed [9] using the in-
formation provided by the Jacobian matrix of the problem
evaluated onx. As Fliege presents in [9], it is necessary to
solve the next quadratic programming problem such that we:

minimize α +
1

2
||v||2 (2)

subject to (JF (x)v)i ≤ α, for all i ∈ {1, . . . , m}

Once the above problem produces a solution(v∗, α∗), the
descent direction that we are looking for isv∗, and as Fliege
suggests, the step length for the movement can be obtained
by an Armijo’s rule, by decreasingt until the condition

F (x + tv) ≤ F (x) + βtJF (x)v

is fulfilled. The valueβ ∈ (0, 1) is a control parameter to
decide how fine grained, numerically speaking, the descent
will be. At this point of the process, havingx1 = x+ tv, we
are in condition of repeating the movement by calculating a
new descent direction forx1 or, if this is not possible, we
can assume that a critical point has been achieved.

This method, constructed by Fliege, automatically triggers
a condition to know ifx1 fulfills condition (1), which is
the case whenα∗ = 0. In practice, it is necessary to set
a tolerance parameterτ, τ < 0 to stop the descent when
τ ≤ α∗ holds; note that by constructionα∗ ≤ 0.

Several ways to calculate descent directions have been
proposed [19], [1], [2], [4], [12]. A study of the efficiency

of each of them for the method proposed here is left as
future work. Even though following descent directions leads
directly to good candidates for local Pareto points, perform-
ing a gradient-based descent could be very expensive in
terms of function calls. For example, according to the results,
regarding the Automatic Differentiation method, reportedin
[10], we are counting in our experiments one Jacobian matrix
computation as the equivalent to five times one function-call
effort. Then, if we have a three-objective MOP, and perform
twenty times the descent step for just a single point, we
need at least5× 3× 20 = 300 function calls —besides the
necessary calls to calculate the step size length. That is why
in practice, and for the sake of implementing this algorithm,
we bound the number of descent steps spent for each point.
This situation will be explained in the next section.

III. T HE PROPOSEDALGORITHM

Our proposedGradient-Based Multi-objective Evolution-
ary Strategy(GBMES) is conformed by two stages. The aim
of the first stage is getting a small set of Pareto optimal
points. In the case of facing moderate multi-frontality, the
evolutionary part of the hybrid algorithm can deal with the
critical points that are not optimum; then, we assume that,
by the end of this first stage, all the points in this set are
part of the global front. The second stage looks for the
reconstruction of the entire front, starting from a few points
lying on it.

A. First Stage

For the first stage of the algorithm we use several popu-
lations, in a way analogous to the Micro-GA for Multiob-
jective Optimization [6]. We adopt an external population
P with a replaceable partPr and a non-replaceable part
Pn. The former population will evolve over time and the
latter will introduce diversity into the process. We use a small
populationPt of parents,|Pt| = µ randomly chosen from
P = Pr ∪ Pn. The individuals fromPt are recombined to
produce a setPoff of λ descendants. Unlike a traditional
evolution strategy, we setλ ≈ µ because we need to bound
the number of function calls in this phase —in order to
spend most of them in the gradient-based descent part. The
individuals used for recombination are randomly chosen from
Pt. We use two types of recombination, arithmetic and dis-
crete, choosing one of them in a random way, with a certain
(predefined) probability. We set a higher probability for the
discrete recombination at this stage (the proportion is 2:1).
For the second stage of GBMES, arithmetic recombination
plays a more important role.

Once we have selected the nondominated parentsPnd from
Pt∪Poff , we perform the next insertion process in order to
obtain the secondary populationS and the elite population
E, E ⊆ S. This insertion process has two variants.
In the initial generationS = ∅, and for eachp ∈ Pnd we:

1) Perform the gradient-based descent forp and getp′ as
the final point of the descent.



2) Insert the element:S ← S ∪ {p′}. If the necessary
condition for being inE (see below) holds thenE ←
E ∪ {p′}.

The next generations the process is slightly different, as we
describe next:

1) SetP ′

nd as the elements fromPnd that are not domi-
nated by anys ∈ E.

2) For eachp ∈ P ′

nd :

• Perform the gradient-based descent forp and get
p′ as the final point of the descent.

• Removes ∈ S such thatp′ ≺ s.
• Insertp′ in S (in E if applicable).
• Removeq ∈ P ′

nd such thatp′ ≺ q.

In both cases we use the set of inserted pointsp′ to replace
the dominated individuals fromPr.

The secondary population is directly conformed by the
points obtained after the descent. The condition for a point
x ∈ S to be inE is having finished the descent with anα∗

(see Section II) value of zero —which means it is a candidate
to be a local Pareto point. Note that the latter could not
be the case for all the points inS. Thus, this separation is
made because the descent could be stopped before obtaining
a local Pareto point. This happens because, in practice, we
restrict the number of steps used in the descent. Additionally,
we could also stop the descent if a certain tolerance value
between the initial and the final points in the movement is
achieved. Also, in order to handle box constraints, when
the computed steepest descent direction leads outside the
feasible region, the process must quit exploiting that solution,
and then take the point nearest to the boundary, between
the feasible and infeasible regions, as the final point of the
movement. This is necessary, since it is possible that the
movement of the descent points leads to a local optimum
located in the infeasible region or to a local optimum located
in the boundary between the feasible and the infeasible
region. In both cases, it is unnecessary to perform a fine-
grained steepest descent, and the cost of doing it could
lead to an important increase in the number of function
calls. Then, during the procedure these end points from the
descent would enter the elite population only if the elite
population is empty. The algorithm’s implementation should
detect the case when, after certain number of generations,
no point has entered the elite population. In this case, we
perform uniform mutation on the individuals in the secondary
population and we only retain the nondominated solutions
as candidates for becoming the outcome of the first-stage.
In order to feed the replaceable population, we takeP ′′

nd,
which is conformed by individuals fromP ′

nd that entered the
secondary population at that generation, and we use them to
replace those individuals fromPr that are dominated. To
select theµ parents to conformPt for the next generation,
we takemin{mu/3, |P ′′

nd|} individuals from P ′′

nd and the
remainder are randomly selected fromP .

The general process of the first stage is described next:
1) Initialize the replaceablePr and non-replaceablePnr

parts of the population.

2) Selectµ parents forPt.
3) Recombine the parents to produceλ offspring Off .
4) SelectPnd nondominated individuals from the union

of parents and offspring.
5) Perform the insertion process with the gradient-based

descent, and feed the secondary populationS, the elite
populationE, and the replaceable populationPr.

6) Repeat steps 2 to 5 until having at least four individuals
in the elite population or until running out of the
function-calls budget allowed for this first stage.

For all the problems tested here, the values forµ and λ
were 20, the initial population size was of 130 individuals,
and the proportion between the non-replaceable and the re-
placeable parts of the initial population was 3:10. Regarding
the value ofµ, in general, it must be a trade-off because it
has to be big enough in order to allow a good sampling of
the population for the evolution strategy but not too large,in
order to avoid that too many function calls are spent.

B. Second Stage

Once the Pareto front has been approached, the next step
consists of applying a technique that performs a reconstruc-
tion of the entire front departing from a few points from
such front. One possibility at this point is to use continuation
methods [20], [15]; if this is the case, only one point in the
front is necessary to start, but we would have to be able
to afford the computational cost of calculating the second
derivatives of the functions, which is high, even if clever
techniques are devised [13].

In this work, we propose using Rough Sets [17], [18] for
the second stage, and we reserve at least one third of our
function-calls budget for this part. This approach (rough sets)
consists of a stochastic technique which uses information
about individuals that were dominated in a previous iteration,
in order to construct new solutions close to the nondominated
individuals and far away from the dominated ones. This
aims to generate new nondominated solutions and, as a
consequence, fill up the missing parts of the Pareto front.
Next, we briefly describe the approach that we use.

Elite

True front

offspring

Fig. 1. This figure shows the box formed by two elements in the elite
set. Their offspring lie on the line that joins them, and in the neighborhood
bounded by their own coordinates (n-dimensional box).



1) Preliminary Phase:Our rough sets approach requires
an initial population (P1) which is close to the true Pareto
front. This population is partitioned into two sets:DS, which
contains the dominated solutions, andNS which contains the
nondominated solutions.

At the end of the first stage of the GBMES, we assume that
we have a few (at least four) individuals in the true Pareto
front. Then, to start the rough sets procedure, we can generate
a small population in the neighborhood of these solutions in
the following way: For each point in the elite population,
we generate ann−dimensional box with each point as one
vertex and its nearest neighbor located in the opposite corner.
Then, we generate two types of offspring: first, we apply total
arithmetic recombination to gets descendants in the line that
joins the reference point and its nearest neighbor and we
produce another offspring outside the box, but in the same
direction as before (see Figure 1). Next, the second kind of
offspring consists oft descendants which are randomly built
inside the box. For the examples presented here, we used
s = 2 and t = 3.

2) Rough Sets:Once the population is close enough to the
true Pareto front, and once is partitioned into theNS and
DS sets, we perform a set of iterations until reaching the
maximum allowable by our function-calls budget. At each
iteration, we build a grid withk dominated points fromDS,
which serve as vertices. We also takeq individuals from the
set of nondominated solutionsNS and we apply bounded
mutation to them. The bounds for these mutations are set
from half of the distance over each coordinate to the limits
of the grid (See Figure 2). If there is no edge bounding the
mutation operator, we set the limit for that specific coordinate
as the natural limits of the box constraints from the problem.
The procedure is the following:

m
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m
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m

x2

x1

mm
m

f2

mm
m

m
m
m

m
mm

m
mm

f1

non dominated  (NS)

dominated         (DS)

(Q‘ ) m offspring

Fig. 2. This figure shows the grid for the rough sets method formed
with the elements ofDS serving as vertices (marked as black dots in the
figure). The nondominated individuals (taken fromNS), which are used
as the reference solutions, are marked with gray circles. Their descendents,
produced by mutation, are marked with the letter ‘m’.

1) Divide the populationP1 into theDS andNS sets.
2) Randomly choosek elements fromDS to set the limits

of the grid.
3) Randomly chooseq elements fromNS to form Q (the

set of parents).

4) Apply u mutations to each parent and conformQ′ with
them.

5) Divide the populationP1 ∪ Q′ into the newDS and
NS sets.

6) If v < |NS|, we use a crowding or a clustering
technique to reduce the size tov. v is a user-defined
parameter.

7) If v′ < |DS|, we keep the solutions that were non-
dominated in the last iteration, and we choose the
rest randomly from the dominated solutions in the
population, until reaching the maximum size allowable
for v′. v′ is a user-defined parameter.

8) Repeat steps 2 to 7 until a certain (predefined) number
of function-calls is performed.

For the examples we present here, we usedk = 20, q =
10, u = 4, v = 100 for the bi-objective problem,v = 150
for the three-objective problem, andv′ = 100 in both cases.

IV. EXPERIMENTAL RESULTS

The performance measures used here are described next.
In the following,δi denotes the minimum Euclidean distance
from the imageF (xi) ∈ PFknown of a solutionxi, i =
1, . . . , q = |PFknown|, to the true Pareto frontPFtrue; dij

is the Euclidean distance betweenF (xi) andF (xj). Finally,
we define

di := min
j=1,...,q

i6=j

dij ; d :=
1

q

q
∑

i=1

di.

For u ∈ Rn, A, B ⊆ Rn

dist(u, A) := inf
v∈A
||u− v||

and
dist(B, A) := sup

u∈B

dist(u, A).

The performance measures are:

• Generational Distance (GD, IGD )

GD =
1

q

√

√

√

√

q
∑

i=1

δ2

i

The Inverted Generational Distance (IGD ) is analogous
to GD but measured fromPFtrue to PFknown.

• Spacing (S)

S =

√

√

√

√

1

q − 1

q
∑

i=1

(di − d)2

• Hausdorff’s distance

dH := max{dist(PFtrue, PFknown), dist(PFknown, PFtrue)}

Since we want to test the scalability of our proposed hybrid
approach, we adopted the two problems defined in Table I,
which have two and three objectives, respectively. They are
scalable in decision variable space. The final population for
both algorithms was set to 100 individuals for the problem
with two objectives and to 150 individuals for the problem



TABLE I
MOPS ADOPTED FOR OUR EXPERIMENTS.

Problem 1
f1(x) = (x1 − 1)4 +

P

n

i=2
(xi − 1)2

f2(x) =
P

n

i=1
(xi + 1)2

with n = 10

Problem 2 (DTLZ2)
f1(x) = cos(x1π

2
) cos(x2π

2
) . . . cos(

xk−1π

2
)(1 + g(x))

f2(x) = cos(x1π

2
) cos(x2π

2
) . . . sin(

xk−1π

2
)(1 + g(x))

...
fk−1(x) = cos(x1π

2
) sin(x2π

2
)(1 + g(x))

fk(x) = sin(x1π

2
)(1 + g(x))

g(x) =
n

P

i=k

(xi −
1

2
)2

0 ≤ xi ≤ 1, i = 1, . . . , n
with k = 3, n = 12

with three objectives (a larger value was adopted in this case
because of the higher number of objectives). Our results are
compared with respect to those generated by the NSGA-II
[7] using 100 and 150 individuals, respectively (same as our
approach), and performing the same number of evaluations
as our proposed hybrid approach. Tables II and III show
our comparison of results after performing 3,000 objective
function evaluations for both problems. In this case, we use
n = 10 for Problem 1, andn = 12 for Problem 2. From
Tables II and III, we can see that our GBMES achieves
much better convergence than the NSGA-II. This can be
corroborated by looking at Figure 3, in which it is clear that
the NSGA-II is unable to converge, even when Problem 1
only has ten decision variables.

Then, we increased the number of decision variables of the
problem and we focused our analysis on the convergence
of each approach (ours and the NSGA-II). Figures 3, 4, 5
and 6 show the plots of the final population, corresponding
to the run in the mean obtained for IGD over 30 runs, for
Problem 1, usingn ∈ {10, 30, 60, 100} decision variables.
We can observe that, as we increase the number of decision
variables, our proposed GBMES is still able to generate
an important portion of the Pareto front (e.g., it is able to
generate the “knee” in all cases) with the same number of
evaluations as before (3,000). The values of the performance
measures (shown in Tables IV, V and VI) indicate that both
approaches suffer a performance degradation as we increase
the number of decision variables. This behavior is consistent
in the case of Problem 2, as well. Although the performance
of our proposed GBMES degrades as we increase the number
of decision variables, such degradation is less significant
than the one suffered by the NSGA-II. Also, in all cases
(for both problems), our approach outperforms the NSGA-
II with respect to all the performance measures used to
assess convergence (see Tables IV, V and VI). This can be
better appreciated in Figures 7 to 9 for Problem 1 and from
Figures 10 to 12 for Problem 2, in which we show a graphical
comparison of the performance (regarding convergence) of
the two approaches (ours and the NSGA-II) as we increase
the number of decision variables.

Fig. 3. This graph shows the Pareto fronts generated by our GBMES and
NSGA-II for Problem 1 (withn = 10), after 3,000 function evaluations.

Fig. 4. This graph shows the Pareto fronts generated by our GBMES and
NSGA-II for Problem 1 (withn = 30), after 3,000 function evaluations.

Fig. 5. This graph shows the Pareto fronts generated by our GBMES and
NSGA-II for Problem 1 (withn = 60), after 3,000 function evaluations.



TABLE II
COMPARISON OF RESULTS FORPROBLEM 1, USING n = 10, AND

PERFORMING3000FUNCTION EVALUATIONS. STATISTICS WERE
GATHERED FROM30 INDEPENDENT RUNS. THE BEST RESULTS ARE

SHOWN IN boldface.

GD
Method Best Mean Worst
GBMES 0.023375 0.049261 0.103776

NSGA II 0.242919 0.415592 0.539319
IGD

Method Best Mean Worst
GBMES 0.092534 0.222116 0.549907

NSGA II 0.367473 0.565376 0.863660

Spacing
Method Best Mean Worst
GBMES 0.004457 0.029559 0.081939
NSGA II 0.002789 0.022826 0.070167

Hausdorff’s distance
Method Best Mean Worst
GBMES 3.493272 9.823990 21.668491

NSGA II 7.022420 15.473644 25.665400

TABLE III
COMPARISON OF RESULTS FORPROBLEM 2, USING n = 12, AND
PERFORMING3000FUNCTION EVALUATIONS. STATISTICS WERE

GATHERED FROM30 INDEPENDENT RUNS. THE BEST RESULTS ARE

SHOWN IN boldface.

GD
Method Best Mean Worst
GBMES 0.003234 0.019648 0.032110

NSGA II 0.027392 0.035683 0.043271
IGD

Method Best Mean Worst
GBMES 0.000421 0.000643 0.001017

NSGA II 0.001422 0.001746 0.002200

Spacing
Method Best Mean Worst
GBMES 0.000737 0.004314 0.009814

NSGA II 0.001360 0.005380 0.032598

Hausdorff’s distance
Method Best Mean Worst
GBMES 0.385372 0.842908 1.335189
NSGA II 0.556158 0.798111 1.170840

V. CONCLUSIONS ANDFUTURE WORK

We have introduced a hybrid approach called GBMES,
which is designed to take advantage of gradient-based infor-
mation extracted for multi-objective optimization problems.
Since MOEAs are known to perform well in problems
with high multi-frontality, our method focuses instead on
problems in which the gradient descent is a good option to
speed up the first stages of the search. Although obtaining
gradient information is an expensive process (because it
requires several objective function evaluations), it is possible
to design a gradient-based hybrid which is very efficient.
For this sake, it is important to devise a careful interleaving
between the MOEA and the gradient-based search engine, so
that we do not exceed a modest function-calls budget. Such
balance is achieved by our proposed GBMES, which only
performs a total of 3,000 objective function evaluations for
the problems included here.

An interesting aspect of our proposed approach (which

TABLE IV
COMPARISON OF RESULTS REGARDINGGD FOR BOTH PROBLEMS WHEN

USINGn =original,30, 60, 100, AND AFTER PERFORMING3,000
FUNCTION EVALUATIONS. THE VALUE CORRESPONDS TO THE MEAN

OVER 30 INDEPENDENT RUNS. THE original VALUES ADOPTED FORn IN

EACH PROBLEM ARE THOSE DEFINED INTABLE I. THE BEST RESULTS

ARE SHOWN INboldface.

GD Problem 1 Problem 2
n GBMES NSGAII GBMES NSGAII

original 0.0493 0.4156 0.019648 0.035683
30 0.3063 2.6406 0.032565 0.131245
60 0.8925 6.8851 0.015376 0.308811
100 1.7495 12.9756 0.029423 0.567924

TABLE V
COMPARISON OF RESULTS REGARDINGIGD FOR BOTH PROBLEMS

WHEN USINGn =original,30, 60, 100, AND AFTER PERFORMING3,000
FUNCTION EVALUATIONS. THE VALUE CORRESPONDS TO THE MEAN

OVER 30 INDEPENDENT RUNS. THE original VALUES ADOPTED FORn IN

EACH PROBLEM ARE THOSE DEFINED INTABLE I. THE BEST RESULTS
ARE SHOWN INboldface.

IGD Problem 1 Problem 2
n GBMES NSGAII GBMES NSGAII

original 0.2221 0.5654 0.000643 0.001746
30 0.7449 3.0245 0.000829 0.006448
60 1.6436 7.6595 0.001116 0.016010
100 2.8417 14.6620 0.001249 0.029858

we believe that is shared by other hybrids between MOEAs
and gradient-based methods1) is that it scales well as we
increase the number of decision variables of a MOP. This is
illustrated in the paper by two examples in which we use up
to 100 decision variables. Our proposed approach is found to
degrade significantly less than a state-of-the-art MOEA (the
NSGA-II), while still performing 3,000 objective function
evaluations.

As part of our future work, we are interested in extending
our hybrid approach in several ways. For example, for
problems with many critical (non Pareto-optimum) points,
our approach cannot distinguish between such points and
those which are Pareto optima. Thus, the gradient-based
information is not very effective in this case, and the MOEA
should be used in order to deal with this situation (e.g., using
a higher mutation rate to avoid getting stuck). Otherwise, the
hybrid turns out to be too expensive (computationally speak-
ing). Thus, a more careful algorithmic design is required to
deal with this sort of situation.

Additionally, the rough sets mechanism can be improved
by introducing gradient-based information into it. However,
this should be done very carefully, because of the high
computational cost associated with obtaining this informa-
tion. For this sake, it is possible to take advantage of the
construction explained in Section III-B1. Such construction
could be selectively repeated and mixed with a gradient-
based descent applicable only to a few selected individuals.

1This depends on the sort of method adopted to approximate thederivates
of the functions.



Fig. 6. This graph shows the Pareto fronts generated by our GBMES and
NSGA-II for Problem 1 (withn = 100), after 3,000 function evaluations.
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Fig. 7. Graphical illustration of the performance of our GBMES and
the NSGA-II in Problem 1, regarding the GD performance measure, as we
increase the number of decision variables. In all cases, we performed 3,000
function evaluations.
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Fig. 8. Graphical illustration of the performance of our GBMES and the
NSGA-II in Problem 1, regarding the IGD performance measure, as we
increase the number of decision variables. In all cases, we performed 3,000
function evaluations.
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Fig. 9. Graphical illustration of the performance of our GBMES and the
NSGA-II in Problem 1, regarding Hausdorff’s distance, as weincrease the
number of decision variables. In all cases, we performed 3,000 function
evaluations.
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Fig. 10. Graphical illustration of the performance of our GBMES and
the NSGA-II in Problem 2, regarding the GD performance measure, as we
increase the number of decision variables. In all cases, we performed 3,000
function evaluations.
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Fig. 11. Graphical illustration of the performance of our GBMES and
the NSGA-II in Problem 2, regarding the IGD performance measure, as we
increase the number of decision variables. In all cases, we performed 3,000
function evaluations.



TABLE VI
COMPARISON OF RESULTS REGARDINGHAUSDORFF’ S DISTANCE FOR

BOTH PROBLEMS WHEN USINGn =original,30, 60, 100, AND AFTER
PERFORMING3,000FUNCTION EVALUATIONS. THE VALUE

CORRESPONDS TO THE MEAN OVER30 INDEPENDENT RUNS. THE

original VALUES ADOPTED FORn IN EACH PROBLEM ARE THOSE

DEFINED IN TABLE I. THE BEST RESULTS ARE SHOWN INboldface.

Haus. dist Problem 1 Problem 2
n GBMES NSGA-II GBMES NSGA-II

original 9.8240 15.4736 0.842908 0.798111
30 28.3035 55.6760 1.625643 2.354311
60 54.7381 126.3136 1.164723 4.914662
100 80.3792 217.4507 2.065171 8.331932
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Fig. 12. Graphical illustration of the performance of our GBMES and
the NSGA-II in Problem 2, regarding Hausdorff’s distance, as we increase
the number of decision variables. In all cases, we performed3,000 function
evaluations.
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