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Abstract—In this work, we present a new multi-objective
particle swarm optimization algorithm (PSO) characterized by
the use of a strategy to limit the velocity of the particles.
The proposed approach, called Speed-constrained Multi-objective
PSO (SMPSO) allows to produce new effective particle positions
in those cases in which the velocity becomes too high. Other
features of SMPSO include the use of polynomial mutation as
a turbulence factor and an external archive to store the non-
dominated solutions found during the search. Our proposed
approach is compared with respect to five multi-objective meta-
heuristics representative of the state-of-the-art in the area. For
the comparison, two different criteria are adopted: the quality
of the resulting approximation sets and the convergence speed
to the Pareto front. The experiments carried out indicate that
SMPSO obtains remarkable results in terms of both, accuracy
and speed.

I. I NTRODUCTION

Particle Swarm Opmitization (PSO) is a bio-inspired meta-
heuristic mimicking the social behavior of bird flocking or
fish schooling [8] which has become very popular to solve
multi-objective optimization problems. Since the first attempt
proposed by Moore and Chapman in 1999 to extend it to
multi-objective optimization [10], more than thirty different
proposals of Multi-Objective Optimization PSOs (MOPSOs)
have been reported in the specialized literature [15].

In [5], we analyzed the performance of six MOPSOs repre-
sentative of the state-of-the-art and concluded that all ofthem
are unable to solve some multi-frontal problems satisfactorily
(e.g., ZDT4). We studied this issue in more depth, and found
that the velocity of the particles in these algorithms can
become too high, resulting in erratic movements towards the
upper and lower limits of the positions of the particles. This is
an example of the so-called “swarm explosion” [1], and it can
be prevented by using a velocity constriction mechanism [1].
Thus, taking OMOPSO (the most salient algorithm from the
MOPSOs studied in [5]) as our starting point, we developed
a new algorithm called SMPSO (Speed-constrained Multi-
objective PSO), which incorporates a velocity constriction
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procedure. The preliminary experiments carried out by the au-
thors, showed that SMPSO could solve the problems where the
other MOPSOs had difficulties. SMPSO was also compared
with respect to NSGA-II [3] and OMOPSO [14], achieving
competitive results.

In this paper our motivation is twofold. First, we want to
compare SMPSO with five state-of-the-art multi-objective op-
timization algorithms in a typical study consisting in assessing
the performance of the techniques by applying three quality
indicators (additive espilon, spread, and hypervolume) after
25,000 function evaluations. The selected algorithms are:two
genetic algorithms, NSGA-II [3] and SPEA2 [17]; a scatter
search approach, AbYSS [13]; a cellular genetic algorithm,
MOCell [12], and OMOPSO [14]. Our second goal is to
study the convergence speed of SMPSO to determine how
fast it is compared with the five aforementioned algorithms.
We follow the approach taken in [11], in which a stopping
condition based on achieving the 98% of the hypervolume
of the true Pareto front is adopted. The remainder of this
paper is structured as follows. Section II describes the SMPSO
algorithm. The next section includes a brief description ofeach
algorithm considered in this study. In Section IV, we analyze
the obtained resuls. Finally, Section V presents our conclusions
and some possible paths for future work.

II. DESCRIPTION OF OURSMPSO

In this section, we describe our approach detailing the
velocity constriction mechanism, the pseudocode of SMPSO,
and the differences with respect to OMOPSO (the algorithm
which SMPSO is based on).

A. Velocity Constriction Approach

In a PSO algorithm, each potential solution to the problem is
calledparticleand the population of solutions is calledswarm.
A basic PSO updates the particle~xi at the generationt with
the formula:

~xi(t) = ~xi(t − 1) + ~vi(t) (1)

where the factor~vi(t) is known as velocity and is given by

~vi(t) = w·~vi(t−1)+C1 ·r1 ·(~xpi
−~xi)+C2 ·r2 ·(~xgi

−~xi) (2)

In this formula,~xpi
is the best solution that~xi has viewed,~xgi

is the best particle (also known as theleader) that the entire
swarm has viewed,w is the inertia weight of the particle and
controls the trade-off between global and local experience, r1



and r2 are two uniformly distributed random numbers in the
range [0, 1], and C1 and C2 are specific parameters which
control the effect of the personal and global best particles.

In order to control the particle’s velocity, instead of using
upper and lower parameter values which limit the step size of
the velocity, we have adopted aconstriction coefficient(Eq.
3) obtained from the constriction factorχ originally developed
by Clerc and Kennedy (Eq. 2) in [1].

χ =
2

2 − ϕ −
p

ϕ2 − 4ϕ
(3)

where

ϕ =

(

C1 + C2 if C1 + C2 > 4

1 if C1 + C2 ≤ 4
(4)

In addition, we introduce a mechanism in such a way
that the accumulated velocity of each variablej (in each
particle) is further bounded by means of the followingvelocity
constrictionequation:

vi,j(t) =

8

>

<

>

:

deltaj if vi,j(t) > deltaj

−deltaj if vi,j(t) ≤ −deltaj

vi,j(t) otherwise
(5)

where

deltaj =
(upper limitj − lower limitj)

2
(6)

Summarizing the procedure, the velocity of the particles are
calculated according to Eq. 2; the resulting velocity is then
multiplied by the constriction factor (Eq. 3) and the resulting
value is constrained by using Eq. 5.

To illustrate the effect of the adopted velocity constriction
scheme, we include in Fig. 1 (left) the trace of the velocity of
the second variable in one uniformly random chosen particle
in OMOPSO when facing the solution of ZDT4 in 250
iterations [5]. We can observe that the velocity values alternate
from very high to very low values in some points of the
execution. Let us note that the limits of the second variablein
ZDT4 are[−5, +5], and the velocity takes values higher than
±20. As a consequence, the position of the particle variable
takes limit values, which does not contribute to the search.
Fig. 1 (right) depicts the same trace in SMPSO, where we
can observe that the velocity is constrained within[−5, +5],
and thus, the particle is effectively moving through the search
space.

B. Pseudocode of the Proposed Algorithm

Algorithm 1 shows the pseudocode of SMPSO. It starts by
initializing the swarm (Line 1), which includes the position,
velocity, andp (individual best) of the particles. The leaders
archive is initialized with the non-dominated solutions inthe
swarm (Line 2). Then, the main loop of the algorithm is
executed for a maximum number of iterations. The velocities
and positions of the particles are calculated first (Lines 5 and
6) and a mutation operator is applied with a given probability
(Line 7). The resulting particles are evaluated (Line 8) and
both the particle’s memory and the leaders archive are updated

(Lines 9 and 10). The algorithm returns the leaders archive as
the approximation set found (Line 13).

Algorithm 1 Pseudocode of our proposed SMPSO
1: initializeSwarm()
2: initializeLeadersArchive()
3: generation = 0
4: while generation< maxGenerationsdo
5: computeSpeed() // Eqs. 2 - 6
6: updatePosition() // Eq. 1
7: mutation() // Turbulence
8: evaluation()
9: updateLeadersArchive()
10: updateParticlesMemory()
11: generation ++
12: end while
13: returnLeadersArchive()

Given that the leaders archive can become full, we use
the crowding distance of NSGA-II to decide which particles
must remain in it. As turbulence operator, we have chosen the
polynomial mutation operator [2]. To choose thepbestparticle
to apply Eq. 2, we take two solutions from the leaders archive
randomly and the one having the largest crowding distance to
its nearest neighbors in the archive is selected.

C. Differences with respect to OMOPSO

Given that OMOPSO is the departure point for our SMPSO,
it is worth mentioning the actual differences between the two
algorithms. In the study presented in [5], both algorithms
differed only in the velocity constriction mechanism and inthe
ranges of the values thatC1 andC2 may take. In OMOPSO,
they are random numbers in the range[1.5, 2.0]. However, in
order to apply Eq. 4, in SMPSO the range was changed to
[1.5, 2.5] because in the former case the value of Eq. 4 is
always 1.

After applying Eq. 1, OMOPSO checks whether the re-
sulting positions are out of the bounds of the variables of
the problem. In that case, the positions are assigned the
corresponding upper or lower bound value; additionally, the
direction of the velocity is reversed by multiplying it by
−1.0. We have conducted some preliminary experiments with
SMPSO in this sense but, instead of reversing, reducing the
velocity by multiplying it by values between 0.1 and 0.001.
We have achieved slightly better results using a value of 0.001.

The last difference is related to the use of mutation oper-
ators. OMOPSO applies a combination of uniform and non-
uniform mutation to the particle swarm (uniform mutation to
the first 30% of the swarm, non-uniform to the next 30%,
and no mutation to the rest of the particles). In SMPSO, a
polynomial mutation [2] is applied to the 15% of the particles.

III. D ESCRIPTION OF THEEVALUATED ALGORITHMS

In this section, we briefly describe the five algorithms that
we have considered to evaluate the behavior of our SMPSO.
We have used the implementation of these algorithms provided
by the jMetal framework [6].

The NSGA-II algorithm was proposed by Debet al. [3].
It is a genetic algorithm based on obtaining a new population
from the original one by applying the typical genetic operators
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Fig. 1. Velocity value of the second variable of OMOPSO (left) and SMPSO (right) when solving ZDT4.

(selection, crossover, and mutation); then, the individuals in
the two populations are sorted according to their rank, and the
best solutions are chosen to create a new population. In case
of having to select some individuals with the same rank, a
density estimation based on measuring the crowding distance
to the surrounding individuals belonging to the same rank is
used to get the most promising solutions.

SPEA2 was proposed by Zitleret al. in [17]. In this
algorithm, each individual has a fitness value that is the sumof
its strength raw fitness plus a density estimation. The algorithm
applies the selection, crossover, and mutation operators to fill
an archive of individuals; then, the non-dominated individuals
of both the original population and the archive are copied into
a new population. If the number of non-dominated individuals
is greater than the population size, a truncation operator based
on calculating the distances to thek-th nearest neighbor is
used. This way, the individuals having the minimum distance
to any other individual are chosen.

OMOPSO (Optimized MOPSO, Coelloet al. [14]) is a
multi-objective particle swarm optimization algorithm whose
main features include the use of an external archive based
on the crowding distance from NSGA-II to filter out leader
solutions and the use of mutation operators to accelerate the
convergence of the swarm. OMOPSO has also an archive to
store the best solutions found during the search. This archive
makes use of the concept ofǫ-dominance to limit the number
of solutions stored. We consider here a variant of OMOPSO
consisting in considering the population containing the leader
solutions instead of this archive.

MOCell (Nebroet al. [12]) is a cellular genetic algorithm
(cGA). Like OMOPSO, it includes an external archive to store
the non-dominated solutions found so far. This archive makes
use of the crowding distance of NSGA-II to keep diversity.
We have used here an asynchronous version of MOCell, called
aMOCell4 in [12].

AbYSS is an adaptation of thescatter searchmetaheuristic
to the multi-objective domain proposed by Nebroet al. in [13].
This algorithm uses an external archive similar to the one em-
ployed by OMOPSO and MOCell. The algorithm incorporates
operators of the evolutionary algorithms domain, including
polynomial mutation and simulated binary crossover in the

TABLE I
PARAMETERIZATION (L = INDIVIDUAL LENGTH )

Parameterization used in NSGA-II [3]
Population Size 100 individuals
Selection of Parents binary tournament + binary tournament
Recombination simulated binary,pc = 0.9
Mutation polynomial,pm = 1.0/L

Parameterization used in SPEA2 [17]
Population Size 100 individuals
Selection of Parents binary tournament + binary tournament
Recombination simulated binary,pc = 0.9
Mutation polynomial,pm = 1.0/L

Parameterization used in OMOPSO [14]
Swarm size 100 particles
Mutation uniform + non-uniform
Leaders Size 100

Parameterization used in AbYSS [13]
Population Size 20 individuals
Reference Set Size 10 + 10
Recombination simulated binary,pc = 1.0
Mutation (local search) polynomial,pm = 1.0/L
Archive Size 100 individuals

Parameterization used in MOCell [12]
Population Size 100 individuals (10 × 10)
Neighborhood 1-hop neighbours (8 surrounding solutions)
Selection of Parents binary tournament + binary tournament
Recombination simulated binary,pc = 0.9
Mutation polynomial,pm = 1.0/L
Archive Size 100 individuals

Parameterization used in SMPSO
Swarm size 100 particles
Mutation polynomial,pm = 1.0/L
Archive Size 100 individuals

improvement and solution combination methods, respectively.

IV. EXPERIMENTATION

The benchmarking problems chosen to evaluate the six
algorithms have been the ZDT (Zitzler-Deb-Thiele) [16] and
DTLZ (Deb-Thiele-Laumanns-Zitzler) [4] test suites. The
DTLZ problems have been used with their bi-objective for-
mulation. For assessing the performance of the algorithms,
we have considered three quality indicators: additive unary
epsilon indicator (I1

ǫ+) [9], spread (∆) [3], and hypervolume
(HV) [18]. The two first indicators measure, respectively,
the convergence and the diversity of the resulting Pareto
fronts, while the last one measures both convergence and



diversity. To measure the convergence speed, the algorithms
are executed until reaching a maximum of one million function
evaluations, and they stop when they find an approximation
set whose hypervolume is equal or greater than the 98% of
the hypervolume of the true Pareto front of the problem being
solved [11]. It is considered that an algorithm succeeded when
it stops before performing one million evaluations.

We describe next the parameter settings of the algorithms
and the experimentation methodology adopted.

A. Parameterization

We have chosen a set of parameter settings to guarantee
a fair comparison among the algorithms. All GAs (NSGA-
II, SPEA2, and MOCell) use an internal population of size
equal to 100; the size of the archive is also 100 in SPEA2,
OMOPSO, AbYSS, MOCell, and SMPSO. OMOPSO and
SMPSO have been configured with 100 particles. For AbYSS,
the population and the reference set have a size of 20 solutions.

In the GAs, we have used SBX and polynomial mutation [2]
as the operators for the crossover and mutation operators,
respectively. The distribution indexes for both operatorsare
ηc = 20 andηm = 20, respectively. The crossover probability
is pc = 0.9 and the mutation probability ispm = 1/L,
where L is the number of decision variables. AbYSS uses
polynomial mutation in the improvement method and SBX in
the solution combination method. OMOPSO applies a combi-
nation of uniform and non-uniform mutation, while SMPSO
uses polynomial mutation, as commented in Section II-C. A
summary of the parameter settings is included in Table I.

B. Methodology

To assess the search capabilities of the algorithms, we have
performed 100 independent runs of each experiment, and we
have obtained the median,̃x, and interquartile range,IQR,
as measures of location (or central tendency) and statistical
dispersion, respectively. Since we are dealing with stochastic
algorithms and we want to provide the results with statistical
confidence, we have also included a testing phase which allows
us to perform a multiple comparison of samples [7]. We have
used themultcompare function provided by Matlabc© for
that purpose. We always consider a confidence level of 95%
(i.e., significance level of 5% orp-value below0.05) in the
statistical tests. For the sake of a better understanding, the best
result for each problem has a gray colored background and the
second best one has a clearer grey background.

C. Evaluation

In this section, we analyze first the quality of the obtained
Pareto fronts after 25,000 function evaluations, to further
discuss the convergence speed results.

1) Quality of the Approximated Fronts:Table II includes
theI1

ǫ + values of the resulting approximated fronts computed
by all the algorithms. The grey colored background in the
SMPSO column clearly shows that this new proposal can be
considered as the algorithm that has produced the fronts closest
to the true Pareto front. Indeed, SMPSO has reached the

lowest (best) values in nine out of twelve problems, and it has
obtained the second bestI1

ǫ + values in the other three prob-
lems. The values yielded by MOCell make this algorithm the
second best performer concerning this indicator. An additional
interesting fact that can be drawn from Table II emerges from
the particular comparison between SMPSO and OMOPSO, our
new proposal and its predecessor. This comparison, points out
that the velocity constriction mechanism has endowed SMPSO
with improved search capabilities that has allowed for a better
convergence towards the true Pareto front (it has always
obtained better indicator values than OMOPSO). This occurs
specially in the ZDT4, DTLZ1, and DTLZ3 problems, where
the resulting fronts of SMPSO have reachedI1

ǫ + values that
are several orders of magnitude lower that those of OMOPSO.
The problems in which no statistical confidence can be assured
in theI1

ǫ + indicator by the tests carried out are shown in Table
III. We can observe that most differences between each pair
of algorithms have been significant according to this indicator.
As to the comparison between OMOPSO and SMPSO, the
tests cannot assure differences in problems ZDT6 and DTLZ6.
The results of the∆ indicator are presented in Table IV. The
values show that SMPSO has been the algorithm that better
distributed the solutions along the Pareto front, reachingthe
best (lowest) indicator values in seven out of the twelve studied
problems. MOCell has been again the second best algorithm
in terms of the solution spread out (three lowest values). The
comparison between SMPSO and OMOPSO is of particular
interest here as well, since the improvements are noticeable.
Indeed, the indicator values of SMPSO have always been
lower than those of OMOPSO being one order of magnitude
lower in problems ZDT1, ZDT4, and DTLZ1. It is therefore
clear that the velocity constriction mechanism has also allowed
SMPSO to obtain better distributed approximation sets.

Table V summarizes the results of the statistical tests for
the ∆ indicator. As with theI1

ǫ + indicator, it includes the
problems in which no statistical differences can be found. In
this case, results have also had statistical confidence in most
cases, except between AbYSS and MOCell: considering this
indicator, statistical differences between these two algorithms
do not exist in seven out of the twelve problems evaluated.

The last indicator used to assess the quality of the resulting
Pareto fronts is the Hypervolume (see Table VI). The “•’
symbols in the table mean that all the non-dominated solutions
of the obtained fronts have been so far away from the true
Pareto front. These types of solutions have to be no longer con-
sidered to compute the HV values because the results would be
otherwise unreliable. As a measure of both convergence and
diversity, the reached HV values have confirmed the obtained
values by the two previous indicators: the algorithms with
better values inI1

ǫ + and∆ are also the ones with better values
in HV. Thus, SMPSO has been the best algorithm also with
respect to this indicator, and has obtained the best (higher)
values in eight out of the twelve problems evaluated. MOCell
has been the second best algorithm: it has obtained the best
value in two out of the twelve problems evaluated and the
second best value in four problems. As to the comparison



TABLE II
MEDIAN AND INTERQUARTILE RANGE OF THEEPSILON INDICATOR(I1

ǫ+)

NSGA-II SPEA2 OMOPSO AbYSS MOCell SMPSO
Problem x̃IQR x̃IQR x̃IQR x̃IQR x̃IQR x̃IQR

ZDT1 1.37e − 023.0e−03 8.69e − 031.1e−03 6.36e − 035.1e−04 7.72e − 031.8e−03 6.23e − 034.1e−04 5.39e − 032.6e−04

ZDT2 1.28e − 022.3e−03 8.73e − 031.4e−03 6.19e − 035.4e−04 7.10e − 031.6e−03 5.57e − 033.0e−04 5.33e − 031.7e−04

ZDT3 8.13e − 031.9e−03 9.72e − 031.9e−03 1.32e − 027.7e−03 6.10e − 033.1e−01 5.66e − 037.5e−04 5.10e − 037.3e−04

ZDT4 1.49e − 023.0e−03 3.42e − 027.9e−02 5.79e + 004.3e+00 1.14e − 024.2e−03 8.17e − 032.3e−03 6.02e − 034.3e−04

ZDT6 1.47e − 022.8e−03 2.42e − 025.2e−03 4.65e − 034.2e−04 5.06e − 033.9e−04 6.53e − 035.6e−04 4.43e − 033.0e−04

DTLZ1 7.13e − 031.6e−03 5.89e − 032.8e−03 1.92e + 011.1e+01 5.85e − 035.5e−03 4.02e − 031.5e−03 2.97e − 032.0e−04

DTLZ2 1.11e − 022.7e−03 7.34e − 031.1e−03 6.72e − 039.1e−04 5.39e − 034.6e−04 5.09e − 032.8e−04 5.17e − 032.6e−04

DTLZ3 1.04e + 001.2e+00 2.28e + 001.9e+00 8.86e + 019.5e+01 1.66e + 001.6e+00 7.91e − 011.0e+00 5.39e − 038.5e−04

DTLZ4 1.13e − 029.9e−01 7.66e − 039.9e−01 3.18e − 021.0e−02 5.39e − 033.0e−04 5.74e − 039.9e−01 5.39e − 033.6e−04

DTLZ5 1.05e − 022.5e−03 7.47e − 031.2e−03 6.62e − 038.9e−04 5.36e − 035.2e−04 5.08e − 033.2e−04 5.24e − 033.0e−04

DTLZ6 4.39e − 023.4e−02 3.03e − 015.3e−02 5.36e − 034.8e−04 9.50e − 024.7e−02 4.16e − 023.8e−02 5.08e − 032.5e−04

DTLZ7 1.04e − 022.8e−03 9.09e − 031.4e−03 7.13e − 036.8e−04 5.51e − 039.6e−04 5.19e − 031.0e−03 4.95e − 032.8e−04

TABLE III
NON-SUCCESSFULSTATISTICAL TEST FOR THEEPSILONINDICATOR (I1

ǫ+)

NSGA-II ZDT3, ZDT4 - ZDT3 - -
DTLZ1, DTLZ4, DTLZ7 DTLZ4 DTLZ3 DTLZ6 -

SPEA2 ZDT3 ZDT1 - -
DTLZ2 DTLZ1, DTLZ3 - -

OMOPSO - ZDT1 ZDT6
DTLZ7 - DTLZ6

AbYSS - -
DTLZ2, DTLZ7 DTLZ2, DTLZ4, DTLZ5

MOCell -
DTLZ2, DTLZ5

SPEA2 OMOPSO AbYSS MOCell SMPSO

TABLE IV
MEDIAN AND INTERQUARTILE RANGE OF THESPREAD INDICATOR

NSGA-II SPEA2 OMOPSO AbYSS MOCell SMPSO
Problem x̃IQR x̃IQR x̃IQR x̃IQR x̃IQR x̃IQR

ZDT1 3.70e − 014.2e−02 1.52e − 012.2e−02 1.00e − 011.4e−02 1.05e − 012.0e−02 7.64e − 021.3e−02 7.34e − 021.7e−02

ZDT2 3.81e − 014.7e−02 1.55e − 012.7e−02 9.45e − 021.8e−02 1.07e − 011.8e−02 7.67e − 021.4e−02 7.14e − 021.5e−02

ZDT3 7.47e − 011.8e−02 7.10e − 017.5e−03 7.35e − 015.2e−02 7.09e − 019.7e−03 7.04e − 016.2e−03 7.05e − 016.3e−03

ZDT4 4.02e − 015.8e−02 2.72e − 011.6e−01 8.78e − 015.2e−02 1.27e − 013.5e−02 1.10e − 012.8e−02 9.14e − 021.7e−02

ZDT6 3.56e − 013.6e−02 2.28e − 012.5e−02 8.78e − 021.2e+00 8.99e − 021.4e−02 9.33e − 021.3e−02 7.02e − 024.4e−02

DTLZ1 4.03e − 016.1e−02 1.81e − 019.8e−02 7.77e − 011.1e−01 1.40e − 011.7e−01 1.05e − 013.6e−02 6.88e − 021.3e−02

DTLZ2 3.84e − 013.8e−02 1.48e − 011.6e−02 1.81e − 012.3e−02 1.09e − 011.9e−02 1.08e − 011.7e−02 1.28e − 011.8e−02

DTLZ3 9.53e − 011.6e−01 1.07e + 001.6e−01 7.90e − 011.1e−01 7.55e − 014.5e−01 7.45e − 015.5e−01 1.35e − 013.1e−02

DTLZ4 3.95e − 016.4e−01 1.48e − 018.6e−01 6.77e − 017.9e−02 1.08e − 011.8e−02 1.23e − 019.0e−01 1.14e − 011.9e−02

DTLZ5 3.79e − 014.0e−02 1.50e − 011.9e−02 1.77e − 012.6e−02 1.10e − 012.0e−02 1.09e − 011.7e−02 1.27e − 012.0e−02

DTLZ6 8.64e − 013.0e−01 8.25e − 019.3e−02 1.18e − 011.7e−02 2.31e − 016.3e−02 1.50e − 014.3e−02 1.10e − 012.0e−02

DTLZ7 6.23e − 012.5e−02 5.44e − 011.3e−02 5.21e − 016.8e−03 5.19e − 011.3e−03 5.19e − 012.9e−02 5.19e − 015.1e−04

TABLE V
NON-SUCCESSFULSTATISTICAL TEST FOR THESPREAD INDICATOR.

NSGA-II - ZDT3 - - -
DTLZ4, DTLZ6 DTLZ4 - - -

SPEA2 - ZDT3 - -
- DTLZ1 - -

OMOPSO ZDT1 ZDT6 -
DTLZ3, DTLZ7 DTLZ3, DTLZ7 DTLZ6, DTLZ7

AbYSS ZDT3, ZDT4, ZDT6 ZDT3, ZDT6
DTLZ2, DTLZ3, DTLZ5, DTLZ7 DTLZ4

MOCell ZDT1, ZDT2, ZDT3, ZDT6
-

SPEA2 OMOPSO AbYSS MOCell SMPSO

between SMPSO and OMOPSO, the last one has been better
than the former in all the evaluated problems except for
DTLZ6, in which OMOPSO has yielded the best value. The
results of the statistical tests for the HV are presented in
Table VII. Proceeding as in the two previous indicators, we
have included the problems in which the statistical tests have
not been successful. Focusing on the differences between

SMPSO and the others algorithms, we observe that the tests
have shown statistical confidence in most cases.

Summarizing this section, we can state that the velocity
constriction mechanism allows SMPSO to be the best algo-
rithm in the context of the problems, quality indicators, and
parameterizations considered in our study. It is also noticeable
that neither NSGA-II nor SPEA2 have produced approximated



TABLE VI
MEDIAN AND INTERQUARTILE RANGE OF THEHYPERVOLUME INDICATOR

NSGA-II SPEA2 OMOPSO AbYSS MOCell SMPSO
Problem x̃IQR x̃IQR x̃IQR x̃IQR x̃IQR x̃IQR

ZDT1 6.59e − 014.4e−04 6.60e − 013.9e−04 6.61e − 011.5e−04 6.61e − 013.2e−04 6.61e − 012.5e−04 6.62e − 015.3e−05

ZDT2 3.26e − 014.3e−04 3.26e − 018.1e−04 3.28e − 012.5e−04 3.28e − 012.8e−04 3.28e − 014.3e−04 3.29e − 014.7e−05

ZDT3 5.15e − 012.3e−04 5.14e − 013.6e−04 5.10e − 013.8e−03 5.16e − 013.5e−03 5.15e − 013.1e−04 5.16e − 011.2e−04

ZDT4 6.56e − 014.5e−03 6.51e − 011.2e−02 • 6.55e − 016.0e−03 6.59e − 013.0e−03 6.61e − 011.6e−04

ZDT6 3.88e − 012.3e−03 3.79e − 013.6e−03 4.01e − 011.5e−04 4.00e − 011.9e−04 3.97e − 011.1e−03 4.01e − 017.9e−05

DTLZ1 4.88e − 015.5e−03 4.89e − 016.2e−03 • 4.86e − 011.7e−02 4.91e − 013.8e−03 4.94e − 011.6e−04

DTLZ2 2.11e − 013.1e−04 2.12e − 011.7e−04 2.10e − 014.5e−04 2.12e − 016.5e−05 2.12e − 014.5e−05 2.12e − 011.3e−04

DTLZ3 • • • • 0.00e + 001.7e−01 2.12e − 012.8e−04

DTLZ4 2.09e − 012.1e−01 2.10e − 012.1e−01 1.96e − 016.1e−03 2.11e − 015.9e−05 2.11e − 012.1e−01 2.10e − 011.3e−04

DTLZ5 2.11e − 013.5e−04 2.12e − 011.7e−04 2.11e − 015.4e−04 2.12e − 016.8e−05 2.12e − 013.1e−05 2.12e − 011.3e−04

DTLZ6 1.75e − 013.6e−02 9.02e − 031.4e−02 2.12e − 014.4e−05 1.11e − 014.1e−02 1.61e − 014.2e−02 2.12e − 018.4e−05

DTLZ7 3.33e − 012.1e−04 3.34e − 012.2e−04 3.34e − 013.2e−04 3.34e − 017.8e−05 3.34e − 019.5e−05 3.34e − 013.1e−05

TABLE VII
NON-SUCCESSFULSTATISTICAL TEST FOR THEHYPERVOLUME INDICATOR

NSGA-II ZDT2, ZDT4 DTLZ4 ZDT3 ZDT3 -
DTLZ1, DTLZ4, DTLZ7 - DTLZ1 DTLZ6

SPEA2 DTLZ7 DTLZ1 - -
- - - -

OMOPSO ZDT1 DTLZ7 ZDT6
ZDT2 - -

AbYSS ZDT2, ZDT3 -
DTLZ2, DTLZ5 -

MOCell DLTZ4
-

SPEA2 OMOPSO AbYSS MOCell SMPSO
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Fig. 2. The ZDT4 problem solved using the compared algorithms: NSGA-II, SPEA2, OMOPSO, AbYSS, MOCell, and SMPSO.



Pareto fronts whose quality indicators are the best or the
second best in any of the evaluated problems.

To illustrate the performance of the six algorithms, we
have included in Fig. 2 the obtained approximations to the
optimal Pareto front on the ZDT4 problem. As we can observe,
those obtained by SMPSO, MOCell, and AbYSS are the best
choices in terms of convergence and spread to the optimal
front, whereas the solution set obtained by OMOPSO has
not converged and thus it is the worst approximation. As to
the solutions of NSGA-II and SPEA2, both have converged
towards the Pareto front but the distribution of points is not
as good as in SMPSO, MOCell, and AbYSS.

2) Convergence Speed:Table VIII includes, for each multi-
objective problem, the median and the IQR of the number of
evaluations required by all the algorithms to reach 98% the
HV value of the true Pareto front. The “•” symbol in some
cells means that the given algorithm has been not able to reach
such HV value in some (if not all) of the independent runs
performed.

The first conclusion that can be drawn from the values
in Table VIII is that the new proposal, SMPSO, is always
either the fastest (in five out of the twelve problems) or the
second fastest (the remaining seven problems) algorithm in
reaching the target HV value. SMPSO has never failed at
meeting the convergence criterion (i.e., never required more
than 1, 000, 000 evaluations to reach 98% of the true Pareto
front), while the others fail in at least one problem. This
fact clearly shows the enhanced exploration capabilities of
SMPSO and its robustness for solving the studied problems.
Of particular relevance is the comparison of OMOPSO and
SMPSO, since the former has not been able to approximate
fronts with the target HV in three problems (ZDT4, DTLZ1,
and DTLZ3), whereas the latter can effectively achieve it. The
results also show that, under this experimental setup, the two
most well-known algorithms in the literature, NSGA-II and
SPEA2, are outperformed by new proposals such as AbYSS,
MOCell, and particularly SMPSO. Indeed, both NSGA-II and
SPEA2 require a number of function evaluation that is one
order of magnitude greater than the fastest algorithms for eight
out of the twelve considered problems. Table IX summarizes
the results of the statistical tests considering the numberof
evaluations required by the different solvers. We see that the
differences between SMPSO and the other algorithms are
statistically significant in most of the problems evaluated.
As to the comparison between SMPSO and OMOPSO, no
differences exist only in three out of the twelve evaluated
problems according to the significance levels considered.

Although the results reported in this section are relevant,
it is worth showing how the HV evolves during the exe-
cution of the algorithms. We have included in Fig. 3 the
HV values of the algorithms when solving the ZDT2 and
DTLZ7 problems, recorded every 100 function evaluations.
Focusing on OMOPSO and SMPSO, the fastest algorithms on
these problems, we can observe that OMOPSO is the fastest
technique in finding approximation sets having a HV greater
than 0; however, SMPSO arrives first to 98% of the HV of the
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Fig. 3. Evolution of the HV during the different generationscarried out in
the problems ZDT2 (top) and DTLZ7 (bottom).

Pareto front. This means that using a lower percent of the HV
as stopping condition, OMOPSO would be the fastest solver.
It is also interesting to observe the behavior of SMPSO: in
ZDT2 there is a region where the HV is stalled in a fixed value
(between 2500 and 6000 evaluations), but then it converges
rapidly. Similarly, SMPSO is among the slowest techniques
in yielding a HV greater than zero, but then it arrives to
the stopping condition in a few hundreds of evaluations. This
suggests lines for further research, in which the behavior of
the algorithms during their search process could be studied.
We could envision, for example, an algorithm behaving like
OMOPSO at the beginning of the search and then commuting
to SMPSO, with the idea of combining the best of them.

V. CONCLUSIONS ANDFUTURE WORK

We have described SMPSO, a new multi-objective PSO
algorithm which incorporates a velocity constriction mecha-
nism. By using it, the maximum velocity of the particles is
limited with the aim of enhancing the search capability of
the technique. The new proposal has been evaluated using
two benchmark families, ZDT and DTLZ, and it has been
compared against five state-of-the-art multi-objective opti-
mization algorithms: NSGA-II, SPEA2, OMOPSO, AbYSS,



TABLE VIII
MEDIAN AND IQR OF THE NUMBER OF EVALUATIONS REQUIRED BY THESOLVERSTO REACH 98%THE HV OF THE TRUEPARETO FRONT.

NSGA-II SPEA2 OMOPSO AbYSS MOCell SMPSO
Problem x̃IQR x̃IQR x̃IQR x̃IQR x̃IQR x̃IQR

ZDT1 1.435e+048.0e+02 1.600e+041.1e+03 6.800e+032.0e+03 1.370e+041.6e+03 1.300e+041.2e+03 7.500e+033.0e+03

ZDT2 2.430e+041.8e+03 2.480e+041.9e+03 8.900e+033.6e+03 1.710e+042.8e+03 1.170e+044.0e+03 8.200e+033.4e+03

ZDT3 1.270e+049.0e+02 1.520e+041.0e+03 9.850e+032.7e+03 1.270e+042.0e+03 1.300e+041.3e+03 1.160e+045.4e+03

ZDT4 2.130e+045.0e+03 2.520e+046.0e+03 • 2.285e+041.1e+04 1.635e+045.0e+03 4.700e+031.2e+03

ZDT6 2.880e+041.2e+03 3.335e+041.0e+03 2.800e+031.5e+03 1.560e+041.2e+03 2.090e+041.3e+03 3.750e+031.3e+03

DTLZ1 2.515e+049.4e+03 2.400e+047.5e+03 • 2.375e+041.2e+04 2.015e+047.7e+03 5.300e+032.0e+03

DTLZ2 8.100e+031.2e+03 7.400e+038.0e+02 8.200e+033.1e+03 4.700e+039.0e+02 5.600e+039.0e+02 4.800e+031.3e+03

DTLZ3 1.180e+055.7e+04 1.000e+053.0e+04 • 1.194e+057.5e+04 6.735e+042.3e+04 8.500e+034.2e+03

DTLZ4 8.500e+031.4e+03 7.800e+035.0e+05 1.255e+043.8e+03 4.800e+037.5e+02 • 5.400e+031.4e+03

DTLZ5 7.950e+031.1e+03 7.500e+037.0e+02 8.450e+032.9e+03 4.650e+038.0e+02 5.800e+038.5e+02 5.250e+031.4e+03

DTLZ6 • • 4.100e+031.5e+03 • • 8.150e+035.1e+03

DTLZ7 1.360e+041.0e+03 1.585e+041.1e+03 6.150e+032.6e+03 1.060e+041.7e+03 1.110e+041.6e+05 5.500e+032.4e+03

TABLE IX
NON-SUCCESSFULSTATISTICAL TEST FOR THENUMBER OF EVALUATIONS REQUIRED BY THESOLVERSTO REACH THE 98%THE HV OF THE TRUE

PARETO FRONT

NSGA-II ZDT2 - ZDT1, ZDT3, ZDT4 ZDT3 ZDT3
DTLZ1, DTLZ3, DTLZ4, DTLZ6 DTLZ4 DTLZ1, DTLZ3 DTLZ4, DTLZ7 -

SPEA2 - ZDT4 - -
DTLZ6 DTLZ1, DTLZ3 DTLZ4, DTLZ6 -

OMOPSO - - ZDT1, ZDT2
- DTLZ4 DTLZ7

AbYSS ZDT3 ZDT3
DTLZ6, DTLZ7 DTLZ2, DTLZ4

MOCell ZDT3
-

SPEA2 OMOPSO AbYSS MOCell SMPSO

and MOCell. The results have shown that SMPSO overcomes
the limitations of the algorithms it has been compared with.
Indeed, in the context of the experiments carried out, it is
the most salient technique in terms of the quality of the
approximations to the Pareto front found, and it is also the
fastest converging towards the Pareto front in most of the
studied problems. As part of our future work, we plan to
study new schemes for updating the velocity of the particles,
and to apply SMPSO to other benchmarks composed of
rotated problems as well as of problems with more than two
objectives.
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