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Abstract—In this work we present a simple way to in- However, computing such search directions is also a multi-
troduce gradient-based information as a means to improve opjective problem since each objective provides its own
the search performed by a multi-objective evolutionary al®- 4 radient-hased) search direction; therefore, all of ¢hdis

rithm (MOEA). Our proposal can be easily incorporated into - . . .
any MOEA, and is able to improve its performance when rections need to be properly combined into a single one,

solving continuous bi-objective problems. We propose a nay  in order to perform a line search procedure —particularly

mechanism to control the balance between the local search, adapted for the multiobjective case. First results usirgpéeh

and the global search performed by a MOEA. We discuss ideas are presented in [10], [11], [12] and [2].

the advantages of the proposed method and its possible use  Apgther major issue when incorporating gradient infor-

when dealing with more objectives. Finally, we provide some fi int MOEA is h t id bal

guidelines regarding the use of our proposed approach. mation into a 1S ,OW 0 .pI'OVI €a p_ropgr .aance
between the local search (i.e., using the gradient infaonat

|. INTRODUCTION and the global search (i.e., using the MOEA) [13]. In fact,
A Multi-objective Optimization Problem (MOP) is defined such a balance is problem-dependent. For example, in [7]
as the use of the local search is proposed after the evolutjonar

process, and the interleaving between the local and the

L global search takes place after a certain (fixed) number of
Minimize {f1(z), f2(z), ..., fm(2)} objective function evaluations. However, other proposaks

subjectto x € S (1) the gradient information to overtake solutions towards the

where f, : R — R are known as the objective functionsPareto optimal set, and adopt the evolutionary search in a

of the problem. The solution set of this problem is giver§eCOhOI stage (see for example [8]’_ [41). "_” any case, none of
tgese types of strategy are really ideal,since the bestdvoul

by the Pareto dominance relation [1], and is known as t% o h dapti hanism that all the two t
Pareto optimal setThe image of the functions is called the € to have an adaptive mechanism that aflows the two types
of search to interleave during the run of the MOEA, such

Pareto frontof the problem. )
b that each of them intervenes whenever needed.

Introducing gradient information of a MOP, when avail- The aim of th K ted h _ iselv t
able, into a multi-objective evolutionary algorithm (MOEA € alm ot In€ work reported here IS precisely to propose
an adaptive mechanism that allows the local and global

is a research topic that has attracted a lot of interest ientec : .
earch strategies to interleave. In our proposed approach,

years. We identify some advantages of this sort of coupling; d the ob i f1h p d by th
as the following: First, it can accelerate convergence tdwa ased on the observation ot the cones conlormed by e

the Pareto front [2], [3], [4], [5]. Second, it can prOOIuCegradients of the functions, the algorithm can automatjcall
more accurate solutions [3]. A possible third advantage %fsk')gr; morehor Iessd resourcgs e|th§r to the local or to the
that the use of gradient information could be useful to ded'0Pa Search procedure, as deemed necessary. -
with the so-called “dominance resistant solutions” [6] bu We will focus on the solution of unconstrained bi-objective

this idea has not been properly explored yet, to the authorPtimization problgms, since only two grad_lent§ can effort
best knowledge. Here, we will be focusing only on the firSkess be combined into a common descent direction. However,

two advantages previously indicated. the control part of our proposed approach could be used for

There are several hybrids of MOEAs and gradient—baséacf()blemS with a higher number of objectives.

methods currently available in the specialized literafie th The rt'ematipder of this.g)a?her l;s o.rgtz;\]nize(i asl ;;O”OWS' In
[71, [8], [3], [2]. Such approaches normally replace [5] dda e next section, we provide the basic theoretical backgtou

[3], [9] existing evolutionary operators such that the Ealale required to understand the rest of the paper. We also provide
grayldient information is used to guide the search a mathematical justification for the effectiveness of our
Gradient information provides a MOEA with search di_proposal. In Section 1ll, we describe the proposed memetic

rections that make it perform more accurate movementjgl.OEA (ie., a gl_obal searph engine hybridized with a '009'
search mechanism that is based on the use of gradient
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paths for future research are provided in Section VI. I1l. OUR PROPOSEDALGORITHM

Il. BASIC BACKGROUND Ngx_t, we present ?n Al_gorithm _1 our version of a MOEA

hybridized with gradient information. To show our proposed

coupling, we chose the widely used NSGA-II [15] as our
Let fi,...,fm : R" = R, f; € C* and(-,-) denotes the global search engine. Nevertheless, the coupling withrothe

standard inner product iR". We assume that» < n, and MOEAs is also possible as will be later discussed.

let Vfi(z) be the gradient of the functiofi in .

A. Descent Directions and Cones

Definition 2.1: For eachi € {1,...,m} we define: Algorithm 1 Hybrid GH-NSGA
. Vfi(z) 1: procedure GH-NSGAWV,G)
Hy i = {U eR™: <||Vf @I’ > = 0} 2. Generate a Random Populatiéh
‘ 3: Evaluate Objective Function Values.
HY = {v cR" - < V/fi(z) ’ > > 0} 4 Fast Non-Dominated Sort
" IV fi(2)]| 5:  Crowding Distance Assignment
Vi) 6: for i — 1 G do
H, ;= {v e R"™ : <||sz( Ik > < O} 7 Generate Offspring PopulatiaR, ¢
¢ 8 SetP « PUPOffSZ
and call it theDescent Conef z to the set 9 Fast Non-Dominated Sort
Colmy—yon =) = A H, 10: Crowding Distance Assignment

11: LOCALSEARCH(i, P)
12: end for
13: end procedure

Definition 2.2: A vector v € R” is called adescent
direction of the pointz € R if

velCy(——,...,—).
In other words, a descent direction is such that the direc4: procedure LOCALSEARCH(i, P)
tional derivatives with respect to in = are non positive, 15: if ¢ =0 (mod k) then
e. (Vfi(x),v) <0 foralliel,...;m This means that 16: Computee as in equation (4).
if we perform a small movement ovet we obtain a local 17: Form the setF taking e individuals
improvement (decrease) simultaneously for all the objecti 18: randomly selected out R, (P).
functions. 19: for all a € E do
L 20: if local improvement is possiblégnen
B. The Computed Direction 21: Apply line search to obtain’.
We base the computation of the descent direction on the. Replacea «— a'.
next Proposition. This fact has been already observed (e.gs: Seta’ € Ry(P).
[14]) but has not been exploited in memetic algorithms yetos. Set the crowding distance af as .
Proposition 2.1:Let z € R™, and f1, f2 : R™ — R define  2s. end if
a bi-objective MOP. Then, the direction 26: end for
27 end if
T, - ( V fi(x) n Vfa(x) ) (2) 28 end procedure
IVA@I V@I

wherel| - || = [[-||2, is a descent diéeCtiO” atforthe MOP.  The procedures “Fast Non-Dominated Sort”, “Crowding

Proof: Let us denoteV; := ijl for i = {1,2}, Distance Assignment” and “Generate Offspring Population”
andd be the angle betwee‘ﬁl and Vz hen are well-known components of the NSGA-II. Their details

can be found in [15]. The parametefé and G in Algo-
Vo, Vi) = (—(V1 + Va), V1) rithm 1, represent the population size and the maximum

number of generations, respectively.

== 1((V1, V1) +(V2, V1)) Algorithm 1 places the local search inside the NSGA-II

=—1(1+[[Va|[IV1]| cos()) just after the reproduction and the ranking-crowding pssce
=—1—cos(f) The local search is applied only to non-dominated individ-
<0 3) uals, but not to all of them. Our control mechanism (global

vs. local) uses information that has already emerged from
Similarly, (V,, V2) < 0; then,V,, is a descent direction the original ranking process.
of the pointx for the defined MOP. O One of the main issues when using gradient-based tools is
Unfortunately, Proposition 2.1 cannot be generalized fdrow to balance the computational cost of the method with
more than two objective functions. Nevertheless, the rehe improvements achieved. The currently available MOEAs
mainding parts of this proposal can still be used in the ganerthat use descent directions as local search engines have two
multi-objective case, by just applying other approaches (s sources of computational cost: the first is associated to the
Section V) to obtain the descent direction. fitness function evaluations required to estimate the gradi



and to perform the line search. The second source is relatece expecting that most of the effort will come from the
to the computation of the descent direction itself. In thiglobal procedure, and that the gradient-based local search
sense, and unlike previous approaches, our proposal has Wik only refine the solutions generated by the global engine
advantage of having a zero cost for the computation dfiot applying the local search at each iteration will help us
the descent directions. We claim that this procedure is thie make its cost more affordable. At the same time, this will
simplest way to combine two functions gradients and thatllow us to push the population of the MOEA towards better
it can not be generalized to more than two functions sincglutions. Thus, parametér determines how often do we
the arithmetic combination of them does not produce desceagpply the local search. We believe that this parameter must
directions in general. be varied adaptively during the search as a second control

. mechanism for resources balance.
A. Line Search

To apply the line search (line 21 of Algorithm 1) we 'V'. TEST PROBLEMS AND RESULTS
calculate the descent directiovi, using equation (2), and  For assessing the performance of our proposed approach,

we obtain the individuak’ as and in order to get unconstrained problems, we used the
, _ modified Zitzler-Deb-Thiele (ZDT) problems presented ih [5
=2+ 1V, and [17] (with the difference that we do not need the twice

To estimatet,, we use an Armijo-like rule starting from a differentiability property). These test functions are ded
Siz€ tmaee, and we reduce — ¢/2 at each iteration, until in Table | (ZDT5 was not included because it is a binary
fi(z') < fi(z) Vi (or the Armijo condition) is fulfilled. The Problem).

procedure is sensitive to this,., parameter as any other TABLE |

line-search procedure is to the initial step length choice. TESTPROBLEMS ADOPTED

B. Stopping Criterion Problem | Functions Domain

Since it could happen that a certain pains too close to a o711 | 1@ =2
Pareto optimum point, we propose to set a stopping criterig fa(@) = g(2)(2 — / fi(@)/g(x)) | [0, x [=1,1]"
(line 20 of Algorithm 1) to apply the steepest descent. This 9(@) =1+ ;77 i

>

=2 "4

criter_ion.is related to certain small toleran®es e, < 0.01 ZDT 2 2 Eig z;(lm)(z — (A (@)/9@)?) | [0,1] x [~1,1]"

and is given by the next rule: if g(x) =1+ 2530 ,a?
fi(z) = a1

(V1,V2) < =1+ €101 ZDT3 1 o (2) = g(a)(2 - «/fl.(:v)lég(m)— [0,1] x [-1,1]"

holds, then, no local search movement is performed for the 9(z) = fﬁ(ﬂg@?j‘;% mf1))

point z. This stopping criterion is inspired on the Karush- Fi(@) = a1 e

Kuhn-Tucker (KKT) optimality conditions [16]. ZDT 4 f%(s)c) :1g(ml)é% - \/1{1(:v)/g(m)) [0,1] x [-5,5]™
g(lx) =1+ n—1)+

C. Balance Control S (2 — 10cos 4w f1)

. . Ji(z) =1—exp—4
In order to have an adaptive strategy, we introduced g ZDT 6 f;g =g(:v)e()2(p— (f:il(l’)ég(x))?) 0,1]  [—1,1]"

control mechanism that incorporates the local search based g(z) =14 25 X0, 2
on the number of non-dominated elements available at each
iteration (we discuss this in more detail in Section V).

To calculate the control parametemwe propose the next

le: TABLE 1l
rule. NUMBER OF DECISION VARIABLES USED FOR EACH TEST PROBLEM
0 if |Ri(P)] < (0.1)(N) Problem | Original Size | Extended Size

(4) ZDT 1 30 variables | 60 variables

|R1(P)| . ZDT 2 30 variables | 60 variables

{(0_1)(N)J otherwise. ZDT 3 | 30 variables | 60 variables

] o ZDT 4 10 variables | 15 variables

where |R;(P)| is the cardinality of the subseR;(P) ZDT 6 | 10 variables | 15 variables

(lines 18 and 23 of Algorithm 1) formed by the elements
in P whose rank is oneN is the population size an |

) All the experiments were coded using C language. We took
represents théoor function. P g guag

The idea behind the paramete(line 15' of Algorithm 1) thhtet |Fr)r.1|7llementailt:otnkof£8i(3r,]6}-LI aar\]/g;??lg J(rjoerg Ifh?l:;hor at

is that the local search is improving only a few individual he parameters used in our experiments were the following:
at a certain moment and, since we have a population—baﬁggpulation SiZeN — 100, ¢4 — 0.0001,k = 2 (but similar '
- y Ctol — . l -

appr(;acf:d(tlhteﬂl\1/IOEAIaftlngdas_togrbglcl)baltﬁearch dengmer%sults were obtained for values under 10) apd. = 2.
we should fet the evolution do 1ts Job. In other words, we Regarding the computational costs involved in practice,

g = b (mod m) is that both numbera and b leave the same residue W€ are_ as_suming _that the_ user eStimate_s the gradients of
when divided bym. the objective functions using an evaluations-saver method



such as Automatic Differentiation [18]. This sort of appeha [19]. The calculation 0iGD was done using the parameter
introduces significant savings in the computational costef p = 1.
gradient values. Table 11l shows that, for the first number of evaluations, the
It is worth noting that we adopted the previously describetlybrid approach almost always set-covers the plain MOEA
test problems both, with their original dimensionality andits values are close to one), while the plain NSGA-II almost
with a higher number of decision variables. The specifioever set-covers the hybrid approach (its values are ctose t
dimensionalities adopted are indicated in Table II. zero). The only exceptions are ZDT6, where the values of
the coverage are exactly one and zero (which means total
coverage of the hybrid over the original approach and never
the opposite) and ZDT4 in which the coverage difference was
reduced. When performing twice the number of evaluations,

TABLE Ill
COMPARISON OF RESULTS USING THESET COVERAGE INDICATOR FOR
THE ORIGINAL VERSIONS OF THE TEST PROBLEMS

Set Coverage the plain NSGA-II was able to converge closer to the true

Problem NSGA-II
5,000 f. evals. | 10,000 f. evals. X
version: Mean p Mean o Pareto front, but was never able to set-cover the hybrid
SoT 1 | Hybrid < Plain 17098 |0.03 | 0.78 [ 0.08 approach.
Plain < Hybrid | 0.00 | 0.00 | 0.00 | 0.00 In Table 1V, we show the results obtained for the extended

Hybrid < Plain | 0.91 0.21 0.88 0.08

ZDT 2 | pjain< Hybrid | 001 | 007 | 000 | 0.00 versions of th_e test problems_. We can see he_re S|m|Ia_r sesult
o7 3 Hybrid < Plain | 0.90 | 0.11 | 0.60 | 0.09 to those obtained when dealing with the original versions of
Plain < Hybrid | 0.03 | 0.06 | 0.01 | 0.03 the test problems. However, in this case the outperformance

20000 . evals.| 40,000 f. evals of t_he hybrld over t_he plain NSGA-Il improved as the number

Mean | o Mean | o of iterations was increased. Tables V and VI support these

Hybrid < Plain | 0.66 | 0.29 | 0.32 | 0.19 results, and show the IGD which measures both, proximity

ZDT 4 : :
Plain < Hybrid | 0.11 0.27 0.00 0.00 ;
Hybrid < Plain T .00 T 0.00 | .00 | 0.00 to the front and spread of solutions.

ZDT 6 | pigin < Hybrid | 0.00 | 0.00 | 0.00 | 0.00 It is worth noticing that, since ZDT4 is a highly mul-
tifrontal MOP, then, a gradient-based method is expected
to get stuck when attempting to solve it, producing, as a
consequence, a negative impact on the performance of the
hybrid MOEA. However, our results do not indicate that this
is always the case, but this and ZDT2 were the least stable
in terms of the standard deviation for the IGD indicator.

TABLE IV
COMPARISON OF RESULTS USING THESET COVERAGE INDICATOR, FOR
THE EXTENDED VERSIONS OF THE TEST PROBLEMS

Set Coverage ; ; ;
Problem NSGA-II 5,000 f. evals. | 10,000 f. evals. S|n<_:e the two algorithms gompared use the same crowding
version: Mean P Mean . selection procedure, the distance towards the Pareto front
2pT 1 | Hybrid < Plain [70.99 1002 | 1.00 [ 001 does not decrease monotonically at the last stages of the
Plain < Hybrid | 0.00 | 0.00 | 0.00 | 0.00 search, since some good solutions could be deleted at furthe
Hybrid < Plain | 0.86 0.30 0.90 0.24 . . .. . .
ZDT 2 | pigin < Hybrid | 0.05 | 0.17 | 000 | 0.00 iterations. T_h|s is also the reason why no useful mformatlo
Hybrid < Plain | 0.88 | 0.I7 | 0.95 | 0.05 (for comparison purposes) can be obtained from letting the
ZDT 3 | plain < Hybrid | 0.10 | 0.18 | 0.01 | 0.03 i i acti :
ain < Rybri : : . : algorithms to perform a higher number of objective function
20,000 f. evals.| 40,000 f. evals evaluations.
Mean | o Mean | o Figures 1 to 5 show the Pareto fronts generated for each
Hybrid < Plain | 0.55 | 0.49 [ 0.70 | 0.29 of the test problems in their two instances (original and
ZDT 4 | pjain< Hybrid | 052 | 0.48 | 0.13 | 0.32 - -
. . : - - : extended), and for the two numbers of iterations adopted.
Hybrid < Plain | 1.00 0.00 1.00 0.00
ZDT 6 | pain < Hybrid | 0.00 | 0.00 | 0.00 | 0.00 These Pareto fronts correspond to randomly selected runs.

Figures 6 to 10 show the average over 30 runs for the
) ) number of non-dominated points—the basis of our control

We compared the plain NSGA-Il with respect to OUfmechanism—and th&enerational DistancéGD) [19] as the
proposed hybrid approach. All the experiments were rufumper of function evaluations increases. These compeiso

until reaching a certain number of function evaluation8@9, are presented in the original and also in the extended size

which corresponds to the moment when certain reasonable

proximity to the front has been reached (see the right V. GENERAL DISCUSSION

handside plots of Figures 6 to 10). Then, we allowed the When hybridizing MOEAs with gradient-based proce-

algorithms to perform twice these numbers of evaluationslures, an obvious question that arises is if this sort of iybr

It is worth noting that the same number of evaluations werscheme is more cost-effective than the use of a plain MOEA.

adopted for the two cases: for the original test problems arichis cannot be easily answered, and few studies that look int

for their extended versions. this are currently available. However, it is known that the
Tables Il to VI show the mean and the standard deviatioremswer to this question depends on two things: the specific

over 30 independent runs, regarding the indicaBesCover- features of the problem to be solved, and the effectiveness

ageandInverted Generational Distand¢GD), as defined in of the mechanism that balances the local search with the
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global search. Excluding the computation of the descent Let us point out that the calculation of a suitable step size
direction (Proposition 2.1), the ideas presented in thjzepa for the line search in multi-objective optimization is aneop
can be used to hybridize MOEAs to deal with more thaproblem (in fact, it is a multi-objective problem itself) vch

two objectives. For those cases, we suggest to use eitldearly deserves more attention.

the procedure proposed by Fliege et al. [10] or the one . .

Schaffler et al. [11]. It is worth noting that, in this cageisi blg Surviving the Crowding Bound

necessary to use a solver for convex quadratic optimization!t can be noticed from Figures 6 to 10 (right handside)

or, at least, a linear optimization solver. that the crowding procedure truncation does not allow the
method to converge. In other words, the zero value is never
A. Adaptive Switch reached when assessing GD for a large number of function

One observation taken from [20] is that the descent cone f¥@luations. The worst part is that there is a positive proba
bility to lose, during the selection (when using the crovedin

wider for farther points than for those close to KKT points. q : hich h readv b ) 4 (b
In particular, the descent cone shrinks down while the $earfrocedure), points which have already been improved (by

gets closer to the optimum. Thus, the probability to Iocall;}h_e steepest descgnt). The alter_native that we _adopted in
improve the pointz with any kind of perturbation is high this work was to skip tr_\e calculation of the f:rowdlng value
when z is far, being this the case during the first stagegor the element§ re_sultlng from the application of the local
of the search when many points are likely to be replacexfarch (by assigning a special value to them). However,

by non-dominated ones. On the other hand, when a poi is mechanism only saves these elements for the next
improves, it is unlikely that many points from the populatio generation and it does not prevent that, at future geneistio

are non-dominated and will remain in this state for severe_!\rﬂe improved indviduals are deleted. Otherwise, we could

iterations. This is the case when a trusty movement towardé'ggrfere V(\;'tr;]_the olr:jglr?al diversity -cont;fol process okth
descent direction is more necessary, and, therefore, thefus VOEA and this could have a negative effect.

local search becomes cost-effective. However, sincereifte /S @ final suggestion, if guaranteed convergence is
MOPs have different fitness landscapes, we do not real arched for the procedure, the observation presented next

know if this state is reached at the end of the search (or otivates the study and use of different types of archivers

any other stage, for that sake). Thus, it becomes desirablef?r MOEAs.
have an adaptive mechanism that can recognize when the use VI. CONCLUSIONS ANDFUTURE WORK
of local search is useful and when it will produce no gains

ith t 10 th f the alobal h . | Most of current multi-objective memetic algorithms have
with respect fo the use of the global search engine aon€.q, . ,soq on discrete problems (e.g. [13]) in which the lo-

b Ba;ed Ot?] this rglas?_rt]lngf, tvr\1/e prct)pc;se a Zontr.ol T%Cha_mt%rgl search over neighborhoods is well studied; but for the
ased on the cardinaiity of the set of non-dominated pointg, 45 case, there is not direct comparison with these

;I;]hel|de? IS tha:] \{vhen thelevolut(;ongrytﬁearct::: |shprogusn;1 roposals. On the other hand, gradient-based line seagch is
€ local search IS scarcely used. n the other hand, WgR, e | tool which implies a high cost but is also a reliable

the number of non-dominated _solutlons grows, our meth ay to produce improvements. This work addresses different
allows the local search mechanism to be applied more oftegSloects related to the hybridization of MOEAs with local
search mechanisms based on gradient information. First,
we incorporated the gradient of two functions in the most
The advantage of this proposal over other currently avaikimple possible way, compared with other works which use
able for multi-objective descent directions [11], [10]] [8  gradient-based multi-objective line search—since théisero
that no additional effOI‘t iS needed fOI‘ ItS Computationlftse procedures require the solution of SQP or linear prob'ems
While all the other alternatives need to solve a quadratic QE.g. [21], [2], [7]). In this way we developed a “plug and
lineal optimization problem for each point, we emphasi29|ay" method that can be easily coupled to many MOEAs
that for bi-objective problems just an arithmetic operatie  with little effort. The hybrid algorithm showed advantages
geometrical “average”) over the gradients is necessarig Thpyer the plain MOEA in the test problems adopted in their
could be attractive for the user because no additional cogigo instances (i.e., with their original dimensionalitydan
for solvers has to be added, and the procedure can be direGffith higher dimensionality). The most important advantage
plugged into the MOEA used. of the proposed approach is that no additional quadratic
i or linear optimization solvers are required to calculate th
C. Step Size Control descent direction for bi-objective problems. This makes ou
Once the descent directienhas been found, a line searchapproach cost-free for such types of problems. Our proposal
must be performed. If a bad step size control is chosen, tladso includes a tolerance controlled stopping criterion in
local search could consume an extremely high number ofder to avoid applying local search in a particular (almost
function evaluations. The way in which we controlled theoptimal) point.
step size worked fine for the test problems adopted, but it is Second, we tackled the problem of the balance between
advisable that, in general, a limit on the number of allowabllocal search and global search. This is not a trivial issod, a
function evaluations for the local search strategy is inggos it has been indeed recognized as one of the main difficulties

B. Computing The Descent Direction



when desighing memetic MOEAs. This work was a first[7]
step towards developing a fully adaptive method that can
automatically balance the role of each of the two search
engines (i.e., the global search and the local search es)gine
when dealing with continuous problems. We presented a
criteria to switch between the local and the global searcﬁg]
procedures based on the analysis of the descent cones.
The aim of such mechanism is precisely to balance the
resources (i.e., function evaluations) assigned to eac¢heof
two engines.

As part of our future work, we are interested in coupling
alternative archiving methods (see for example [22]) with
our approach. Such type of mechanism should be able {®]
preserve good solutions during a longer time, which would be
beneficial for the performance of the final algorithm. It is@l 13
necessary to develop a deeper investigation about thditstabi
of our proposed balancing mechanism, in order to establish
if it is more applicable for general problems than using o)
fixed probability for the local search application —sincesth
last option is very sensitive to this probability value, and
completely dependent of the problem. Finally, assessimg an
comparing procedures that use evolutionary approaches {bs]
the estimation of descent directions (such as [9] and [23])
within multi-objective memetic algorithms is also part afro
future work.
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