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Abstract. In the field of single-objective optimization, hybrid variants
of gradient based methods and evolutionary algorithms have been shown
to performance better than the pure evolutionary method. This same
idea has been used with Evolutionary Multiobjective Optimization (EMO),
obtaining also very promising results. In most of the cases, gradient in-
formation is used as part of the mutation operator, in order to move
every generated point to the exact Pareto front. This means that gra-
dient information is used along the whole process, and then consumes
computational resources also along the whole process. On the other hand,
in our approach we will use gradient information only at the beginning
of the process, and will show that quality of the results is not decreased
while computational cost is. We will use a steepest descent method to
generate some efficient points to be used to seed an EMO method. The
main goal will be generating some efficient points in the exact front us-
ing the less evaluations as possible, and let the EMO method use these
points to spread along the whole Pareto front. In our approach, we will
solve box-constrained continuous problems, gradients will be approxi-
mated using quadratic regressions, and NSGA-II [3] and a method based
on Rough Sets theory [14] will be used.
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1 Introduction

EMO have shown great success on many complex problems, although some weak
points can be identified within this type of methods: a lot of function evaluations
are required to ensure convergency to the exact Pareto front. EMO methods are
stochastic algorithms, and a small number of samplings in the decision space are
not enough to ensure convergency.
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On the other hand, the classical (exact) methods for (multi-objective) opti-
mization (gradient based methods) consume just a few number of evaluations,
but can be trapped in local optima and require a lot of assumptions about the
problem: continuity, differentiability, explicit mathematical formulation, etc.

Also, it is well known that, under proper assumptions, Newton’s method is
quadratically convergent, but its efficiency is reduced by its expensive computa-
tional cost, especially, for the middle-large scale problems. The key point is to
evaluate the gradient and the Hessian efficiently, and two different approaches
can be found:

– Use analytical derivatives The first option is manually obtaining analytic
derivatives of each function and evaluate them. But this is only possible if an
explicit mathematical formulation is available (although it is likely to result
in the most exact methods), and this is the main weakness of this approach
as many interesting problems could not be solve: simulation based problems,
design problems, etc. On the other hand, it is an error-prone activity, because
if the formulation is complicated, obtaining analytical derivatives can be a
hard task.

– Use estimated derivatives In this category we can find the Newton-like
methods, where derivatives are estimated in some efficient way. These meth-
ods don’t require explicit formulae of derivatives but, on the other hand,
consume some more evaluations in order to compute the estimation.

As one of the main strengths of an EMO methods is that an explicit mathe-
matical formulation is not required, our goal in this work will be use estimated
derivatives but consuming the less evaluations as possible (using them only at
the beginning) while maintaining a high quality on the results. On the other
hand, instead of using it along the whole process (consuming too many evalua-
tions) we will just use it at the beginning to seed the EMO method. This way,
the main role of this gradient based method will be driving the EMO method
directly to the exact Pareto front and then let it spread along the rest of the
Pareto front.

2 Related work

Some attempts have been done in the last years to get benefits of both ap-
proaches (classical and evolutionary) through hybrid methods. The main idea
is use the EMO method to guide the search to the right region (global search)
and use gradient information to find the accurate optimum quickly using its fast
convergency (local search).

In [1], on each generation, for several randomly selected solutions in the pop-
ulation, they convert the MOP problem into a single-objective problem through
the use of the ε-Constraint method (see for example [4]) and solve it with a
Newton-like method, the Sequential Quadratic Programming (SQP) method,
in order to improve this solution. They obtain very good results in quality, but
consume quite a lot of evaluations in some cases.
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In [6] they use a multilevel subdivision technique that subdivides the search
space, and perform local search in each subspace. This local search is based
on a similar derivation of a single descent direction used in [5]. Again, exact
derivatives are used, and some problems can be found if the objectives have
different ranges, because the largest direction of simultanous descent will be
biased towards the objective with the largest range.

In [7], they analytically describe the complete set of non-dominated simulta-
neously improving directions using the exact gradient of each objective func-
tions, and this set is consider as a multi-objective gradient. In order to use this
information, at the end of a generation a set of candidate solutions is deter-
mined. The gradient-based local search operator is then applied with each of
these candidate solutions as a starting point. Its performance, although so good
with 2-objective problems, is not so good on problems with more than 2 objec-
tives, as explained in the paper. On the other hand, they find problems when
moving a solution in the boundary of the feasible region, and the number of
evaluations consumed is also high.

In [8], they use exact derivatives, and try to answer a key question: what is
the best way to integrate the use of gradient techniques in the cycle of an EMO
method? They propose an adaptive resource-allocation scheme that uses three
gradient techniques: a conjugate gradients algorithm is applied to a randomly
chosen objective, an alternating-objective repeated line-search and a combined-
objectives repeated line-search. During optimization, the effectivity of the gra-
dient techniques is monitored and the available computational resources are
redistributed to allow the (currently) most effective operator to spend the most
resources. Results quality is so high, but again quite a lot of evaluations are
consumed and exact derivatives formulae is required.

In [9], two methods for unconstrained multi-optimization problems are used
as a mutation operator in a state-of-the-art EMO algorithm. These operators
require gradient information which is estimated using finite difference method
and using a stochastic perturbation technique requiring few function evaluations.
Results are so promising, but still the number of evaluations is high as the
gradient based operator is used along the whole process.

In [10], they design a population-based estimation of the multi-objective
gradient, although a complete algorithm is not described in this paper. Also, no
experimentation is provided, because their aim is to give an indication of the
power of using directional information.

In [11], the Multiobjective Steepest Descent Method (MSDM) define the
degree of improvement in each objective function when a solution is moved
in a direction as the inner product of the direction and the steepest descent
direction (using exact derivatives) of respective objective function. MSDM
finds the direction that maximizes the minimum degree of improvement of all
objective functions by solving a quadratic programming problem and moves the
solution in that direction. When a solution is on a feasible region boundary, it
incorporates the boundary information into the quadratic programming problem
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to exclude infeasible directions. MSDM is computationally expensive since a
quadratic programming problem has to be solved to find a single direction.

3 Definitions and basic concepts

We consider multiobjective optimization problems (MOP) of the form

minimize {f1(x), f2(x), . . . , fp(x)}
subject to x ∈ X ⊆ Rn,

(1)

Given a function f : Rn → R, for x ∈ Rn, a direction v ∈ Rn is a descent
direction if:

∇f(x)tv < 0 (2)

A generalized gradient method can be summarized in the following equation:

xk+1 = xk + αkvk

where vk is a descent direction and αk is the step size. One of the most commonly
used choice for the descent direction is the following (steepest descent):

xk+1 = xk − αk∇f(xk)

Choosing the optimum step size αk is desirable, but it may be computation-
ally expensive. Hence, some other set of rules, which have good properties, e.g.,
convergence, are more efficient. One of the most efficient is the Armijo’s rule:

– Let β ∈ (0, 1) be a prespecified value, let v be a descent direction and let x
be the current point. The condition to accept t (the step size) is:

f(x + tv) ≤ f(x) + βt∇f(x)tv

where we start with t = 1 and while this condition is not satisfied we set t := t/2.
The choice of β can be critical, as the bigger the value of β, the bigger the steps
we can implement at the beginning. But, the bigger the value of β, the more
evaluations that can be consumed if too many reductions of t must be done to
achieve the condition.

4 Gradient Based method for Multi-Objective
Optimization

The goal now is trying to adapt some of the principles of single-objective opti-
mization to obtain a number of efficient points of the MOP problem. The main
idea is based on the Fritz-John’s optimality condition for MOP problems (see
for example [11]).
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– Given a point x ∈ X, a necessary condition to be Pareto optimal solution is
the existence of λ ≥ 0 such that:

p∑
i=1

λi∇fi(x) = 0

For a bi-objective optimization problem, this condition means that for any
Pareto optimal solution, we can find some λ ≥ 0 such that ∇f1(x) = −λ∇f2(x).
This is, for any Pareto optimal point, gradients of both objective functions are
parallel but in the opposite direction. It means that if we are placed in the
minimum of one of the objectives (for example the minimum of f1, a Pareto
optimal solution) and follow the direction of ∇f2(x), we will keep in the Pareto
front. This is shown graphically in Figure 1.

Fig. 1. Pareto front on a bi-objective problem

This idea was used in [12], where they link p+1 local searches (more precisely,
tabu searches). The first local search starts from an arbitrary point and attempts
to find the optimal solution to the problem with the single objective f1. Let x1

be the last point visited at the end of this search. Then, a local search is applied
again to find the best solution to the problem with the single objective f2 using
x1 as the initial solution. This process is repeated until all the single-objective
problems associated with the p objectives have been solved. At this point, they
solve again the problem with the first objective f1 starting from xp, to finish
a cycle around the efficient set. This phase yields the p efficient points that
approximate the best solutions to the single-objective problems that result from
ignoring all but one objective function, and additional efficient solutions may be
found during this phase because all visited points are checked for inclusion in the
approximation of the Pareto front, as probably most of the intermediate points
will lie on the Pareto front. This way, they obtain an initial set of efficient points
to be used as an initial population for the EMO method developed in [12].

In this work, we are going to use the same idea, link p+1 single objective local
searches, but using a single-objective gradient based method instead of a tabu
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search. Next subsection is devoted to show the main features on this gradient
based local search.

4.1 Single-Objective Gradient based method

As local search, we are going to use an steepest descent method, this is, given
the current point xk, the next point will be computed as follows:

xk+1 = xk − t · ∇̃f(xk)

where ∇̃f(xk) is an estimation of ∇f(xk), and the step length (t) will be com-
puted following an Armijo’s rule with β = 0.1 and starting with the value of
t = 1. The reason to choose a low value for β is the fact that small steps are
also interesting for us while we are on the Pareto front, as we are checking every
intermediate solution for being included in the final approximation. This is, we
are not only interested in the final point of each search, but also in the interme-
diate points. To estimate the gradient of a function f , we will use a quadratic
approximation:

f(x) ≈ β0 +
n∑

i=1

β1
i · xi +

n∑
i=1

n∑
j=i

β2
i,j · xi · xj

The number of parameters (N) to adjust such an approximation for a func-
tion with n variables is: N = 1 + n + n(n+1)

2 = n2+3n+2
2 . N represents the mini-

mum number of points needed to adjust such an approximation. For a problem
with 30 variables, for example, at least 496 will be needed. In order to generate
these N points efficiently, we used Latin-Hypercubes [13], which is a method that
guarantees a good distribution of the initial population in a multidimensional
space, as it is required in order to better fit the function with this quadratic
approximation. A Latin cube is a selection of one point from each row and col-
umn of a square matrix representing different ranges of each variable. This way,
we obtain a set of points, where, in each variable, there is exactly one point
per column or range of values. Once these points are generated and evaluated,
we compute the values of each parameter solving the corresponding system of
equations using a pseudo-inverse (due to its complexity when N is increased).
This system of equations can be formulated using matrices: X ·B = Y , where:

X =


1 (x1

i ) (x1
i · x1

j )
1 (x2

i ) (x2
i · x2

j )
...

...
...

1 (xN
i ) (xN

i · xN
j )

 B =


β0

β1
i
...

β2
i,j

 Y =


f(x1)
f(x2)

...
f(xN )


Finally, we assumed the following stopping conditions:

1. The step is too small: t · ‖∇f(xk)‖ < 0.01, or
2. The improvement is too small: |f(xk+1)− f(xk)| < 0.001

The complete method is summarized in Algorithm 1.
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Algorithm 1 Multi-Objective Gradient Based method: MGBM
1: Generate a set InitPop with N initial points using Latin-Hypercubes.
2: Send each point in InitPop to the list of effic. sol: PF
3: Use the set InitPop to adjust a quadratic approximation of each objective function.
4: for each solution in PF do
5: for each objective function fi (repeating the first one) do
6: x0 =last point visited or efficient solution
7: while stopping conditions = FALSE do
8: Obtain xk+1 through the single-objective gradient based method using ob-

jective fi

9: Send xk+1 to PF .
10: end while
11: end for
12: end for

5 Hybridization and Preliminary Results

In order to show some preliminary results, we have used this Multi-Objective
Gradient Based method (MGBM) to seed an EMO method based on Rough Set
Theory. This EMO method was used in [14] in cooperation with a Differential
Evolution method and showed some interesting properties to be hybridized: if
some (close to the real) efficient solutions are provided, this Rough Sets method
is able to spread along the whole front using few evaluations.

Rough Sets theory is a new mathematical approach to imperfect knowledge.
The problem of imperfect knowledge has been tackled for a long time by philoso-
phers, logicians and mathematicians. Recently, it also became a crucial issue for
computer scientists, particularly in the area of artificial intelligence (AI). Rough
sets theory was proposed by Pawlak [16], and presents another attempt to this
problem. Rough sets theory has been used by many researchers and practitioners
all over the world and has been adopted in many interesting applications. The
rough sets approach seems to be of fundamental importance to AI and cognitive
sciences, especially in the areas of machine learning, knowledge acquisition, de-
cision analysis, knowledge discovery from databases, expert systems, inductive
reasoning and pattern recognition. Basic ideas of rough set theory and its exten-
sions, as well as many interesting applications, can be found in books (see [17]),
special issues of journals (see [18]), proceedings of international conferences, and
in the internet (see www.roughsets.org).

For MOP problems, this approach tries to approximate the Pareto front using
a Rough Sets grid. To do this, they use an initial approximation of the Pareto
front (provided by any other method) and implement a grid in order to get more
information about the front that will let it improve this initial approximation.
To create this grid, as an input it requires M feasible points divided in two sets:
the nondominated points (ES) and the dominated ones (DS). Using these two
sets a grid is created to describe the set ES in order to intensify the search
on it. But it describes the Pareto front in decision variable space and then this
information can be easily used to generate more efficient points and then improve
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this initial approximation. In our case, this initial sets, the nondominated points
(ES) and the dominated ones (DS), will be provided by the MGBM. To test
the performance of the MGBM and the MGBM-RS method we used two test
problems from the ZDT set [15]: ZDT1 and ZDT2. We first run the MGBM
method and let the RS phase complete the approximation till 2000 evaluations
are consumed. In Figure 2, we show the initial approximation (MGBM) as well
as the final results (MGBM+RS).

For these problems, the MGBM is able to find 32 exact efficient points for
the ZDT1 problem and 36 exact efficient points for the ZDT2, using around 750
evaluations. We must note that close to 500 of them are consumed by the Latin-
Hypercubes, and then the proper gradient based method is consuming around
250 evaluations. This initial set of efficient solutions lets the second phase (the
RS phase) complete a wide and well distributed approximation of the whole
Pareto front within 2000 evaluations, being then so competitive for this kind of
problems.

Problem: ZDT1 Problem: ZDT2

Fig. 2. MGBM and MGBM+RS results for ZDT1 and ZDT2

On the other hand, we have used MGBM to seed the well-known NSGA-II [3],
which is a MOEA representative of the state-of-the-art in the area. The seeding
procedure is consuming about 1000 evaluations while the NSGA-II is consuming
another 1000 evaluations. In order to allow a fair comparison of results, the
seeded NSGA-II is compared with NSGA-II with a random initial population and
consuming 2000 evaluations. It can be observed in Table 1 that the seeded NSGA-
II produced the best values in most cases. We used three standard measures in
the literature to compare the performance of both methods: SSC [19] (to be
maximized), Unary additive epsilon indicator (I1

ε+) [20] (to be minimized) and
Spread (∆)([2])(to be minimized). Regarding SSC and the unary additive epsilon
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indicator, the seeded procedure outperformed NSGA-II in all the cases. Relating
the Spread measure, the random NSGA-II outperformed our approach only in
two cases. This is certainly remarkable if we consider the fact that the seeding
procedure is only focused in convergence aspects. Thus, it was expected that the
random NSGA-II would be favored by this performance measure.

Function Algorithm SSC I1
ε+ ∆

ZDT1 Newton+NSGA2 0.9203 0.0233 0.4571
ZDT1 NSGA2-2000 0.7604 0.1780 0.8093

ZDT2 Newton+NSGA2 0.8870 0.0104 0.4074
ZDT2 NSGA2-2000 0.6765 0.2727 0.9246

ZDT3 Newton+NSGA2 0.6849 0.1769 0.7954
ZDT3 NSGA2-2000 0.6752 0.1817 0.7848

ZDT4 Newton+NSGA2 0.9562 0.0448 0.9972
ZDT4 NSGA2-2000 0.9075 0.0915 0.9291

ZDT6 Newton+NSGA2 0.9215 0.0291 1.0198
ZDT6 NSGA2-2000 0.4281 0.4831 0.9523

Table 1. Comparison of results for the five test problems.

6 Conclusions

In this paper, a Multi-Objective Gradient Based Method to generate some effi-
cient points is proposed. The main aim is consuming the less evaluations as pos-
sible and use these solutions to seed and EMO method. For this reason, gradient
information is used only as a seeding procedure and it is not invoked through
all the resolution, as usually it is done in the literature. With this preliminary
results we show how the use of gradient information only at the beginning of
the resolution process could reduce the computational cost while quality is not
decreased. This is, gradient information could be so useful at the beginning to
enhance convergence, but once the EMO method is provided with solutions close
(or in) to the Pareto front, the use of gradient information is consuming a lot of
evaluations while not providing sensible advantages.

In the future, besides completing a comprehensive set of experiments, we
would like to improve the local search, considering a more efficient method such
as BFGS, instead of steepest descent.
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