
A Hybrid Memory-based ACO algorithm for the QAP

Guillermo Leguizamón Franco Arito Carlos A. Coello Coello

Abstract— The performance of ant colony optimization
(ACO) algorithms significantly improves when hybridized with
local search procedures which strongly bias the search towards
promising regions of the search space. In this work, we study
a recently proposedMemory based ACO algorithm (M-
ACO) which incorporates some tabu search principles into the
solution construction process. This algorithm has also been
hybridized with two local search procedures: 2-opt (M-ACO-
2opt) and Tabu Search (M-ACO-TS). The performances of
the two hybrid versions ofM-ACO are analyzed on a set of
instances of the Quadratic Assignment Problem (QAP). The
results show that the hybrid versions ofM-ACO are able to
improve the quality of the best known solutions for several of
the instances studied.

I. I NTRODUCTION

Ant colony optimization (ACO) algorithms generate so-
lutions for an optimization problem through a construction
mechanism in which the selection of the solution component
to be added at each step is probabilistically influenced by
pheromone trails and (in most cases) by heuristic infor-
mation [6] from which a probabilistic model is evolved
to better explore the search space. Accordingly, this con-
struction process probabilistically builds, step by step,the
problem solutions. However, a solution construction process
can be designed such that the pheromone trails, heuristic
values, or any other source of information, can be used to
deterministically determine the next problem component to
be added to the solution under construction. The proposals
of Acan [1], [2], Tsutsui [14] and Wiesemann & Stützle [15]
constitute some examples of the use of an external memory
as an alternative selection mechanism for the solution com-
ponents. More recently, Arito and Leguizamón [3] studied
the possibility of alternating the way in which the ants select
the next solution component. This was done by introducing
an external memory as anauxiliary mechanismto help in
the process of deciding the next problem component to be
chosen at each step of the solution construction process.

Such a proposal was inspired by the well-known optimiza-
tion technique Tabu Search (TS) [7].

The memory-based ACO proposed in [3] included a
deterministic mechanism represented by different memory

Guillermo Leguizamón is with LIDIC - Universidad Nacionalde
San Luis, San Luis, Argentina and with the UMI LAFMIA 3175
CNRS at CINVESTAV-IPN, Departamento de Computación, Av. IPN No.
2508. Col. San Pedro Zacatenco México D.F. 07300, MÉXICO, email:
legui@unsl.edu.ar.

Franco Arito is with LIDIC - Universidad Nacional de San Luis, San
Luis, Argentina, Av. Ejército de Los Andes 950 (5700), San Luis, Agentina,
email:farito@unsl.edu.ar.

Carlos A. Coello Coello is with CINVESTAV-IPN (Evolutionary
Computation Group), Departamento de Computación. Av. IPNNo.
2508. Col. San Pedro Zacatenco México D.F. 07300, MÉXICO, email:
ccoello@cs.cinvestav.mx. He is also affiliated at the UMI
LAFMIA 3175 CNRS at CINVESTAV-IPN.

structures that allow the ants (alternatively to the traditional
probabilistic approach) to choose solution components in a
deterministic way, influenced by the values stored in this
memory.

As this memory stores specific information about the
search history since the beginning of the algorithm’s ex-
ecution, it allows to focus into non-visited regions of the
search space (i.e., regions not yet registered in the memory),
while also concentrating on already visited and promis-
ing regions (i.e., registered regions). Different sourcesand
combinations of information were considered in this early
work, which allowed us to apply alternative intensifica-
tion/diversification mechanisms in order to avoid premature
convergence and improve the algorithm’s performance with
respect to a well-known ACO algorithm that has been
previously applied to the quadratic assignment problem
(QAP), theMAX −MIN Ant System (MMAS-QAP)
algorithm [9], [11].

Hereafter, the paper is organized as follows. Section II
presents the QAP. In Section III, we provide a general outline
of the variants of the memory-based algorithm presented
in [3] and describe the specific variant adopted in this work.
The two hybrid versions studied here are shortly described in
Section IV. Section V reports the results of the applicationof
the hybrid memory-based ACO algorithms to a set of well-
known instances of the QAP including a comparison with
the best known solutions for the set of instances considered.
Finally, Section VI presents some relevant conclusions of
our study and a discussion about future research directions.

II. QUADRATIC ASSIGNMENT PROBLEM

The QAP is anNP-hard problem [8], which is usually
formulated as the problem of assigning a set of objects to a
set of locations with given distances between the locations
and given flows between the objects. The objective is to
achieve an optimal assignment of these objects to locations
in such a way that the sum of the product between flows
and distances is minimal:

min
φ∈Φ

n
∑

i=1

n
∑

r=1

aφiφr
bir

wheren is the number of objects and locations. Twon×n

matricesA = [air] and B = [bjs], represent, respectively,
the distance between locationsi and r (air) and the flow
between objectsj y s (bjs). Φ(n) is the set of all possible
permutations in{1, . . . , n}, and φj gives the location of
objectj in the current solutionφ ∈ Φ(n).

It is worth remarking that a number of real world appli-
cations, such as VLSI module placement, scheduling, man-

ufacturing, process communications, statistical data analy-
sis, hospital layout, among many others, as well as many
combinatorial optimization problems such as the Traveling
Salesman Problem (TSP), the Maximum Clique Problem
(MCP), and the Graph Partitioning Problem (GPP) can be
formulated as instances of the QAP [4]. This reflects the high
importance of this problem, and has motivated the design of
a wide variety of metaheuristics to solve it.

III. A MEMORY-BASED ACO ALGORITHM

Our memory-based ACO algorithm proposed and studied
in [3] shares some characteristics with theMAX −MIN
Ant System (MMAS-QAP) algorithm [9], [11], which is
considered the best performing ACO algorithm for the QAP
currently available [12]. The solutions inMMAS-QAP
are constructed by assigning at each construction step an
element to some location. Pheromone trailτij indicates
that we want to assign elementj to location i. MMAS-
QAP does not use any heuristic information in the solution
construction procedure. The pheromone updating is done by
lowering the pheromone trails by a constant factorρ and
depositing pheromone on the individual solution components
of either: i) the best solution in the current iteration, ii)the
best solution found so far by the algorithm, or iii) the best so-
lution found since the last re-initialization of the pheromone
trails. More precisely, in the originalMMAS-QAP two
ways of constructing solutions were proposed. The first
one makes at each construction step a probabilistic choice
similar to the rule in the Ant System algorithm [6], whereas
the second one uses the pseudo-random proportional action
choice rule similar to the one adopted by the Ant Colony
System [5].

In our algorithm. we make use of a mechanism similar to
the second one mentioned above (further explained in this
paper). Additionally, our approach does not use at all the
pheromone reinitialization process.

Similarly to the approach followed inMMAS-QAP in
which a local search procedure is applied for improving
each candidate solution generated by the ants, we used in
our early work [3] an iterative improvement algorithm (the
2−exchange neighborhood) where two candidate solutions
are neighbors if they differ in the assignment of exactly 2
units to locations. This local search procedure uses a best-
improvement pivoting rule.

In the following, we present the general design of the
memory-based ACO algorithm for QAP. However, for the
experimental study presented here, we have chosen one of
the variants presented in [3] as will be explained at the end
of this section.

A. Memory structures

The memory structures in Tabu Search operate by refer-
ence to four main dimensions: recency, frequency, quality,
and influence. Our approach makes use of two of them:
recency and frequency. Next, we explain how they are used
in our memory-based ACO algorithm.

1) Recency based memory:This type of memory stores
components of the solutions that have changed in the recent
past. The usual way of exploiting this type of memory
is labeling the selected components of recently visited
solutions. What this approach is trying to achieve is to
respectively “forbid” or “encourage” certain choices that
prevent us from exploring a larger region of the search space
by concentrating on a particular region based on solutions
already visited in the recent past.

It is important to have in mind that for some instances,
a good search process would result in visiting again a
previously found solution. Thus, this mechanism aims at
continuously stimulating the discovery of new solutions of
high quality.

For the QAP, the recency based memory stores the iter-
ation at which the algorithm1 assigned objectj to location
i, for 1 ≤ i, j ≤ n. First, this memory allows the ants
to make decisions taking into account what objects are the
most recentlyassigned to a particular location since they
have an associated value close to the current iteration of
the algorithm. Second, it allows to make decisions taking
into account what objects are theleast recentlyassigned to
a particular location since they have an associated value far
from the current iteration of the algorithm.

When the memory-based ACO algorithm takes into ac-
count the most recentlyassigned objects to a particular
location, it maintains an × n recency based matrix called
recency, whererecency[i,j] stores the most recent
iteration (the last one) at which the objecti has been
assigned to the locationj during the execution of the
algorithm. Therefore, this matrix is used in the process of
solution construction in two possible ways:

• Intensification: choose the object that was the most
recently assigned to the current location (i.e., if the
current location isi, the objectj is chosen such that
recency[i,j] has the highest iteration number).

• Diversification: choose the object that was the least
recently assigned to the current location (i.e., if the
current location isi, the objectj is chosen such that
recency[i,j] has the lowest iteration number).

2) Frequency based memory:This type of memory stores
components of the solutions that appear more frequently in
a solution (i.e., it accounts for the number of times that a
component is either present in a solution or in a specific
position of the solution). The usual way of exploiting this
type of memory is by labeling the selected components of
the most frequently chosen solutions. This memory allows
to “forbid” that an ant chooses a solution component when
it has been frequently chosen in the previous solutions.
Thus, the “prohibition” aims at generating solutions that
indeed differ from those already generated. In this way, the
exploration of the search space is extended. Inversely, this
information can be used to “promote” their selection since

1This value is not the iteration value of the algorithm itself, but it is a
value computed according to the number of ants and to the current iteration
number.

most of the ants have chosen them as part of their solutions
and therefore they can be considered asdesirablemembers
for a new solution.

For the QAP, the frequency based memory stores the
times that objectj has been assigned to locationi, for
1 ≤ i, j ≤ n. Then, this memory allows the ants to make
decisions taking into account those elements that were the
most frequentlyassigned to a particular location because they
have a high assignment frequency associated to them. On the
other hand, it allows to make decisions taking into account
those elements that were theleast frequentlyassigned to a
particular location, since they have the lowest assignment
frequency associated to them.

When the memory-based ACO algorithm takes into ac-
count the most recentlyassigned objects to a particular
location, it maintains an×n frequency-based matrix called
frequency, in which thefrequency[i,j] stores the
number of times that the objectj has been assigned to the
location i during the execution of the algorithm. Then, this
matrix is used in the process of constructing a solution in
two possible ways:

• Intensification: choose the object that was assigned the
highest number of times to the current location (i.e., if
the current location isi, the chosen objectj is that for
which frequency[i,j] is the highest).

• Diversification: choose the object that was assigned the
lowest number of times to the current location (i.e., if
the current location isi, the chosen objectj is that for
which frequency[i,j] is the lowest).

B. Constructing Solutions

It must be noticed that during the solution construction
process for QAP, the ants assign each object exactly to one
location and no location is used by more than one object.
Thus, each constructed solution corresponds to a permutation
φ ∈ Φ(n). The solution construction process involves two
steps. In the first step, a location is chosen and then, in the
second step, an object is assigned to that location. To do
that, we randomly choose a locationi among those not yet
occupied. For the second step, we use the pheromone trails,
τij referring to the desire of assigning the objectj to the
location i. To assign an objectj to an unoccupied location
i we use the following rule:

j =

{

T if q < q0 (Exploitation)
R if q ≥ q0 (Exploration)

(1)

This rule is similar to the one used by the Ant Colony
System [6]: with a fixed probabilityq0 (0 ≤ q0 ≤ 1) the
ant chooses the “best possible element” according to the
acquired knowledge (it can be based on the external memory
or based on the pheromone trails). With probability(1−q0),
it is carried out a controlled exploration of new solutions
(also in this case, it can be based on the external memory
or based on the pheromone trails), whereq is a random
number uniformly distributed in the interval[0, 1]. T andR

are random variables with a probability distribution given
by equations (2) and (3), respectively as explained in the
following.

To promote exploitation, we used the rule:

T =

{

arg maxl∈Nk
i
{memory[i,l]} if r < r0

arg maxl∈Nk
i
{τil} if r ≥ r0

(2)

In this rule, with a fixed probabilityr0 (0 ≤ r0 ≤
1) the chosen object is the one that was assigned the
highest number of times to the current location (memory
= frequency) or that was most recently assigned to
the current location (memory = recency). Also, with a
probability (1 − r0), the most desirable object is chosen
according to the pheromone trails. Variabler is a random
number uniformly distributed in the interval[0, 1] andN k

i

is the set of still unassigned elements for the antk, that is,
those elements that are still to be assigned to locationi.

To promote exploration, we used the rule:

R =

arg minl∈Nk
i
{memory[i,l]} if p < p0

τij(t)
P

l∈Nk
i

τil(t)
if p ≥ p0

(3)

In this rule, with a fixed probabilityp0 (0 ≤ p0 ≤ 1), we
choose the element that was assigned the lowest number of
times to the current location (memory=frequency) or the
element that was the least recently assigned to the current
location (memory=recency). Also, with probability(1 −
p0), we choose that element according to the basic selection
rule similar to the rule of the Ant System algorithm (notice
that in this case we do not use heuristic information at all).
Variablep is a uniformly distributed random number in the
interval [0, 1].

In the experimental study conducted in [3], we considered
4 variants of the memory-based ACO algorithm which were
respectively calledMMAS-ff, MMAS-fr, MMAS-rf,
andMMAS-rr according to the way of combining the dif-
ferent memories—i.e., the frequency-based memory (equa-
tion (2)) and recency-based memory (equation (3)). Thus,
MMAS-fr stands for the variant that uses the frequency-
based matrix in equation (2) and the recency-based matrix
in equation (3). A similar reasoning applies to the remaining
algorithms’ names.

As a first result, we found the all these variants out-
performed toMMAS-QAP in the instances considered
(this could be statistically corroborated). In addition, we
found thatMMAS-rf was the best performer among the
4 variants of the memory-based ACO algorithm (this was
also statistically corroborated). From these results we chose
MMAS-rf to conduct the experimental study presented
here. In the rest of this paper, we will use the nameM-
ACO to refer to the algorithmMMAS-rf. In order to

improve its performance, in the following, we present an
alternative for hybridizingM-ACO which will be applied
in our experimental study.

IV. M-ACO AND ITS TWO HYBRID VERSIONS

This section presents a simple alternative to hybridizeM-
ACO by using a more powerful local search procedure. In
our case, we have chosen Tabu Search (TS) to apply it to
the solutions found at each iteration ofM-ACO. TS has
shown to be a powerful metaheuristic technique to solve
many combinatorial optimization problems. Indeed, Stützle
and Fernandes [10] used this approach to obtain a new
benchmark2 for the set of instances specially created to
assess the dependence of the performance of metaheuristics
on different instance characteristics as further explained in
the next section.

TS (as a local search procedure) is applied to each solution
for a very small number of iterations in order to avoid
that TS behaves as the most important search engine in the
exploration of the search space (i.e., to avoid an excessive
bias of TS inM-ACO). According to this, we obtained
a highly hybridized algorithm in which the exploration
and exploitation is achieved by the the ant colony and an
additional exploitation process is performed by the local
search procedure. Thus, we have two hybrid versions ofM-
ACO: (1) the one obtained by using2−exchange neighbor-
hood (M-ACO-2opt) which corresponds toMMAS-rf as
presented in [3] and (2) another one obtained by applying
TS (specifically RoTS3 [13]) as a local search procedure
(M-ACO-TS).

A general outline of the proposed algorithm is presented in
Algorithms 1 and 2. In Algorithm 2 is presented, regarding
the QAP, the outline of the solution construction process
through the use of the external memory and pheromone
values.

Algorithm 1 Hybrid Memory-based ACO algorithm
Initialize pheromone trails
Initialize external memory
{ Main loop }
while termination conditions not metdo

ConstructAntsSolutions
ApplyLocalSearch{ 2-opt or Tabu Search}
UpdatePheromones
UpdateMemory{ Recency or Frecuency based}

end while

V. COMPUTATIONAL STUDY

We testedM-ACO-2opt andM-ACO-TS on a set of QAP
instances proposed by Stützle and Fernandes [10] of size50
(we chose16 instances from each of the four classes). This
set of instances was generated in such a way that (i) the

2It was obtained from the corresponding authors upon request.
3A re-implementation in C of RoTS was obtained from the Metaheuristics

Networks.

Algorithm 2 ConstructAntsSolutions{for the QAP}
for k = 0 to number of ants do

Generate a random order of location’s assignment
for step = 0 to n do

if q < q0 then
if r < r0 then

Choose the object more recently or more fre-
quently assigned to the current location.
Assign the chosen object to that location.

else
Choose the maximum pheromone matrix value
for the current location.
Assign the chosen object (represented by the
matrix value) to that location.

end if
else

if p < p0 then
Choose the less recently or less frequently ob-
ject assigned to the current location.
Assign the chosen object to that location.

else
Choose the objectj to be assigned to location
i by the probabilistic rule:

τij(t)
∑

l∈Nk
i

τil(t)

end if
end if

end for
end for

characteristics of the instances are systematically varied and
(ii) they are large enough to allow systematic studies on
the dependence of the performance of the metaheuristics on
the different instance characteristics. It is worth noticing that
this new benchmark contains the best known solution values
for each instance, and many of them are not necessarily the
optimal ones. The tested instances include:

• GridRandom (GR): Grid-based distance matrix and
random flows;

• GridStructured (GS): Grid-based distance matrix and
structured flows;

• GridStructuredPlus (GSP): Grid-based distance ma-
trix and structured flows with connections among clus-
ters of objects.

• RandomRandom (RR): Random distance matrix and
random flows;

• RandomStructured (RS): Random distance matrix and
structured flows;

• RandomStructuredPlus (RSP): Random distance ma-
trix and structured flows with connections among clus-
ters of objects;

All the experimental results were measured across 30
independent trials of the algorithms and the code was run
on an Intel Pentium (R) 4, CPU 3.00Gz, and 1Gb RAM; OS

Linux. For all the instances we ran both algorithms until they
completed 500,000 function evaluations. This number of
function evaluations was chosen in order to further compare
our results (Section V-A) with the respective benchmark ob-
tained by applying RoTS with the same number of function
evaluations.

We compared the algorithms using the average percentage
excess (%Error) over the best-known solutions (as mentioned
before, they were provided to us by the authors of [10]). In
order to assess the statistical significance of the observed
differences in the algorithms’ performance we applied the
non-parametric Mann-Whitney-Wilcoxon test.

Preliminary experimentation was conducted in order to
detect the regions of parameters values that produced the
best performance. Particularly, we considered the parameters
q0, r0, p0, andρ; all of them varying in the range(0, 1). In
order to do that, we used Latin Hypercube Sampling (LHS)
to obtain a number of design points in a space filling way and
considering a subset of instances randomly selected. From
these experiments, we found the following setting for the
parameters considered:q0 = 0.2, r0 = 0.7, p0 = 0.001, and
ρ = 0.55. The number of ants was set to25, which is a
similar value to the one used in [3]. In the case ofM-ACO-
TS, we applied RoTS for200 iterations each time that this
local search procedure takes place. See Algorithms 1 and 2
for details.

A. Comparison ofM-ACO under two hybridization ap-
proaches

This section shows the results obtained byM-ACO-2opt
andM-ACO-TS for the selected instances. In fact, we chose
the complete set of instances for classes GS, GSP, RS, and
RSP, except for RR and GR for which 16 instances were
selected out of the 36 available for each class. We present
the results for each class condensed in Figures 1, 2, 3, 4,
5, and 6 that respectively represent, through boxplots, the
percentage error with respect the current benchmark values.
Each boxplot displays, forM-ACO-TS (left) andM-ACO-
2opt (right), a sample of16 × 30 percentage error values
corresponding to16 instances belonging to each class and
30 trials for each of these instances. The caption of each
figure includes the respective p-value, which shows in all
cases a large statistical significant difference. They clearly
indicate thatM-ACO-TS outperformsM-ACO-2opt in all
the instances considered. Let us analyze first the behavior
of M-ACO-TS. It can be readily observed a very robust
behavior across the whole set of instances (in the6 classes).
Particularly, for classes RS (Figure 1) and GS (Figure 2),
the shape of the respective boxplots indicate that in almost
all cases the best known value was reached. However, when
the best known values were not achieved, the algorithm still
performs well since it gives values (see the outliers) that
are below the 3% (RS) and 2% (GS) from the best known.
For the same classes,M-ACO-2opt gives also high quality
solutions, although it shows a less robust behavior as well as
solutions of lower quality. Although the situation is similar
when considering the robustness observed above for both

algorithms with respect to the remaining instances (classes
RS, RSP, GS, and GSP), it can be observed here that the
M-ACO-TS algorithm was capable of improving the best
known values for at least one instance of each class (in the
next section we show each of the improved results). On the
side ofM-ACO-opt, it can be seen that it was only capable
of improving the best values of the instance of class RSP
(see Figure 4). It must be recalled that in [3] it was reported
one improved result for one instance of this class.

0

0.01

0.02

0.03

0.04

0.05

1 2
%

E
rr

or

Fig. 1. Random Random (p-value = 8.3723e-162)

0

0.01

0.02

0.03

0.04

0.05

1 2

%
E

rr
or

Fig. 2. Grid Random (p-value = 2.9541e-153)

B. Comparison ofM-ACO -TS with the QAP benchmark

In order to explicitly show the new best known results,
we present in this section a short comparison of the results
obtained fromM-ACO-TS and the up-to-date best known
results for the set of instances considered. Before analyzing
the improved results, it should be noticed that for all
the remaining instances not shown here,M-ACO-TS was
capable to achieve the corresponding best known values.

Table I shows the particular instances for whichM-ACO-
TS lowered the benchmarks. The improved instances are

0

0.5

1

1.5

2

2.5

3

1 2

%
E

rr
or

Fig. 3. Random Structured (p-value = 8.6968e-119)

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1 2

%
E

rr
or

Fig. 4. Random Structured Plus (p-value = 4.5455e-084)

0

0.5

1

1.5

2

2.5

3

1 2

%
E

rr
or

Fig. 5. Grid Structured (p-value = 8.6968e-119)

identified by a reference name (first column). The corre-
sponding original names can be found in Table II (see the
Appendix).

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

1 2

%
E

rr
or

Fig. 6. Grid Structured Plus (p-value = 1.7168e-101)

TABLE I

COMPARISON OF THE IMPROVED RESULTS OFM-ACO WITH RESPECT

TO THE BEST-KNOWN SO FAR. DUE TO SPACE CONSTRAINTS, THE

INSTANCES ARE IDENTIFIED BY A REFERENCE NAME. THE

CORRESPONDING ORIGINAL NAMES CAN BE FOUND INTABLE II (SEE

THE APPENDIX).

Instance BF avg(FES) BK FES PoI
(med(BF))

rs1 15574 26400 16107 251617 3.30%
(16643)

rs5 5218 199720 5427 468518 3.80%
(5230)

rs9 3672 138623 4088 182257 10.17%
(3739)

rs10 75170 143600 76534 213452 1.78%
(77577)

rs13 4883 193200 5824 83812 16.15%
(4883)

rs14 48875 118800 49366 251110 0.99%
(48875)

rsp1 7053 247200 7646 359448 7.75%
(7383)

rsp5 3913 228000 4153 283311 5.53%
(4094)

rsp9 3675 240300 4513 169387 18.56%
(3775)

rsp10 94804 56520 100341 133321 5.51%
(94804)

rsp13 1410 161320 1607 151734 12.58%
(1525)

rsp14 50907 74800 50958 369209 0.10%
(53130)

gsp10 11250 14920 11276 26328 0.23%
(11292)

gsp14 5598 196280 5645 168692 0.83%
(5640)

gs2 25914 122520 25986 428576 0.27%
(26048)

gs10 9126 179200 9152 171611 0.28%
(9237)

gs14 4729 200000 4747 415116 0.37%
(4745)

For each instance, Table I shows: the Best Found (BF)
value and the median of the best found values out of30
trials (in parentheses), the average number of function eval-

uations required to reach the best found values (avg(FES)),
the Best Known (BK) value, the corresponding number of
iterations (or function evaluations) required to reach that
value obtained by RoTS (this information can be found in
the benchmark), and the percentage of improvement (PoI).

It can be clearly observed a large variation on the values in
columnPoI where the values range from 0.1% to 18.56%.
The larger improvements were achieved for instances of
classes RS and RSP, i.e., the Random Structured and Ran-
dom Structured Plus. Regarding the number of function
evaluations, the results show that in general,M-ACO-TS
was able to reduce the number of visited solutions required
to reach the best found values with respect to the numbers
reported in the benchmark. However, it should be noticed
that we report the average values out of30 algorithm trials
whereas in the benchmark is reported the number of function
evaluations necessary to reach the best found value out of
10 trials.

VI. CONCLUSIONS

In this paper, we presented the study of two alternative
local search procedures to improve the performance of an
early proposed memory-based ACO algorithm [3] which
showed to be competitive with respect to a state-of-the-art
ant algorithm for the QAP. In this work, we have shown,
through the validation on an important number of QAP
instances, that an ACO algorithm can be easily combined
with a powerful technique such as TS to produce a hybrid
approach which presents an improved performance with
respect to the combined technique working alone.

As part of our future work, we will perform a study
focused on developing an advanced strategy to determine
whenandhow manyiterations should be applied of a local
search procedure in order to reach an appropriate balance
betweenintensification(which is incorporated by the local
search process and some components ofM-ACO-TS) and
exploration (which is incorporated by some other compo-
nents ofM-ACO-TS). Furthermore, additional experimental
studies are also necessary that consider an extended number
and types of QPA instances as well as a comparison with
other state-of-the-art hybrid ACO algorithms for QAP.

VII. A CKNOWLEDGMENTS

The first author acknowledges the support from the UMI-
LAFMIA 3175 CNRS at CINVESTAV-IPN and from the
Universidad Nacional de San Luis, Argentina. The second
author acknowledges the support from the Universidad Na-
cional de San Luis, Argentina. The third author gratefully
acknowledges support from CONACyT project no 103570.
All the authors wish to thank Prof. Thomas Stützle for
providing the source code of ACOTSP Version 1.0, which
is available online4, and on which the algorithm reported in
this paper is based.

TABLE II

REFERENCES AND COMPLETE NAMES OF THE17 IMPROVED QAP

INSTANCES

Reference Name Original Name
rs1 RandomStructured.974823931.n50.

K10.m10.A100.00.B1.00.sp10.00.dat
rs5 RandomStructured.974823935.n50.

K10.m10.A10.00.B2.00.sp10.00.dat
rs9 RandomStructured.974823939.n50.

K10.m10.A4.00.B3.50.sp10.00.dat
rs10 RandomStructured.974823940.n50.

K10.m10.A4.00.B3.50.sp20.00.dat
rs13 RandomStructured.974823943.n50.

K10.m10.A2.00.B7.00.sp10.00.dat
rs14 RandomStructured.974823944.n50.

K10.m10.A2.00.B7.00.sp20.00.dat
rsp1 RandomStructuredPlus.974824391.n50.

K10.m10.A100.00.B1.00.sp10.00.dat
rsp5 RandomStructuredPlus.974824395.n50.

K10.m10.A10.00.B2.00.sp10.00.dat
rsp9 RandomStructuredPlus.974824399.n50.

K10.m10.A4.00.B3.50.sp10.00.dat
rsp10 RandomStructuredPlus.974824400.n50.

K10.m10.A4.00.B3.50.sp20.00.dat
rsp13 RandomStructuredPlus.974824403.n50.

K10.m10.A2.00.B7.00.sp10.00.dat
rsp14 RandomStructuredPlus.974824404.n50.

K10.m10.A2.00.B7.00.sp20.00.dat
gsp10 GridStructuredPlus.974826016.n50.

G10.A4.00.B3.50.sp20.00.dat
gsp14 GridStructuredPlus.974826020.n50.

G10.A2.00.B7.00.sp20.00.dat
gs2 GridStructured.974825926.n50.

G10.A100.00.B1.00.sp20.00.dat
gs10 GridStructured.974825934.n50.

G10.A4.00.B3.50.sp20.00.dat
gs14 GridStructured.974825939.n50.

G10.A2.00.B7.00.sp20.00.dat

APPENDIX

REFERENCES

[1] A. Acan. An external memory implementation in ant colonyopti-
mization. In M. Dorigo, M. Birattari, C. Blum, L. M. Gambardella,
F. Mondada, and T. Stützle, editors,ANTS 2004, volume 3172 of
LNCS, pages 73–84. Springer, Heidelberg, 2004.

[2] A. Acan. An external partial permutations memory for antcolony
optimization. In G. Raidl and J. Gottlieb, editors,Evolutionary
Computation in Combinatorial Optimization, volume 3448 ofLNCS,
pages 1–11. Springer-LNCS, 2005.

[3] F. Arito and G. Leguizamón. Incorporating Tabu Search Principles
into ACO Algorithms. In Maria J. Blesa, Christian Blum, LucaDi
Gaspero, Andrea Roli, Michael Sampels, and Andrea Schaerf,editors,
Hybrid Metaheuristics, volume 5818 ofLecture Notes in Computer
Science, pages 130–140. Springer, 2009.

[4] E. Cela.The Quadratic Assignment Problem: Theory and Algorithms.
Kluwer Academic Publisher, Dordrecht, The Netherlands, 1998.

[5] M. Dorigo and L. M. Gambardella. Ant Colony System: A coop-
erative learning approach to the traveling salesman problem. IEEE
Transactions on Evolutionary Computation, 1(1):53–66, 1997.

[6] M. Dorigo and T. Stützle. Ant Colony Optimization. MIT Press,
Cambridge, MA, 2004.

[7] F. Glover and M. Laguna.Tabu Search. Kluwer Academic Publishers,
Norwell, MA, USA, 1997.

[8] S. Sahni and T. Gonzalez. P-complete approximation problems.
Journal of the ACM, 23(3):555–565, 1976.

[9] T. Stützle. MAX −MIN for the quadratic assignment problem.
Technical report, AIDA-97-4, FG Intellektik, FB Informatik, TU
Darmstadt, Germany, 1997.

4http://www.aco-metaheuristic.org/aco-code

[10] T. Stützle and S. Fernandes. New benchmark instances for the QAP
and the experimental analysis of algorithms. In J. Gottlieband
G. R. Raidl, editors,Evolutionary Computation in Combinatorial Op-
timization: 4th European Conference, EvoCOP 2004, volume 3004 of
Lecture Notes in Computer Science, pages 199–209, Berlin, Germany,
2004. Springer-Verlag.

[11] T. Stützle and H. Hoos. MAX −MIN ant system. Future
Generation Computer Systems, 16(8):889–914, 2000.

[12] Thomas Stützle and Marco Dorigo. Aco algorithms for the quadratic
assignment problem. In D. Corne, M. Dorigo, and F. Glover,
editors,New Ideas in Optimization, pages 33–50, London, UK, 1999.
McGraw-Hill.

[13] É. D. Taillard. Robust taboo search for the quadratic assignment
problem. Parallel Computing, 17:443–455, 1991.

[14] S. Tsutsui. cAS: Ant colony optimization with cunning ants. In
T. P. Runarssonet al., editor, Proc. of the 9th Int. Conf. on Parallel
Problem Solving from Nature (PPSN IX), volume 4193 ofLNCS,
pages 162–171. Springer, Heidelberg, 2006.

[15] W. Wiesemann and T. Stützle. Iterated ants: An experimental study for
the quadratic assignment problem. In M. Dorigo, L. M. Gambardella,
M. Birattari, A. Martinoli, R. Poli, and T. Stützle, editors, ANTS 2006,
volume 4150 ofLNCS, pages 179–190. Springer, Heidelberg, 2006.

