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Abstract— Diversity plays an important role in evolutionary
multi-objective optimization. Because of this, a number of
density estimators (i.e., mechanisms that help to maintain
diversity) have been proposed since the early days of multi-
objective evolutionary algorithms (MOEAS). Fitness shamg
and niching were among the most popular density estimator
used with non-elitist MOEAS, but their main drawback was
their high dependence on the niche radius, which was normall
difficult to set. In recent years, the use of external archive to
store the nondominated solutions found by an elitist MOEA
has become popular. This has motivated an important amount
of research related to archiving techniques for MOEASs. In
this paper, we contribute to such literature by introducing a
new archiving strategy based on the Convex Hull of Individua
Minima (CHIM). Our proposed approach is compared with
respect to two competitive MOEAs (NSGA-Il and SPEA2) using
standard test problems and performance measures taken from
the specialized literature.

|I. INTRODUCTION

Since their origins, multi-objective evolutionary algbrns

Il. BAsiC CONCEPTS

A multi-objective optimization problenMOP) can be
formally defined as to find a vectare Q which minimizes:
F:Q >Rk (1)
F(l‘) = [fl(x)a s 7fk(x)]T
where() C R™ defines the feasible region of the problem.
The notation and basic concepts used within the multi-
objective optimization (assuming minimization probleras)
provided next.
Definition 1. Let v,w € R*, we say thaw is less thanw
(v <p w) if v; <w;, Vi=1,...,k andv dominatesw
(v <w), if v <, w andv # w.
Definition 2. A pointz € Q C R™ is calledPareto optimal
or a Pareto pointif there is noy € R™ such thaty < z.
Definition 3. The Pareto Optimal SeP* is defined as:

P* = {x € R"|z is Pareto optimal

Definition 4. The Pareto FrontF* is defined as:

(MOEASs) have had two main goals [2]: (1) maximize the
F* ={F(z) € R¥|z € P*}

number of elements of the Pareto optimal set that are
generated and (2) distribute such solutions as uniformly aSThus, when solving MOPs, we are interested in finding the
best possibldrade-offsamong the objectives, such that no

possible (such uniform distribution is normally enforced i
objective function space—i.e., along the Pareto frontyekie ol%jective can be improved without worsening another. Since

we focus on the second of these goals, since we propg

a new method to distribute non-dominated solutions. Ové%e number pf Pareto c_>pt|malls.olut|ons can b? very large,
are also interested in obtaining a well-distributed det o

W
the years, a number of such methods have been propose%mions, since the size of our approximation (produced by

; : ; S SO
going from the use of fitness sharing and niching [6]a MOEA) will be normally small (e.g., 100 solutions).

to the incorporation of adaptive grids [13] and clustering
techniques [22]. Our proposed method is not based on ay The Convex Hull of Individual Minima
of these mechanisms. Instead, it is based orCitvavex Hull The Convex Hull of Individual Minimaconcept was ini-

of Individual Minima (CHIM) to maintain solutions well- tja|ly introduced by Das in [3] and it has been the basis

distributed along the Pareto front. The goal of this strategof some multi-objective optimization techniques avaitalsi

is to achieve convergence towards the Pareto optimal set & mathematical programming literature, such as\tbiemal

maintaining a suitable representgtion of Fhe Pareto front. Boundary Intersectiori5] (NBI) method and theRecursive
The remainder of the paper is organized as follows. IRnee Approach4] (RKA). The following definitions are

Section II, we provide the basic background required fogken from [3].

understanding the rest of the paper. In Section Ill, we lyrieflpefinition 5. Let =7 be the respective global minimizers of
review the previous related work. In Section IV, we explairyi(f)' i=1,...,koverz € Q. Let F¥ = F(z¥), i =

2

in detail our proposed approach. In Section V, we show the . k. Let & be thek x k matrix whosei!" column is
results of our comparative study. Finally, in Section VI Wep* _ F* (sometimes known as thgay-offmatrix). Then, the

give our conclusion and a brief description of some possiblget of points ifR* that are convex combinations &f — F*,
future work. that is:

The authors are with CINVESTAV-IPN, Departamento de Com-
putacion (Evolutionary Computation Group), Av. IPN No. 530 Col.
San Pedro Zacatenco, Meéxico, D.F., 07360, MEXICO (ema#- z
poteca@computacion.cs.cinvestav.mx, ccoello@cssiavenx). The sec-
ond author is also affiliated to the UMI LAFMIA 3175 CNRS at
CINVESTAV-IPN.

k
H={25: R fi=10 >0}
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is referred to as theConvex Hull of Individual Minima
(CHIM).
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The set of all attainable objective vector'S C RF nice mathematical properties efdominance, as well as its
determines thebjective spaceand theboundary intersection good performance in practice, made it a relatively popular
of F is denoted by F, see Fig. 1. archiving mechanism and has motivated the development of
Definition 6. Let CHIM,, be the affine subspace of lowestother (more elaborate) archiving techniques for MOEASs (see
dimension that contains th€ HIM. Then, CHIM,, is for example [18]).
defined as the smallest simply connected set that containsTo the authors’ best knowledge, CHIM had not be used
every point in the intersection @i and CHIM,,. More before as an archiving technique in MOEAs, as we do here.
informally, consider extending (or withdrawing) the bound The only related work that we could find is the proposal of
ary of theCHIM simplex to touch)F; the ‘extension’ of Cococcioni et al. [1], which adopts the concept of convex
CHIM thus obtained is defined aS8HIM,,. Here, it is hull for binary classification using a MOEA, but does not
denoted byH . incorporate it into any archiving technique.

Since the hyperplane defined B, is an affine subspace,

there exists a unique normal vectoffor each pointh in the IV. OUR PROPOSEDAPPROACH

surfaceH... That is: In this section, we describe our proposal which is called
. Convex Hull Multi-objective Evolutionary AlgorithrfCH-
Vh € Hoo, Jin € R¥\ {0} : (h,n) =0 (3) MOEA). This approach refers to a MOEA which uses an

archiving mechanism based on the convex hull of individ-
ual minima as its strategy to store well-distributed non-
A dominated solutions.

f2

where||n|| = 1 and (-, -) denotes the inner product.

A. The Multi-Objective Evolutionary Algorithm

In CH-MOEA, the initial populatiorP, is defined byN
uniformly distributed random solutions. Then, the evanti
ary process is carried out. Our approach uses a selection
mechanism g+ A\) based on Pareto ranking (it is used in the
UpdatePopulation procedure). In this way, the best solu-
tions obtained from the evolutionary process are mainthine
at the current population. If two solutions are non-donedat

£ S @ ) we randomly choose any of them. Our proposal uses an
archive£ which stores all the non-dominated solutions found

fr ff by the MOEA at each iteration. The archive is also used
during the selection process. The crossover and mutation

Fig. 1. Convex Hull of Individual Minima operators are the same used by the NSGA-Il [7] (Simu-

lated Binary Crossover (SBX) and Parameter-Based Mutation
(PBM)). The full pseudocode of our proposed MOEA is
shown in Algorithm 1 and the details of the archiving strateg
As indicated before, the interest in developing strategiegre presented next.
to maintain diversity among the solutions generated b o o o
a MOEA, dates back to the origins of such algorithmsB- Archiving the Convex Hull of Individual Minima
Niching and fithess sharing16], [11] are among the old-  ConsideringH., as an affine subspace, then, there exists
est mechanisms to maintain diversity in MOEASs, although unique normal vector for each point iH.,. A well-
they were originally developed for dealing with multimodaldistributed set of solutions along the Pareto front can be
functions [6]. Niching and fitness sharing were very populaschieved by the use of non-dominated solutions which are
as density estimators during the early days of evolutionamrthogonal to each point iri{.,. However, to obtain an
multiobjective optimization [10], [19], [12]. However, ev analytical expression fdk ., is equivalent to obtain an an-
the years, a variety of density estimators have been prdposelytical expression for the Pareto curve (i.e., it is implolss
including the use of adaptive grids [14], entropy [9], clrst in most cases). In order to obtain the points of our interest,
ing techniques [22], and crowding [7], among others. Mosive rely on the CHIM (as before, it is denoted By) as
of these approaches, however, rely on the definition of sontlee basis for our archiving strategy. Thus, to produce a-well
critical parameter (e.g., the niche radius). distributed set of solutions in the archixe we will take the
More recently, the use of archiving strategies that rely onon-dominated solutions which are orthogonal to each point
relaxed forms of Pareto dominance were introduced. Frome H. However, it is well-known that, fok > 2, there do
them, e-dominance is probably the best known [15]. Thisot exist orthogonal points ifi{ for all the elements in the
approach also relies on a critical parameter: the value &areto front (see [5]). In order to deal with this drawback,
g, which, in the general case, cannot be known befor@n alternative strategy is required. In our case, we use the
hand and has to be empirically estimated through sonbrection vector with respect to the utopian vectar. With
preliminary sampling of the search space. However, thihis, the non-dominated solutions into the archigeare

Il1l. PREVIOUS RELATED WORK



Algorithm 1 CH-MOEA

1 t=0; hi(w;) p
] Apw) = || e - o ©)
LB sG]l Tiel
3: Generate initial populatiof?; of size V; . . ) . :
4 Evaluate(P,); . k Since H is defined byF*, the compromise solutiop
. A . should be translated tB* in order to get a correct direction.
5. L = UpdateArchive(p, L),Vp € P;;
i Thus, we assume that— F'(z) — F™*.
6: while (t < maxge,) do ; . .
7 Q=0 In CH-MOEA, the utopian vectoF™ is constructed with
g forall pi,ps € P; do the _mir_1i|fnum valu_e of each ijective functiqn. Furthermore,
9 Choosely,ls € L : p1 # 11 andps # Io; the individual minima are defined for eaq:t{l (t=1,...,k),
10- g1 = mutation(crossover(py, 11)); such_thgt th_e_fo_IIOW|.ngaugmented weighted Tchebycheff
11: g2 = mutation(crossover(pa,l2)); function is minimized:
12: L = UpdateArchive(q;, L),i =1,2;
13: Q=0QU{q,q} k
14:  end for min _jlllaxk{wﬂfj(x?)—E*|}+PZ|fi($§k) = F7| (7)
15.  Fvaluate(Q); FHEEI=Re j=1
16: _Ptg_l ':d [{pdate_Pomﬁatw"(Pt’ Qk)'; // keep N \ihere,p is a sufficiently small positive scalaR is the set
o ndive 1.ua S using Pareto ranking of all solutions found so far by a MOEA and; is the j**
1 t=t+ 1 canonical vector irR”.
18: end while

According to equation (6), for eaah; € W, it is expected
to find a single solutiop such that it minimizes equation (6).

o . - Therefore, the archive is defined by a finite number of
properly allocated. The main idea in the archiving strategy s ytions which correspond to the total number of weight

is to store into the archive a single non-dominated SO|Uti0VneCt0I’SwZ— in 1. The complete archiving strategy is shown
p < F(x) for each direction defined by the utopian vector Algorithm 2

F* and a pointh; in the CHIM.

Let W be the finite set of vectors that are well-distributedc Final Comments about the Archiving Strategy
in R*, such that, each vectas; € W is a convex combina-
tion of weights (where: is the number of objectives). Then,
each pointh; € H is defined according to:

1) The set of obtained solution$he solution set obtained
by our archiving strategy contains only non-dominated-solu
tions. According to Algorithm 2, the first filter (based on
hi(w;) = Dw; (4) the use of Pare'Fo dqminance) gqarantges to have olnly non-
dominated solutions into the archive This set of solutions
Therefore, all theh;'s represent a finite set of well- has a finite size which is defined by the number of weighted
distributed points in the hyperplarié. vectorsw’'s. Our approach heavily relies on the minimum
The uniformity of the solutions along the Pareto fronialues of each objective function. However, in practicés th
depend directly of the uniformity of the weight vectars. is not a serious drawback, since we can adopt the extreme
Therefore, a good distribution of the vectors# implies  points of the Pareto front obtained by the MOEA. It is worth
a good distribution of solutions along the Pareto frontnoting, however, that, because of its nature, our archiving
The construction of well-distributed convex combinati@fis strategy is expected to have a poor behavior when dealing
weights can be achieved either as proposed by Das in [3] aiith disconnected Pareto fronts.
by Zhang and Li in [20]. 2) Computational Complexity:Algorithm 2 shows our
We consider the archivé as the set of solutions acceptedarchiving strategy in detail. The first part of the algorithm
by the archiving mechanism. Then, a solutjoiis accepted decides whether or not a solution is non-dominated. This
by the archive, if and only ifp is non-dominated with respect procedure has a complexit9(m), wherem is the size of
to all solutions stored itf. If the solutionp is not dominated, the archive£. The second part refers to the filtering of
and there is no other solutiane £, such that the directiop  each solutionp using its direction to the utopian vector
is closer than directiop with respect toh; (for anyh; € H),  F*. Consideringk as the number of vectors ifi’, the
then the solutiorp is stored in the archive; otherwise, thecomputational effort to find the vectas’ € W such that it
solution is rejected. Thus, we prefer the solutigrsuch that  minimizes equation (6) is linear with respect to the number
it satisfies: of weighted vectors i/, that isO(k). Then, the archiving
algorithm finds a solutiory (if it exists) in the archive

2“(71%) - P (5) L, such thatw” € W minimizes equation (6) regarding
[1hi(wa)ll - llpll ¢ andw’ = w”; therefore, the overall computational cost
for any h;(w;) € H. is bounded byO(mk). However, this procedure has to be

In practice, to satisfy equation (5) is unlikely. Thus, wedone for each element of the current archi¥dor deleting
prefer a solutiorp that minimizes: solutions which have the same direction that the candidate



Algorithm 2 UpdateArchive, Ly)

1

/I Filtering out solutions using Pareto dominance
if (Lo =0) then

solutions A has a better approximation to the Pareto front
than a setB if:

2:

2t A(A) > A(B)

4 return [ This performance measure uses a reference veattich

5: end if can be defined by the user. Here, we define the reference
6: if (31 € Lo : 1 <p) then vector according to:

7. Il Rejecting solutiomn;

8: return Lo; r= [ff“,f; » _,f]j]

9: else

1. L=Ly\D,whereD={leLy:p=<1} where k is the number of objective functiong;" is the

11: end if maximum valuef;(z) found in the setl = {4; U--- A4;}

12: if (£ =0) then and 4; is the set of solutions found by thg" algorithm

13 L ={p}; applied to a given MOP.

14:  return L; 2) Spacing:Spacing §) was proposed by Schott [17] and
15: end if it quantifies the spread of solutions in the obtained approxi
16: // Filtering out solutions based on their direction mation of the Pareto front. Th& performance measure can
17: Lo = Lo U {p}; be calculated as:

18: // Consideringlo = {l1,...,lm}

19: £ =1q; 1 |P| B

20: for all I; € Lo,i =2, ...,m do S = m—_IZ(d—diP ®)

21:  w' =w € W, such that minimizesA(l;, w); i=1

N

if (3¢ € Llw” = w € W, such that minimizes:
A(g, w) andw’ # w') then
23: if A(l;,v") < A(g,v") then

whered,; andd are defined as:

s M i i
di = min {0, 1 - £}

24 L=Lu{l};

25: end if

26: else = >IEld;

2. L={L\{qg}}U{li}; 7

28:  end if A value of zero for this performance measure indicates that
29: end for

all the solutions are uniformly spread (i.e., the best fussi
performance).

3) Set Coverage:Set Coverage§C) was proposed by
Zitzler et al. [21], and it compares a set of non-dominated
solutionp. Hence, the filtering by directions requires a totakolutions A with respect to another seB, using Pareto
computational effort bounded b@(m(k + mk)). dominance. This performance measure is defined as:

Note however that, in practice, our procedure has really a
lower computational complexity, because the above complex
ity is required only when the utopian vector or the indivilua
minima have changed. If this does not happen, the vector
which minimizes equation (6) will be the same in each call If all points in A dominate or are equal to all points in
from the archiving algorithm. Thus, we save this time and th&, this implies thatSC(A, B) = 1. Otherwise, if no point of
complexity of filtering out solutions based on their direas A dominates some point i3 then SC(A, B) = 0. When
is reduced fromO(m(k +mk)) to O(mk). Considering this SC(A,B) = 1 and SC(B,A) = 0 then, we say thatA
fact, the total computational complexity for our archivingis better thanB. Since the Pareto dominance relation is
strategy is given by)(m) + O(mk) which is considered as not symmetric, we need to calculate bafi€(A, B) and
the average case. SC(B, A).

30: return L;

SC(A,B) = |{b€B|3a|Z|A:ajb}| ©)

V. COMPARISON OFRESULTS B. Test Problems

A. Performance Measures We adopted test problems having 2 and 3 objective

In order to evaluate the performance of our proposal, wieinctions, and taken from two well-known benchmarks: the
compared its performance with respect to NSGA-II [7] anitzler-Deb-Thiele (ZDT) test suite [21] (except for ZDT5,
SPEAZ2 [22] using the following performance measures: which was omitted because is a binary problem) and the

1) Hypervolume:Hypervolume Q) was proposed in [23]. first four problems from the Deb-Thiele-Laumanns-Zitzler
This measure quantifies the approximation of non-dominaté®TLZ) test suite [8]. The description of these problems is
solutions to the Pareto front. We can say that a set @fresented in Table I.



TABLE |

TESTPROBLEMS

1) Discussion of ResultsAs shown in Tables Il and
VI, our proposed approach (CH-MOEA) outperformed both

Problem | n» | Domain Objective functions NSGA-II and SPEA2 in all the test problems with respect to
ZDTL | 30 [ =i €[0,1] ;‘15 ;— et the hypervolumeA). This indicates that our algorithm has
qu) __1g+ Ly ;mg produced a better approximation to the Pareto front in all
ZDT2 | 30 | w; € [0,1] fi(@) = a the test problems adopted. As we said before, the reference
ﬁf)”):l"f)(_l_z(“/i(z)) ) vector is defined by the maximal vectors found in all the
DT [0 [ mep | A= sets of solutions produced by the algorithms (CH-MOEA,
1:2(1)/: g(z-?(llg z1/g(x) NSGA-Il and SPEAZ2). In this specific case, the reference
g((;f:‘qﬂtil gii)m vectors for each MOP are shown in Table Il
ZDT4 | 10 | 1 € [0, 1] fi(z) = =1 Our approach also achieved better results in most of
?_62[ " 5711 ﬁ?ifiﬂ 10%{}1;1/9 ) the test problems with respect to the spacing performance
""" 437, ? — 10cos(4mas) measure §), as can be seen in Tables IV and VII. The
ZDT6 | 10 | @i €[0,1] fi(@) =1— T sin(4ma) | exceptions were ZDT4 and DTLZ4, but in those cases, our
ﬁi”)”)_:lgfg((lz; <f;<ﬂ;27/y§wl>;)3% approach achieved better convergence.
DTLZI | 12 | #; € [0, 1] flx) = 71112(1? 9(z)) Finally, in Tables V and VIII we can see that our approach
E gj _?f(,l;f(zl)(j ’L(g)()w obtained the best results with respect to the set coverage
q(z) 100(n + lznﬂ[(i Z0.5)? performance measur&() in all the test functions adopted.
SN E fcos(20ﬂ(rz; 0.5)]) _ . This implies that our approach obtained more solutions that
7 €10, 1] ;;E ; = ggz%;ﬁggf’;((ffj))h((j)) dominate those generated by both NSGA-Il and SPEA2 and
f?(a)c) = sin(3 (m)h(ow%)z which are not dominated by any of them.
g(x) = xTqi —
hix) = 3+ ()
DTLZ3 12 | z; €10,1] fi(z) = Cos(q%ml)cos(%mg)h(m) TABLE 1l
f2(x) = cos(5x1) sin(Sx2)h(x) REFERENCE VECTORS FOR THHYPERVOLUME PERFORMANCE
fa(z) = sin(Fx1)h(x) MEASURE
g(x) = 100[10 + =7 4 ((wi — 0.5)* :
— cos(207(z; — 0.5))]
h(z) = (1 + g(x)) Problem Reference vector
DTLZ4 12 | z; € [0,1] fi1(z) = cos(ZxT) cos(Z x5 )h(x) ZDT1 (0.9998, 5.7764)T
Ja(z) = cos(zrl)sm(zr%)h(z) ZDT?2 (0.9999, 5.8258)T
fa(w) = sin(527)h(z) | ZDT3 (0.8595, 6.8002)T
Z(é)) = (213;3(&3)‘ 0.5) ZDT4 (0.9992, 98.9079)T
with o= ZDT6 (1.0000, 6.2133) 7
DTLZ1 | (438.643624, 394.795995, 401.006598)7
DTLZ2 (2.327085, 2.183336, 2.048173)T
_ DTLZ3 | (1597.412149, 1648.946164, 1678.494421)T
C. Experimental Setup DTLZA (2.539207, 2.158534, 2.303041) T

For each MOP, we performed 25 independent runs with
each algorithm. Each run was restrictedlfi) generations.
For the problems witl objectives, we used a population size
N = 100 and a population siz&/ = 300 was adopted for

TABLE Il
RESULTS OF THEA PERFORMANCE MEASURE FOR THEZDT TEST

. . ) SUITE.

the problems having objectives. Therefore, we performed
10,000 (for the bi-objective problems) angh, 000 (for the NSGA—11]| SPEA2 [ CH — MOEA
three-objective problems) fitness function evaluations. average | average average

For the algorithms (CH-MOEA, NSGA-Il and SPEA2), oS S ) S /R
the parameters were set as follow’: = 1.0 (crossover 2bT1 (0.1111) (0.1067) (0.0036)
probability) andP,, = % (mutation probability), where: 7DT2 3.3378 3.3316 5.1127
represents the number of decision variables of the MOP. (g‘ggi) (g'ﬁgg) (2‘3?;‘;(3
Since our approach adopts the same genetic operators in- | ZPT3 | (0o801) | (0.1327) |  (0.0131)
cluded in the NSGA-II, we used the same parameter values 7DTa | 99-7671 95.9253 98.2674
for these operators in both algorithms, that is: crossawex (g'gg?g) (g'gggg) (i'éi%?
n. = 20 and mutation index;,,, = 20. ZDT6 | ('3327) | (0.2549) (0.0052)

For each MOP, the algorithms were evaluated using the
three performance measures previously indicatedf and
SC). The results are summarized in Tables Il to VIII. Each VI. CONCLUSIONS AND FUTURE WORK
table displays both the average and the standard deviat)on ( We have presented a new archiving strategy, which is
of each performance measure, for each of the test problelmased on mathematical programming concepts, rather than
adopted. For an easier interpretation, the best results ane niching,e-dominance, adaptive grids or any other concept
presented ifboldfacefor each performance measure and tedraditionally adopted by MOEAs. Our proposed approach
problem adopted. was able to outperform both NSGA-Il and SPEA2 in several
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RESULTS OF THES METRIC FOR THEZDT TEST SUITE
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average average average
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TABLE V
RESULTS OF THESC PERFORMANCE MEASURE FOR THEZDT TEST
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TABLE VI

RESULTS OF THEA PERFORMANCE MEASURE FOR THIDTLZ TEST

SUITE.
NSGA =TT SPEAZ CH —MOEA
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() () ()
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DTLZZ | (0.0252) (0.0070) (0.0009)
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11.89 193 12.05
DTLZ4 1 (0.0199) (0.0514) (0.0009)
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