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Abstract— Diversity plays an important role in evolutionary
multi-objective optimization. Because of this, a number of
density estimators (i.e., mechanisms that help to maintain
diversity) have been proposed since the early days of multi-
objective evolutionary algorithms (MOEAs). Fitness sharing
and niching were among the most popular density estimator
used with non-elitist MOEAs, but their main drawback was
their high dependence on the niche radius, which was normally
difficult to set. In recent years, the use of external archives to
store the nondominated solutions found by an elitist MOEA
has become popular. This has motivated an important amount
of research related to archiving techniques for MOEAs. In
this paper, we contribute to such literature by introducing a
new archiving strategy based on the Convex Hull of Individual
Minima (CHIM). Our proposed approach is compared with
respect to two competitive MOEAs (NSGA-II and SPEA2) using
standard test problems and performance measures taken from
the specialized literature.

I. I NTRODUCTION

Since their origins, multi-objective evolutionary algorithms
(MOEAs) have had two main goals [2]: (1) maximize the
number of elements of the Pareto optimal set that are
generated and (2) distribute such solutions as uniformly as
possible (such uniform distribution is normally enforced in
objective function space—i.e., along the Pareto front). Here,
we focus on the second of these goals, since we propose
a new method to distribute non-dominated solutions. Over
the years, a number of such methods have been proposed,
going from the use of fitness sharing and niching [6],
to the incorporation of adaptive grids [13] and clustering
techniques [22]. Our proposed method is not based on any
of these mechanisms. Instead, it is based on theConvex Hull
of Individual Minima (CHIM) to maintain solutions well-
distributed along the Pareto front. The goal of this strategy
is to achieve convergence towards the Pareto optimal set by
maintaining a suitable representation of the Pareto front.

The remainder of the paper is organized as follows. In
Section II, we provide the basic background required for
understanding the rest of the paper. In Section III, we briefly
review the previous related work. In Section IV, we explain
in detail our proposed approach. In Section V, we show the
results of our comparative study. Finally, in Section VI we
give our conclusion and a brief description of some possible
future work.
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II. BASIC CONCEPTS

A multi-objective optimization problem(MOP) can be
formally defined as to find a vectorx ∈ Q which minimizes:

F : Ω→ R
k

F (x) = [f1(x), . . . , fk(x)]T
(1)

whereΩ ⊂ R
n defines the feasible region of the problem.

The notation and basic concepts used within the multi-
objective optimization (assuming minimization problems)are
provided next.
Definition 1. Let v, w ∈ R

k, we say thatv is less thanw
(v ≤p w) if vi ≤ wi, ∀i = 1, . . . , k, and v dominatesw
(v ≺ w), if v ≤p w andv 6= w.
Definition 2. A point x ∈ Ω ⊂ R

n is calledPareto optimal
or a Pareto pointif there is noy ∈ R

n such thaty ≺ x.
Definition 3. The Pareto Optimal SetP∗ is defined as:

P∗ = {x ∈ R
n|x is Pareto optimal}

Definition 4. The Pareto FrontF∗ is defined as:

F∗ = {F (x) ∈ R
k|x ∈ P∗}

Thus, when solving MOPs, we are interested in finding the
best possibletrade-offsamong the objectives, such that no
objective can be improved without worsening another. Since
the number of Pareto optimal solutions can be very large,
we are also interested in obtaining a well-distributed set of
solutions, since the size of our approximation (produced by
a MOEA) will be normally small (e.g., 100 solutions).

A. The Convex Hull of Individual Minima

The Convex Hull of Individual Minimaconcept was ini-
tially introduced by Das in [3] and it has been the basis
of some multi-objective optimization techniques available in
the mathematical programming literature, such as theNormal
Boundary Intersection[5] (NBI) method and theRecursive
Knee Approach[4] (RKA). The following definitions are
taken from [3].
Definition 5. Let x∗

i be the respective global minimizers of
fi(~x), i = 1, . . . , k over x ∈ Ω. Let F ∗

i = F (x∗
i ), i =

1, . . . , k. Let Φ be thek × k matrix whoseith column is
F ∗

i −F ∗ (sometimes known as thepay-offmatrix). Then, the
set of points inRk that are convex combinations ofF ∗

i −F ∗,
that is:

H = {Φβ : β ∈ R
k,

k
∑

i=1

βi = 1, βi ≥ 0} (2)

is referred to as theConvex Hull of Individual Minima
(CHIM).



The set of all attainable objective vectorsF ⊂ R
k

determines theobjective space, and theboundary intersection
of F is denoted by∂F , see Fig. 1.
Definition 6. Let CHIM∞ be the affine subspace of lowest
dimension that contains theCHIM . Then, CHIM∞ is
defined as the smallest simply connected set that contains
every point in the intersection of∂F and CHIM∞. More
informally, consider extending (or withdrawing) the bound-
ary of theCHIM simplex to touch∂F ; the ‘extension’ of
CHIM thus obtained is defined asCHIM∞. Here, it is
denoted byH∞.

Since the hyperplane defined byH∞ is an affine subspace,
there exists a unique normal vectorn for each pointh in the
surfaceH∞. That is:

∀h ∈ H∞, ∃1n ∈ R
k \ {0} : 〈h, n〉 = 0 (3)

where||n|| = 1 and 〈·, ·〉 denotes the inner product.

Fig. 1. Convex Hull of Individual Minima

III. PREVIOUS RELATED WORK

As indicated before, the interest in developing strategies
to maintain diversity among the solutions generated by
a MOEA, dates back to the origins of such algorithms.
Niching and fitness sharing[16], [11] are among the old-
est mechanisms to maintain diversity in MOEAs, although
they were originally developed for dealing with multimodal
functions [6]. Niching and fitness sharing were very popular
as density estimators during the early days of evolutionary
multiobjective optimization [10], [19], [12]. However, over
the years, a variety of density estimators have been proposed,
including the use of adaptive grids [14], entropy [9], cluster-
ing techniques [22], and crowding [7], among others. Most
of these approaches, however, rely on the definition of some
critical parameter (e.g., the niche radius).

More recently, the use of archiving strategies that rely on
relaxed forms of Pareto dominance were introduced. From
them, ε-dominance is probably the best known [15]. This
approach also relies on a critical parameter: the value of
ε, which, in the general case, cannot be known before-
hand and has to be empirically estimated through some
preliminary sampling of the search space. However, the

nice mathematical properties ofε-dominance, as well as its
good performance in practice, made it a relatively popular
archiving mechanism and has motivated the development of
other (more elaborate) archiving techniques for MOEAs (see
for example [18]).

To the authors’ best knowledge, CHIM had not be used
before as an archiving technique in MOEAs, as we do here.
The only related work that we could find is the proposal of
Cococcioni et al. [1], which adopts the concept of convex
hull for binary classification using a MOEA, but does not
incorporate it into any archiving technique.

IV. OUR PROPOSEDAPPROACH

In this section, we describe our proposal which is called
Convex Hull Multi-objective Evolutionary Algorithm(CH-
MOEA). This approach refers to a MOEA which uses an
archiving mechanism based on the convex hull of individ-
ual minima as its strategy to store well-distributed non-
dominated solutions.

A. The Multi-Objective Evolutionary Algorithm

In CH-MOEA, the initial populationP0 is defined byN
uniformly distributed random solutions. Then, the evolution-
ary process is carried out. Our approach uses a selection
mechanism (µ+λ) based on Pareto ranking (it is used in the
UpdatePopulation procedure). In this way, the best solu-
tions obtained from the evolutionary process are maintained
at the current population. If two solutions are non-dominated,
we randomly choose any of them. Our proposal uses an
archiveL which stores all the non-dominated solutions found
by the MOEA at each iteration. The archive is also used
during the selection process. The crossover and mutation
operators are the same used by the NSGA-II [7] (Simu-
lated Binary Crossover (SBX) and Parameter-Based Mutation
(PBM)). The full pseudocode of our proposed MOEA is
shown in Algorithm 1 and the details of the archiving strategy
are presented next.

B. Archiving the Convex Hull of Individual Minima

ConsideringH∞ as an affine subspace, then, there exists
a unique normal vector for each point inH∞. A well-
distributed set of solutions along the Pareto front can be
achieved by the use of non-dominated solutions which are
orthogonal to each point inH∞. However, to obtain an
analytical expression forH∞, is equivalent to obtain an an-
alytical expression for the Pareto curve (i.e., it is impossible
in most cases). In order to obtain the points of our interest,
we rely on the CHIM (as before, it is denoted byH) as
the basis for our archiving strategy. Thus, to produce a well-
distributed set of solutions in the archiveL, we will take the
non-dominated solutions which are orthogonal to each point
h ∈ H. However, it is well-known that, fork > 2, there do
not exist orthogonal points inH for all the elements in the
Pareto front (see [5]). In order to deal with this drawback,
an alternative strategy is required. In our case, we use the
direction vector with respect to the utopian vectorF ∗. With
this, the non-dominated solutions into the archiveL are



Algorithm 1 CH-MOEA
1: t = 0;
2: L = ∅;
3: Generate initial populationPt of sizeN ;
4: Evaluate(Pt);
5: L = UpdateArchive(p,L), ∀p ∈ Pt;
6: while (t < maxgen) do
7: Q = ∅;
8: for all p1, p2 ∈ Pt do
9: Choosel1, l2 ∈ L : p1 6= l1 andp2 6= l2;

10: q1 = mutation(crossover(p1, l1));
11: q2 = mutation(crossover(p2, l2));
12: L = UpdateArchive(qi,L), i = 1, 2;
13: Q = Q ∪ {q1, q2};
14: end for
15: Evaluate(Q);
16: Pt+1 = UpdatePopulation(Pt,Q); // keep N

individuals using Pareto ranking

17: t = t + 1;
18: end while

properly allocated. The main idea in the archiving strategy,
is to store into the archive a single non-dominated solution
p ← F (x) for each direction defined by the utopian vector
F ∗ and a pointhi in the CHIM.

Let W be the finite set of vectors that are well-distributed
in R

k, such that, each vectorwi ∈W is a convex combina-
tion of weights (wherek is the number of objectives). Then,
each pointhi ∈ H is defined according to:

hi(wi) = Φwi (4)

Therefore, all thehi’s represent a finite set of well-
distributed points in the hyperplaneH.

The uniformity of the solutions along the Pareto front
depend directly of the uniformity of the weight vectorswi.
Therefore, a good distribution of the vectors inH implies
a good distribution of solutions along the Pareto front.
The construction of well-distributed convex combinationsof
weights can be achieved either as proposed by Das in [3] or
by Zhang and Li in [20].

We consider the archiveL as the set of solutions accepted
by the archiving mechanism. Then, a solutionp is accepted
by the archive, if and only if,p is non-dominated with respect
to all solutions stored inL. If the solutionp is not dominated,
and there is no other solutionq ∈ L, such that the directionq
is closer than directionp with respect tohi (for anyhi ∈ H),
then the solutionp is stored in the archive; otherwise, the
solution is rejected. Thus, we prefer the solutionp, such that
it satisfies:

hi(wi)

||hi(wi)||
=

p

||p||
(5)

for any hi(wi) ∈ H.
In practice, to satisfy equation (5) is unlikely. Thus, we

prefer a solutionp that minimizes:

A(p, wi) =

∣

∣
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hi(wi)

||hi(wi)||
−

p

||p||
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∣

∣

∣

∣

∣

∣

(6)

SinceH is defined byF ∗, the compromise solutionp
should be translated toF ∗ in order to get a correct direction.
Thus, we assume thatp← F (x)− F ∗.

In CH-MOEA, the utopian vectorF ∗ is constructed with
the minimum value of each objective function. Furthermore,
the individual minima are defined for eachx∗

i (i = 1, . . . , k),
such that the followingaugmented weighted Tchebycheff
function is minimized:

min
x∗

i
∈D

max
j=1,...,k

{wj |fj(x
∗
i )− F ⋆

i |}+ ρ

k
∑

j=1

|fi(x
∗
i )− F ⋆

j | (7)

where,ρ is a sufficiently small positive scalar,D is the set
of all solutions found so far by a MOEA andwj is the jth

canonical vector inRk.
According to equation (6), for eachwi ∈W , it is expected

to find a single solutionp such that it minimizes equation (6).
Therefore, the archiveL is defined by a finite number of
solutions which correspond to the total number of weight
vectorswi in W . The complete archiving strategy is shown
in Algorithm 2.

C. Final Comments about the Archiving Strategy

1) The set of obtained solutions:The solution set obtained
by our archiving strategy contains only non-dominated solu-
tions. According to Algorithm 2, the first filter (based on
the use of Pareto dominance) guarantees to have only non-
dominated solutions into the archiveL. This set of solutions
has a finite size which is defined by the number of weighted
vectorsw’s. Our approach heavily relies on the minimum
values of each objective function. However, in practice, this
is not a serious drawback, since we can adopt the extreme
points of the Pareto front obtained by the MOEA. It is worth
noting, however, that, because of its nature, our archiving
strategy is expected to have a poor behavior when dealing
with disconnected Pareto fronts.

2) Computational Complexity:Algorithm 2 shows our
archiving strategy in detail. The first part of the algorithm
decides whether or not a solution is non-dominated. This
procedure has a complexityO(m), wherem is the size of
the archiveL. The second part refers to the filtering of
each solutionp using its direction to the utopian vector
F ∗. Consideringk as the number of vectors inW , the
computational effort to find the vectorw′ ∈ W such that it
minimizes equation (6) is linear with respect to the number
of weighted vectors inW , that isO(k). Then, the archiving
algorithm finds a solutionq (if it exists) in the archive
L, such thatw′′ ∈ W minimizes equation (6) regarding
q and w′ = w′′; therefore, the overall computational cost
is bounded byO(mk). However, this procedure has to be
done for each element of the current archiveL for deleting
solutions which have the same direction that the candidate



Algorithm 2 UpdateArchive(p,L0)
1: // Filtering out solutions using Pareto dominance
2: if (L0 = ∅) then
3: L = {p};
4: return L;
5: end if
6: if (∃l ∈ L0 : l ≺ p) then
7: // Rejecting solutionp;
8: return L0;
9: else

10: L = L0 \ D, where:D = {l ∈ L0 : p ≺ l}
11: end if
12: if (L = ∅) then
13: L = {p};
14: return L;
15: end if
16: // Filtering out solutions based on their direction
17: L0 = L0 ∪ {p};
18: // ConsideringL0 = {l1, . . . , lm}
19: L = l1;
20: for all li ∈ L0, i = 2, . . . , m do
21: w′ = w ∈ W, such that minimizes:A(li, w);
22: if (∃q ∈ L|w′′ = w ∈ W, such that minimizes:

A(q, w) andw′ 6= w′′) then
23: if A(li, v

′) < A(q, v′) then
24: L = L ∪ {li};
25: end if
26: else
27: L = {L \ {q}} ∪ {li};
28: end if
29: end for
30: return L;

solutionp. Hence, the filtering by directions requires a total
computational effort bounded byO(m(k + mk)).

Note however that, in practice, our procedure has really a
lower computational complexity, because the above complex-
ity is required only when the utopian vector or the individual
minima have changed. If this does not happen, the vectorw
which minimizes equation (6) will be the same in each call
from the archiving algorithm. Thus, we save this time and the
complexity of filtering out solutions based on their directions
is reduced fromO(m(k +mk)) to O(mk). Considering this
fact, the total computational complexity for our archiving
strategy is given byO(m) + O(mk) which is considered as
the average case.

V. COMPARISON OFRESULTS

A. Performance Measures

In order to evaluate the performance of our proposal, we
compared its performance with respect to NSGA-II [7] and
SPEA2 [22] using the following performance measures:

1) Hypervolume:Hypervolume (∆) was proposed in [23].
This measure quantifies the approximation of non-dominated
solutions to the Pareto front. We can say that a set of

solutionsA has a better approximation to the Pareto front
than a setB if:

∆(A) > ∆(B)

This performance measure uses a reference vectorr which
can be defined by the user. Here, we define the reference
vector according to:

r = [f+
1 , f+

2 , . . . , f+
k ]

where k is the number of objective functions,f+
i is the

maximum valuefi(x) found in the setT = {A1 ∪ · · ·Al}
and Aj is the set of solutions found by thejth algorithm
applied to a given MOP.

2) Spacing:Spacing (S) was proposed by Schott [17] and
it quantifies the spread of solutions in the obtained approxi-
mation of the Pareto front. TheS performance measure can
be calculated as:

S =

√

√

√

√

1

|P | − 1

|P |
∑

i=1

(d− di)2 (8)

wheredi andd are defined as:

di = min
i,i6=j

{

∑M
k=1 |f

i
k − f j

k |
}

d =
P|P |

i=1
di

|P |

A value of zero for this performance measure indicates that
all the solutions are uniformly spread (i.e., the best possible
performance).

3) Set Coverage:Set Coverage (SC) was proposed by
Zitzler et al. [21], and it compares a set of non-dominated
solutions A with respect to another setB, using Pareto
dominance. This performance measure is defined as:

SC(A, B) =
|{b ∈ B|∃a ∈ A : a � b}|

|B|
(9)

If all points in A dominate or are equal to all points in
B, this implies thatSC(A, B) = 1. Otherwise, if no point of
A dominates some point inB then SC(A, B) = 0. When
SC(A, B) = 1 and SC(B, A) = 0 then, we say thatA
is better thanB. Since the Pareto dominance relation is
not symmetric, we need to calculate bothSC(A, B) and
SC(B, A).

B. Test Problems

We adopted test problems having 2 and 3 objective
functions, and taken from two well-known benchmarks: the
Zitzler-Deb-Thiele (ZDT) test suite [21] (except for ZDT5,
which was omitted because is a binary problem) and the
first four problems from the Deb-Thiele-Laumanns-Zitzler
(DTLZ) test suite [8]. The description of these problems is
presented in Table I.



TABLE I

TEST PROBLEMS

Problem n Domain Objective functions
ZDT1 30 xi ∈ [0, 1] f1(x) = x1

f2(x) = g(x)(1 −
p

x1/g(x))
g(x) = 1 + 1

n−1

P

n

i=2
xi

ZDT2 30 xi ∈ [0, 1] f1(x) = x1

f2(x) = g(x)(1 − (x1/g(x))2)
g(x) = 1 + 1

n−1

P

n

i=2
xi

ZDT3 30 xi ∈ [0, 1] f1(x) = x1

f2(x) = g(x)(1 −
p

x1/g(x)
−(x1/g(x) sin(10πx1))
g(x) = 1 + 1

n−1

P

n

i=2
xi

ZDT4 10 x1 ∈ [0, 1] f1(x) = x1

xi ∈ [−5, 5] f2(x) = g(x)(1 −
p

x1/g(x))
i = 2, . . . , n g(x) = 1 + 10(n − 1)

+
P

n

i=2
x2

i
− 10 cos(4πxi)

ZDT6 10 xi ∈ [0, 1] f1(x) = 1 − e−4x1 sin6(4πx1)
f2(x) = g(x)(1 − (f1(x)/g(x))2)
g(x) = 1 + 9(

P

n

i=2
xi/(n − 1))0.25

DTLZ1 12 xi ∈ [0, 1] f1(x) = 1

2
x1x2(1 + g(x))

f2(x) = 1

2
x1(1 − x2)(1 + g(x))

f3(x) = 1

2
(1 − x1)(1 + g(x))

g(x) = 100(n +
P

n

i=3
[(xi − 0.5)2

− cos(20π(xi − 0.5))])
DTLZ2 12 xi ∈ [0, 1] f1(x) = cos( π

2
x1) cos( π

2
x2)h(x)

f2(x) = cos( π

2
x1) sin( π

2
x2)h(x)

f3(x) = sin( π

2
x1)h(x)

g(x) =
P

n

i=3
(xi − 0.5)2

h(x) = (1 + g(x))
DTLZ3 12 xi ∈ [0, 1] f1(x) = cos( π

2
x1) cos( π

2
x2)h(x)

f2(x) = cos( π

2
x1) sin( π

2
x2)h(x)

f3(x) = sin( π

2
x1)h(x)

g(x) = 100[10 +
P

n

i=3
((xi − 0.5)2

− cos(20π(xi − 0.5))]
h(x) = (1 + g(x))

DTLZ4 12 xi ∈ [0, 1] f1(x) = cos( π

2
xα

1
) cos( π

2
xα

2
)h(x)

f2(x) = cos( π

2
xα

1
) sin( π

2
xα

2
)h(x)

f3(x) = sin( π

2
xα

1
)h(x)

g(x) =
P

n

i=3
(xi − 0.5)2

h(x) = (1 + g(x))
with α = π

C. Experimental Setup

For each MOP, we performed 25 independent runs with
each algorithm. Each run was restricted to100 generations.
For the problems with2 objectives, we used a population size
N = 100 and a population sizeN = 300 was adopted for
the problems having3 objectives. Therefore, we performed
10, 000 (for the bi-objective problems) and30, 000 (for the
three-objective problems) fitness function evaluations.

For the algorithms (CH-MOEA, NSGA-II and SPEA2),
the parameters were set as follows:Pc = 1.0 (crossover
probability) andPm = 1

n (mutation probability), wheren
represents the number of decision variables of the MOP.
Since our approach adopts the same genetic operators in-
cluded in the NSGA-II, we used the same parameter values
for these operators in both algorithms, that is: crossover index
ηc = 20 and mutation indexηm = 20.

For each MOP, the algorithms were evaluated using the
three performance measures previously indicated (∆, S and
SC). The results are summarized in Tables III to VIII. Each
table displays both the average and the standard deviation (σ)
of each performance measure, for each of the test problems
adopted. For an easier interpretation, the best results are
presented inboldface for each performance measure and test
problem adopted.

1) Discussion of Results:As shown in Tables III and
VI, our proposed approach (CH-MOEA) outperformed both
NSGA-II and SPEA2 in all the test problems with respect to
the hypervolume (∆). This indicates that our algorithm has
produced a better approximation to the Pareto front in all
the test problems adopted. As we said before, the reference
vector is defined by the maximal vectors found in all the
sets of solutions produced by the algorithms (CH-MOEA,
NSGA-II and SPEA2). In this specific case, the reference
vectors for each MOP are shown in Table II

Our approach also achieved better results in most of
the test problems with respect to the spacing performance
measure (S), as can be seen in Tables IV and VII. The
exceptions were ZDT4 and DTLZ4, but in those cases, our
approach achieved better convergence.

Finally, in Tables V and VIII we can see that our approach
obtained the best results with respect to the set coverage
performance measure (SC) in all the test functions adopted.
This implies that our approach obtained more solutions that
dominate those generated by both NSGA-II and SPEA2 and
which are not dominated by any of them.

TABLE II

REFERENCE VECTORS FOR THEHYPERVOLUME PERFORMANCE

MEASURE.

Problem Reference vector
ZDT1 (0.9998, 5.7764)T

ZDT2 (0.9999, 5.8258)T

ZDT3 (0.8595, 6.8002)T

ZDT4 (0.9992, 98.9079)T

ZDT6 (1.0000, 6.2133)T

DTLZ1 (438.643624, 394.795995, 401.006598)T

DTLZ2 (2.327085, 2.183336, 2.048173)T

DTLZ3 (1597.412149, 1648.946164, 1678.494421)T

DTLZ4 (2.539207, 2.158534, 2.303041)T

TABLE III

RESULTS OF THE∆ PERFORMANCE MEASURE FOR THEZDT TEST

SUITE.

NSGA − II SPEA2 CH − MOEA

average average average
(σ) (σ) (σ)

ZDT1 4.0585 3.9930 5.4173

(0.1111) (0.1067) (0.0036)

ZDT2
3.3378 3.3316 5.1127

(0.1935) (0.1824) (0.0340)

ZDT3
3.4864 3.4863 4.8770

(0.0801) (0.1327) (0.0131)

ZDT4 95.7671 95.9258 98.2674

(0.8096) (0.7529) (0.1401)

ZDT6 3.0712 3.0382 4.0187

(0.3327) (0.2549) (0.0052)

VI. CONCLUSIONS AND FUTURE WORK

We have presented a new archiving strategy, which is
based on mathematical programming concepts, rather than
on niching,ε-dominance, adaptive grids or any other concept
traditionally adopted by MOEAs. Our proposed approach
was able to outperform both NSGA-II and SPEA2 in several



 0

 1

 2

 3

 4

 5

 6

 0  0.2  0.4  0.6  0.8  1

f 2
(x

)

f1(x)

PARETO FRONT

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0  0.2  0.4  0.6  0.8  1

f 2
(x

)

f1(x)

PARETO FRONT

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1

f 2
(x

)

f1(x)

PARETO FRONT

a.1) NSGA-II in ZDT1 a.2) SPEA2 in ZDT1 a.3) CH-MOEA in ZDT1

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

f 2
(x

)

f1(x)

PARETO FRONT

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

f 2
(x

)

f1(x)

PARETO FRONT

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

f 2
(x

)

f1(x)

PARETO FRONT

a.1) NSGA-II in ZDT2 a.2) SPEA2 in ZDT2 a.3) CH-MOEA in ZDT2

−1

 0

 1

 2

 3

 4

 5

 0  0.2  0.4  0.6  0.8  1

f 2
(x

)

f1(x)

PARETO FRONT

−1

 0

 1

 2

 3

 4

 5

 6

 7

 0  0.2  0.4  0.6  0.8  1

f 2
(x

)

f1(x)

PARETO FRONT

−1

−0.5

 0

 0.5

 1

 1.5

 2

 2.5

 0  0.2  0.4  0.6  0.8  1

f 2
(x

)

f1(x)

PARETO FRONT

a.1) NSGA-II in ZDT3 a.2) SPEA2 in ZDT3 a.3) CH-MOEA in ZDT3

 0

 2

 4

 6

 8

 10

 12

 14

 0  0.2  0.4  0.6  0.8  1

f 2
(x

)

f1(x)

PARETO FRONT

 0

 10

 20

 30

 40

 50

 60

 70

 0  0.2  0.4  0.6  0.8  1

f 2
(x

)

f1(x)

PARETO FRONT

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1

f 2
(x

)

f1(x)

PARETO FRONT

a.1) NSGA-II in ZDT4 a.2) SPEA2 in ZDT4 a.3) CH-MOEA in ZDT4

 0

 0.5

 1

 1.5

 2

 2.5

 0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

f 2
(x

)

f1(x)

PARETO FRONT

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

f 2
(x

)

f1(x)

PARETO FRONT

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

f 2
(x

)

f1(x)

PARETO FRONT

a.1) NSGA-II in ZDT6 a.2) SPEA2 in ZDT6 a.3) CH-MOEA in ZDT6

Fig. 2. ZDT test problems

test problems taken from the specialized literature, with re-
spect to three performance measures (hypervolume, spacing
and set coverage).

Our proposed archiving strategy obtained very good results
for problems having a fully connected Pareto front, but it per-
forms poorly with disconnected Pareto fronts. Nevertheless,
we will be looking into this issue as part of our future work.
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Fig. 3. DTLZ test problems

TABLE IV

RESULTS OF THES METRIC FOR THEZDT TEST SUITE.

NSGA − II SPEA2 CH − MOEA

average average average
(σ) (σ) (σ)

ZDT1
0.0506 0.0464 0.0125

(0.0472) (0.0568) (0.0009)

ZDT2 0.0247 0.0334 0.0095

(0.0180) (0.0326) (0.0056)

ZDT3 0.0362 0.0565 0.0351

(0.0232) (0.0606) (0.0040)

ZDT4 0.0140 0.0524 0.0617
(0.0189) (0.0856) (0.0286)

ZDT6
0.0640 0.0421 0.0145

(0.0470) (0.0190) (0.0019)
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