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El-Ghazali Talbi talbi@lifl.fr
INRIA Lille Nord Europe, Parc Scientifique de la Haute Borne, 40 avenue Halley, 59650,
Villeneuve d’Ascq, France

Abstract

Recently, a convergence proof of stochastic search algorithms toward finite size Pareto
set approximations of continuous multi-objective optimization problems has been
given. The focus was on obtaining a finite approximation that captures the entire so-
lution set in some suitable sense, which was defined by the concept of ǫ-dominance.
Though bounds on the quality of the limit approximation—which are entirely deter-
mined by the archiving strategy and the value of ǫ—have been obtained, the strategies
do not guarantee to obtain a gap free approximation of the Pareto front. That is, such
approximations A can reveal gaps in the sense that points f in the Pareto front can
exist such that the distance of f to any image point f(a), a ∈ A, is ‘large’. Since such
gap free approximations are desirable in certain applications, and the related archiving
strategies can be advantageous when memetic strategies are included into the search
process, we are aiming in this work for such methods. We present two novel strategies
that accomplish this task in the probabilistic sense and under mild assumptions on
the stochastic search algorithm. In addition to the convergence proofs we give some
numerical results to visualize the behavior of the different archiving strategies. Fi-
nally, we demonstrate the potential for a possible hybridization of a given stochastic
search algorithm with a particular local search strategy—multi-objective continuation
methods—by showing that the concept of ǫ-dominance can be integrated into this ap-
proach in a suitable way.
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1 Introduction

In a variety of engineering and economic problems several objectives have to be opti-
mized concurrently. One widely accepted class of algorithms for the approximation of
the solution set (Pareto set) of such multi-objective optimization problems (MOPs) is given
by evolutionary strategies. A typical evolutionary multi-objective (EMO) algorithm
consists, roughly speaking, of a process to generate new candidate solutions (the gen-
erator) and a strategy to store and update a ‘suitable’ subset of the obtained data ac-
cording to the given task (the archiver). Under mild assumptions about the generator,
the limit approximation set is determined almost entirely by the archiving strategy. By
limit behavior we mean the behavior of the sequence of archives Al, l ∈ N, which is
generated by the stochastic search algorithm in the course of the computation for itera-
tion step l → ∞. The task of this work is to develop archivers which aim for finite size
and gap free approximations of the solution set, which we motivate in the following.
One interesting application of multi-objective optimization and its related tools is the
online-optimization of mechatronical systems. One approach to this problem is as fol-
lows: first, all relevant (conflicting) objectives of the underlying system are collected
and used to formulate a multi-objective optimization problem. This problem is then
solved numerically by approximating the Pareto set (denote the approximation by P)
offline. This set serves further on as the basis for the online control by providing a
repository of reference operating points: the ‘optimal’ point (or optimal compromise)
p(λ) ∈ P is determined online—i.e., while running the system—according to the cur-
rent situation or demand λ of the system and is used as the actual operating point. Since
λ = λ(t) varies with the time, this ‘optimal’ point has to be updated over and over
again, according to the sensitivity of the system. See (Pottharst et al., 2004; Witting
et al., 2008) for an operating point assignment strategy of a linear drive, and (Hester-
meyer and Oberschelp, 2003) for an online-adjustment of an active suspension system.
Crucial for the stability of the system is that the switch from one point or system set-
ting p(λ1) to the next one p(λ2) can not be done arbitrarily, but has to be carried out as
smoothly as possible. That is, large and abrupt qualitative changes—(amongst others)
in terms of the changes in the influential objective values—have to be avoided. Thus, it
is required in these applications—and certainly in others as well—to obtain a gap free
(and preferably uniformly spread) Pareto front approximation.1

There exist on the other hand certainly also scenarios where a smooth changeover of
the parameter values over time is of particular interest. The algorithms we consider here
are, hovewer, not totally suited—but also not designed—for such cases, since these al-
gorithms are entirely based on the dominance and ǫ-dominance relations, which are
defined in objective space: consider a point f ∈ F (P) of the image of the Pareto set
(the Pareto front), where F : Rn → Rk is the function of given objectives and consider
that f has several preimages xi ∈ P , i = 1, . . . , s. Then the archives of the subse-
quent archiving strategies will probably contain (and retain) one approximate solution
of one preimage xi, i ∈ {1, . . . , s}, after sufficiently many iterations, but (i) the index
i depends on the order of the incoming solutions and is thus not controllable, and (ii)
further preimages xj ∈ {1, . . . , s}\{i} (or points nearby) will not be accepted further
on. For this we refer to archiving strategies which aim for the approximation of the en-
tire Pareto set or a superset of it (e.g., (Rudolph et al., 2007; Schütze et al., 2007; Schütze

1In case the Pareto front falls into different connected components, further techniques (e.g., interpolation
strategies among ‘neighboring’ system settings) have in addition to be considered, but such cases are not part
of this work.
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et al., 2008)).

Here we extend the work of (Schütze et al., 2008) and present new archiving strategies
for the storage of the ‘essential’ solutions found by a stochastic search algorithm. The
strategy used in (Schütze et al., 2008) is entirely based on the concept of ǫ-dominance,
which does not consider the distances between solutions in the archive. This can
lead to gaps in the approximation set, in particular when some portion of the front
is flat or contains a dent (see Figure 1). Though we agree that these phenomena do
not occur too often in practice, it is desirable, from a theoretical viewpoint, to have
a search algorithm—including a suitable archiving strategy—which can exclude these
unwanted gaps in the approximation.

Another important aspect is that the sole usage of the concept of ǫ-dominance in the
archiving strategy can cause inefficiencies for the resulting search algorithm, in partic-
ular when hybridized with a local search procedure. For instance, when using multi-
objective continuation methods (see (Schütze, 2004) for a combination of this technique
with evolutionary strategies), where the underlying idea is to move along the efficient
set, an unsuited archiving strategy as the one proposed in (Schütze et al., 2008) could
lead to difficulties, although these methods are (in principle) very effective locally. For
this, consider a Pareto front such as the one displayed in Figure 1 (left) and assume that
the archive is given by A = {a1}. If the continuation method is started with {a1} and
merely the concept of ǫ-dominance is used for the archiving strategy this could lead
to the fact that no points p on the front with f1(p) > f1(a1) are kept by the archiver.
The reason is that there is a relatively large portion of the front near F (a1), where all
points are ǫ-dominated by a1—a ‘barrier’ which is hard or impossible to overcome by
this (or any other) local search strategy. Figure 1 (right) shows a situation which is more
extreme.

In this work we propose two different archiving strategies and prove convergence with
probability one to gap free (and thus ‘tight’) Pareto front approximations. The limit set
of the first strategy is a tight ǫ-approximate Pareto set which provides a guaranteed
uniformity level, while the limit set of the second strategy forms a tight ǫ-Pareto
set, which, however, lacks the uniformity. A previous study of the current work can
be found in (Schuetze et al., 2007). While in (Schuetze et al., 2007) mainly the limit
behavior of the archivers was studied, this work offers in addition more discussion
and results which are intended for a better understanding of the effect of the novel
strategies.

The remainder of this article is organized as follows: Section 2 states the background
required for the understanding of the sequel. In Section 3, we propose the sets of in-
terest, and in Section 4 two algorithms which aim for their approximation. Section 5
deals with the integration of the archivers into iterative search methods such as multi-
objective evolutionary algorithms (MOEAs). In Section 6, we present some numerical
results, and finally, we present our conclusions in Section 7.

2 Background and Related Work

In the following we consider continuous unconstrained multi-objective optimization
problems

min
x∈Rn

{F (x)}, (MOP)

Evolutionary Computation Volume x, Number x 3
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Figure 1: Examples of two ǫ approximate Pareto sets. Dents or ‘flat’ regions in the
Pareto front can lead to (possibly unwanted) gaps in the approximation. In the left
figure there is a gap in the approximation between F (a1) and F (a2) both in f1- as in
the f2-direction.

where the function F is defined as the vector of the objective functions

F : Rn → Rk, F (x) = (f1(x), . . . , fk(x)),

and where each fi : Rn → R is continuous. Later we will restrict the search to a
compact set Q ⊂ Rn, the reader may think of as an n-dimensional box

Q = Bl,u := {x ∈ Rn : li ≤ xi ≤ ui, i = 1, . . . , n}, (2.1)

where l, r ∈ Rn with li ≤ ui, i = 1, . . . , n. In the next definition we state the classical
concept of optimality for MOPs.

Definition 1 (a) Let v, w ∈ Rk. Then the vector v is less than w (v <p w), if vi < wi for
all i ∈ {1, . . . , k}. The relation ≤p is defined analogously.

(b) A vector y ∈ Rn is dominated by a vector x ∈ Rn (in short: x ≺ y) with respect to
(MOP) if F (x) ≤p F (y) and F (x) 6= F (y) (i.e., there exists a j ∈ {1, . . . , k} such that
fj(x) < fj(y).

(c) A point x ∈ Rn is called Pareto optimal or a Pareto point if there is no y ∈ Rn which
dominates x.

Denote by PQ the set of Pareto points (or Pareto set) of F |Q, where Q ⊂ Rn is the
domain. The image F (PQ) of the Pareto set is called the Pareto front. Both sets con-
sist typically—i.e., under mild regularity assumptions on the objectives—not of finitely
many points as for scalar optimization problems, but form (k− 1)-dimensional objects.
In order to guarantee convergence toward PQ, F (PQ) or other related objects, one often
has to assume that there are no weak Pareto points outside PQ (see e.g., (Ehrgott, 2005;
Schütze et al., 2008) for discussions). Such points are defined as follows:

Definition 2 A point x ∈ Q is called aweak Pareto point if there exists no point y ∈ Q such
that F (y) <p F (x).

4 Evolutionary Computation Volume x, Number x
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One important question for an archiving strategy is if it is capable to ‘capture’ the in-
coming data in a suitable way. This holds in particular for multi-objective optimization
problems due to the dimensionality of the solution set. An ‘ideal’ archiver in this sense
is certainly one which stores in the current archive A for every candidate solution x
which has been found by the generation process an element a ∈ A such that a is equal
to x or dominates it. However, since this leads at least for continuous models to a se-
quence of archives Ai with |Ai| → ∞ for i → ∞, this demand on an archiver is not
adequate for practical use. In the following we will define a weaker concept of domi-
nance, so-called (absolute) ǫ-dominance (Loridan, 1984), as well as two approximation
concepts which will be used for our further studies since they allow for finite size rep-
resentations of the solution sets.

Definition 3 Let ǫ = (ǫ1, . . . , ǫk) ∈ Rk
+ and x, y ∈ Rn. x is said to ǫ-dominate y (in short:

x ≺ǫ y) with respect to (MOP) if

(i) fi(x) − ǫi ≤ fi(y) ∀i = 1, . . . , k, and

(ii) fj(x) − ǫj < fj(y) for at least one j ∈ {1, . . . , k}.

Denote by d(·, ·) any distance and by || · || any norm. Further, let Bδ(x0) := {x ∈ Rn :
‖x − x0‖ < δ} be the open ball with center x0 ∈ Rn and radius δ ∈ R+.

Definition 4 (Laumanns et al., 2002)

(a) Let ǫ ∈ Rk
+. A set Aǫ ⊂ Rn is called an ǫ-approximate Pareto set of (MOP) if every

point x ∈ Rn is ǫ-dominated by at least one a ∈ Aǫ, i.e.

∀x ∈ Rn : ∃a ∈ Aǫ : a ≺ǫ x.

(b) A set A∗
ǫ ⊂ Rn is called an ǫ-Pareto set if A∗

ǫ is an ǫ-approximate Pareto set and if every
point a ∈ A∗

ǫ is a Pareto point of (MOP).

Definition 5 (Sayin, 2000)

(a) Let ∆ > 0 and let D ⊂ Z be a discrete set. D is called a d∆-representation of Z if for any
z ∈ Z , there exists y ∈ D such that d(z, y) ≤ ∆.

(b) Let Z ⊂ Rn be any set and letD be a d∆-representation ofZ . ThenD is called a δ-uniform
d∆-representation if

min
x,y∈D,x 6=y

d(x, y) ≥ δ.

δ is called the uniformity level.

Despite the existence of suitable approximation concepts, investigations on the
convergence of particular algorithms towards such approximation sets, that is, their
ability to obtain a suitable Pareto set approximation in the limit, have remained rare.
Several studies, such as (Hanne, 1999; Rudolph and Agapie, 2000; Schütze et al.,
2008), consider only the convergence to the entire Pareto set, or to a certain subset
without considering the approximation quality. The only work which deals with
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the computation of gap free representation of the Pareto front, to the authors’ best
knowledge, is (Fliege, 2004). However, since in that work scalarization methods on
convex MOPs are investigated, the approach is not applicable for our purpose.

Finally, the issue of stochastic convergence towards finite-size Pareto set approxima-
tions was raised in the area of evolutionary multi-objective optimization, mostly under
the assumption of finite search spaces. One option is to use Markov chain results as-
suming the underlying search processes to beMarkovian (Rudolph, 1998). Another op-
tion is to define an order homomorphism of the natural dominance relation of approx-
imation sets into a totally ordered set of quality values, thus enforcing a monotonicity
of the sequence of solution sets maintained by an algorithm. As shown in (Knowles,
2002; Knowles and Corne, 2003), this entails convergence to a subset of the Pareto set
as a local optimum of the quality indicator, but no approximation guarantee could
given. Knowles and Corne (2003) also analyzed the adaptive grid archiving proposed
in (Knowles and Corne, 2000) and proved that after finite time, even though the solu-
tion set itself might permanently oscillate, it will always represent an ǫ-approximation
whose approximation quality depends on the granularity of the adaptive grid and on
the number of allowed solutions. The results depend on the additional assumption that
the grid boundaries converge after finite time, which is fulfilled in certain special cases.

In (Laumanns et al., 2002), two archiving algorithms were proposed that provably
maintain a finite-size approximation of all points ever generated during the search
process. As an immediate corollary, these archiving strategies were claimed to ensure
convergence to a Pareto set approximation of given quality for any iterative search al-
gorithm that fulfills certain mild assumptions about the process to generate new search
points. While this claim holds trivially in the case of discrete (or discretized) search
spaces, its extension to the continuous case is not straightforward, and was only re-
cently given in (Schütze et al., 2008). A restriction to discretized models, however, can
lead to problems when, e.g., memetic strategies are used (metaheuristic search algo-
rithms mixed with local search strategies which use step size control themselves).

Next we define some distances between points as well as between different sets.

Definition 6 Let u, v ∈ Rn and A, B ⊂ Rn. The maximum norm distance d∞, the semi-
distance dist(·, ·) and theHausdorff distance dH(·, ·) are defined as follows:

(a) d∞(u, v) := max
i=1,...,n

|ui − vi|

(b) dist(u, A) := inf
v∈A

d∞(u, v)

(c) dist(B, A) := sup
u∈B
dist(u, A)

(d) dH(A, B) := max {dist(A, B), dist(B, A)}

Algorithm 1 gives a framework of a generic stochastic multi-objective optimization
algorithm, which will be considered in this work. Here, Q ⊂ Rn denotes the domain
of the MOP, Pj the candidate set (or population) of the generation process at iteration
step j, and Aj the corresponding archive. Algorithms 2 and 3 show two archiving

6 Evolutionary Computation Volume x, Number x
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strategies which aim for the computation of ǫ-approximate Pareto sets and ǫ-Pareto
sets, respectively. The difference between these two archivers is the strategy to accept
candidate solutions coming from the generation process (for details we refer to (Schütze
et al., 2008) or to the discussion below on the difference of Algorithms 4 and 5 which
is similar). Convergence results can be found in Theorems 1 and 2, which are closely
related to the corresponding results in the present work, however, Algorithms 2 and 3
can not guarantee that the limit archives do not reveal gaps in the Pareto front.

Algorithm 1 Generic Stochastic Search Algorithm

1: P0 ⊂ Q drawn at random
2: A0 = ArchiveUpdate(P0, ∅)
3: for j = 0, 1, 2, . . . do
4: Pj+1 = Generate(Pj)
5: Aj+1 = ArchiveUpdate(Pj+1, Aj)
6: end for

Algorithm 2 A := ArchiveUpdateEps1 (P, A0)

1: A := A0

2: for all p ∈ P do
3: if ∃a ∈ A : a ≺Θǫ p then
4: CONTINUE ⊲ do not execute lines 6 – 11
5: end if
6: for all a ∈ A do
7: if p ≺ a then
8: A := A\{a}
9: end if
10: end for
11: A := A ∪ {p}
12: end for

Theorem 1 (Schütze et al., 2008) Let anMOPF : Rn → Rk be given, whereF is continuous,
let Q ⊂ Rn be a compact set and ǫ ∈ Rk

+. Further let

∀x ∈ Q and ∀δ > 0 : P (∃l ∈ N : Pl ∩ Bδ(x) ∩ Q 6= ∅) = 1 (2.2)

Then an application of Algorithm 1, where ArchiveUpdateEps1 is used to update the archive,
leads to a sequence of archives Al, l ∈ N, such that there exists with probability one an l0 ∈ N
such that Al is an ǫ-approximate Pareto set for all l ≥ l0.

Theorem 2 (Schütze et al., 2008) Let (MOP) be given and Q ⊂ Rn be compact, and let there
be no weak Pareto points in Q\PQ. Further, let F be injective and

∀x ∈ Q and ∀δ > 0 : P (∃l ∈ N : Pl ∩ Bδ(x) ∩ Q 6= ∅) = 1 (2.3)

Then an application of Algorithm 1, where ArchiveUpdateEps2 is used to update the archive,
leads to a sequence of archives Al, l ∈ N, where the following holds:
(a) There exists with probability one an l0 ∈ N such thatAl is an ǫ-approximate Pareto set for
all l ≥ l0.

Evolutionary Computation Volume x, Number x 7
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Algorithm 3 A := ArchiveUpdateEps2 (P, A0)

1: A := A0

2: for all p ∈ P do
3: if 6 ∃a ∈ A : a ≺Θǫ p then
4: A := A ∪ {p}
5: end if
6: for all a ∈ A do
7: if p ≺ a then
8: A := A ∪ {p}\{a}
9: end if
10: end for
11: end for

(b)
lim

l→∞
dist(Al, PQ) = 0, with probability one.

3 The Sets of Interest

Motivated by the need for gap free Pareto front approximations and inspired by Defi-
nitions 4 and 5 we introduce here several objects.
First we define∆M -tight ǫ-(approximate) Pareto sets. A setAǫ ⊂ Rn is such a set if (i) it
is an ǫ-(approximate) Pareto set and if (ii) the maximal distance of a point in the Pareto
front to the image of an archive element is not larger than a threshold ∆M . Condition
(i) refers to the approximation quality of Aǫ in the sense of ǫ-dominance (i.e., measured
in image space), and condition (ii) refers to the ‘tightness’ of the representation.

Definition 7 Let ǫ ∈ Rk
+.

(a) A set Aǫ ⊂ Rn is called a ∆M -tight ǫ-approximate Pareto set of (MOP) if Aǫ is an
ǫ-approximate Pareto set of (MOP) and

dist(F (PQ), F (Aǫ)) ≤ ∆M . (3.1)

(b) A set A∗
ǫ ⊂ Rn is called a ∆M -tight ǫ-Pareto set if F

∗
ǫ is an ǫ-Pareto set of (MOP) and

dH(F (PQ), F (A∗
ǫ )) ≤ ∆M .

Amore descriptive way to express condition (3.1) is as follows: it is
dist(F (PQ), F (Aǫ)) ≤ ∆M if for every y ∈ F (PQ) there exists an element a ∈ Aǫ such
that d∞(y, F (a)) ≤ ∆M . In other words, F (PQ) has to be contained in the ‘box collec-
tion’ CAǫ,∆M

, where

CA,∆ :=
⋃

a∈A

B∞
∆ (F (a)), (3.2)

and B∞
∆ (x) := {y ∈ Rk : d∞(x, y) < ∆}.

Since we are further interested in uniform approximations of the sets of interest, we
add the uniformity level ∆m to the objects in Definition 7.

Definition 8 Let ǫ ∈ Rk
+.

8 Evolutionary Computation Volume x, Number x
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(a) A set Aǫ ⊂ Rn with |Aǫ| ≥ 2 is called a (∆M , ∆m)-tight ǫ-approximate Pareto set if
A∗

ǫ is an ∆M -tight ǫ-approximate Pareto set of (MOP) and

dist(F (a), F (A\{a})) ≥ ∆m, ∀a ∈ A.

(b) A (∆M , ∆m)-tight ǫ-Pareto set is defined analogously.

To get an impression about these objects, we consider the following MOP:

F : Q ⊂ R2 → R2

F (x) = x
(3.3)

where
Q = [0, 4]2 ∩ {(x1, x2) ∈ R2|x1 ≥ 4 − x2}. (3.4)

The Pareto set is given by PQ = {(x, 4 − x)|x ∈ [0, 4]}. Let

A1 = {a1 = (0, 4), a2 = (1, 3), a3 = (2, 2), a4 = (3, 1), a5 = (4, 0)} (3.5)

Since all elements ai ∈ PQ and by distribution of the a′
is the set A1 forms a (1/2, 1/2)-

Pareto set (see also Figure 2). Since further

dist(F (PQ), F (A1)) = max
p∈PQ

min
a∈A1

‖p − a‖∞ = 1/2, and

dist(F (a), F (A1\{a})) ≥ 1, ∀a ∈ A1,
(3.6)

A1 can be viewed as a (1/2, 1)-tight (1/2, 1/2)-Pareto set. LetA2 := A1∪{a6 = (2.6, 1.6)}
(see Figure 2), then the uniformity level changes to δ = ‖a6 − a3‖∞ = 0.6, and since
a6 6∈ PQ, A2 forms a (1/2, 0.6)-tight (1/2, 1/2)-approximate Pareto set.
Note that not for every value of ∆m, ∆M , and ǫ the objects defined above exist for
a given MOP, depending on the shape of the Pareto front. For instance, the domain
Q of MOP (3.3) is included in [0, 4]2. Hence, if ∆m > 4 is chosen only one solution
will be kept in the archive, and thus, no (∆M , ∆m)-tight ǫ-Pareto set can be obtained
for ‖ǫ‖∞ < 2 since in this case at least two elements have to be kept. Similarly, no
(∆M , ∆m)-tight ǫ-Pareto set exists for∆M < ∆m/2, independently of the value of ǫ.
Despite these potential problems, however, the values of ǫ, ∆M and ∆m have to be ad-
justed a priori. ǫ represents the (maximal) tolerable loss of a solution compared to an
‘optimal’ one, and is thus relatively easy to identify in a real world application (e.g.,
(Ruhe and Fruhwirt, 1990; White, 1998; Schütze et al., 2008)). ∆M determines the max-
imal distance between two solutions and is thus depending on the search algorithm
(e.g., on the step size of the local search procedure) and/or on the preference of the
decision maker. In any case, ∆M ≥ maxi=1,...,k ǫi can be chosen since two solutions
which are closer together can, from a practical point of view, be regarded as equal. Fi-
nally, the value of the uniformity level ∆m has to be chosen to be less or equal than
mini=1,...,k ǫi, since otherwise it cannot be guaranteed that the limit archive set forms
an ǫ-(approximate) Pareto set.

4 The Algorithms

In the following we propose two different strategies for archiving the solutions found
by the algorithm and investigate some of their properties. The main focus is on the
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Figure 2: The set A1 := {a1, . . . , a5} forms a (1/2, 1)-tight (1/2, 1/2)-Pareto set of MOP
(3.3), and the set A2 := A1 ∪ {a6} a (1/2, 0.6)-tight (1/2, 1/2)-approximate Pareto set.

limit behaviors of the sequence of archives which result by the use of these strategies
under certain additional conditions on the generation process. It will be shown that the
archives obtained by the first archiverArchiveUpdateT ight1 form with probability one
after finitely many steps and under certain assumptions a (∆, Θǫm)-tight ǫ-approximate
Pareto set of a given MOP, where∆, ǫ and Θ are given and ǫm = mini=1,...,k ǫi. In order
to maintain the uniformity level Θǫm a certain discretization in image space has to be
done, which prevents the elements of the archives to converge toward the Pareto set.
The second archiver,ArchiveUpdateT ight2, allows for such a convergent behavior, but,
in turn, the uniformity of the archive gets lost.

4.1 Archiver ArchiveUpdateT ight1

Algorithm 4 A := ArchiveUpdateT ight1ǫ,∆̃ (P, A0)

1: A := A0

2: for all p ∈ P do
3: if (∃a ∈ A : a ≺ p) or (∃a1 ∈ A : a1 ≺Θǫ p and ∃a2 ∈ A : d∞(F (a2), F (p)) ≤ ∆̃)
then

4: CONTINUE ⊲ do not execute lines 6 – 11
5: end if
6: for all a ∈ A do
7: if p ≺ a then
8: A := A\{a}
9: end if
10: end for
11: A := A ∪ {p}
12: end for

First we consider the strategy ArchiveUpdateT ight1, which is presented in Algorithm
4. Given ǫ ∈ Rk

+ and ∆ ∈ R+, the archiver accepts a new candidate solution p ∈ Q
if (i) there exists no element a of the current archive A such that a Θǫ-dominates p or
(ii) there exists no a ∈ A which dominates p and the distance of F (a) to F (p) for all
elements a ∈ A is larger than a threshold ∆̃ (see line 3 of Algorithm 4 or (4.4)). If either
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(i) or (ii) is true, p is added to the archive (line 11 of Algorithm 4) and all elements
a ∈ A\{p} which are dominated by p are discarded from the archive (lines 7 to 10).
Thus, only nondominated solutions are stored. The auxiliary variables 0 < Θ < 1 and

0 < ∆̃ < ∆ are required to guarantee convergence of the sequence of archives in the

limit (see Theorem 4), but in practice they can be set to Θ = 1 and ∆̃ = ∆.
To prevent that the archives are unbounded (see discussion in Section 2), Algorithm 4
uses an ‘exclusion strategy’ which is based on ǫ-dominance: new candidate solutions x
can only be added to the archive A if there does not already exist a solution a ∈ A such
that a ≺Θǫ x (second term in line 3 of Algorithm 4). This strategy allows on one hand to
bound the number of entries of the archive (see Section 4.3) but by this it follows on the
other hand that candidates x can be discarded even if they dominate elements a ∈ A.
This suboptimality in the selection mechanism of the archiver, however, is restricted to
the value of ǫ which can be considered to be ‘small’. The following result (Theorem 3)
shows that the distance of the elements of the archive toward the observed Pareto front
(i.e., the set of non-dominated solutions found by the generator so far) does not sum
up. To be more precise, it will be shown that entries of the resulting archive form a
Θǫ-approximate Pareto set of the set of points which have been discovered during the
run of the algorithm. Thus, monotonicity of the sequence of archives is ensured and
cycling or deterioration (Hanne, 1999) cannot occur.

Lemma 1 Let A0, P ⊂ Rn be finite sets, ǫ ∈ Rk
+, 0 < Θ < 1, 0 < ∆̃ < ∆, and A :=

ArchiveUpdateTight1 (P, A0). Then the following holds:

∀x ∈ P ∪ A0 : ∃a ∈ A : a ≺Θǫ x.

Proof: Let P = {p1, p2, . . . , pl}, l ∈ N. Without loss of generality we assume that all
points pi are considered in this ordering (i.e., in the for-loop in line 2 of Algorithm 4).
Denote by Ai the resulting archive after pi has been considered, and thus, A = An.
Let x ∈ P ∪ A0. There are two cases we have to distinguish.
Case A: x ∈ A0. In that case the statement follows since points a are only discarded
from the archive if in turn another point p with p ≺ a is inserted (see lines 7, 8 and 11
of Algorithm 4), and by the transitivity of ≺.
Case B: x ∈ P , i.e., there exists j ≤ l such that x = pj , and thus, x is considered in the
j-th step of the algorithm. In case x is added to Aj , the statement follows analogously
to Case A since A = ArchiveUpdateTight1 ({pj+1, . . . , pl}, Aj), and x ∈ Aj . If x is not
added to Aj there are two possibilities (see line 3 of Algorithm 4): (i) there exists an
a ∈ Aj such that a ≺ x, or (ii) there exists an a1 ∈ Aj with a1 ≺Θǫ x. In both cases x
gets Θǫ-dominated by a point ã ∈ Aj . Thus, again analogue to Case A, a point a

∗ ∈ A
exists which is equal to ã or dominating it, and thus Θǫ-dominating x.

Theorem 3 Let l ∈ N, ǫ ∈ Rk
+, 0 < Θ < 1, and 0 < ∆̃ < ∆. Further, let Ai, Pi, i = 0, . . . , l,

be as defined in Algorithm 1, where ArchiveUpdateT ight1ǫ,∆̃ is used to update the archive.
Then

∀x ∈
l⋃

i=1

Pi : ∃a ∈ Al : a ≺Θǫ x. (4.1)

Proof: The proof is done via induction over l. For l = 1we have

A1 = ArchiveUpdateT ight1ǫ,∆̃(P0, A0),
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and the claim follows by Lemma 1. For the induction hypothesis, suppose the claim

(4.1) is right for l − 1 > 1. Let x ∈ ⋃l
i=1 Pi. If x ∈ ⋃l−1

i=1 Pi there exists by induction
hypothesis an element a ∈ Al−1 such that a ≺Θǫ x. Thus, a is also a member of the sub-
sequent archive Al or is replaced by an element p ∈ Pl with p ≺ a. In both cases there
exists an element in Al which Θǫ-dominates x. In case x ∈ Pl the claim follows again
by Lemma 1 sinceAl = ArchiveUpdateT ight1ǫ,∆̃(Pl, Al−1), and the proof is complete.

Next, we are interested in the limit behavior of the sequence Ai of archives within
the use of a stochastic search procedure. To guarantee convergence, we have to make
several (mild) assumptions on the model as well as on the process to generate new
candidate solutions. Since we primarily address continuous optimization, we assume
that F is continuous and that the domain Q is compact (e.g., an n-dimensional box
defined by box constraints). By this it follows that the image F (Q) is bounded which
allows for a finite size Pareto set approximation in the sense of Definitions 4, 7 and 8
for every value of ǫ ∈ Rk

+. Note that this property is always true for discrete MOPs
(i.e., |Q| < ∞). Further, we have to make the following assumption on the generation
process (see also (Schütze, 2004; Schütze et al., 2008)):

∀x ∈ Q and ∀δ > 0 : P (∃l ∈ N : Pl ∩ Bδ(x) ∩ Q 6= ∅) = 1, (4.2)

where P (A) denotes the probability for event A. Assumption (4.2) says that every
neighborhood U∩Q of every point gets ‘visited’ byGenerate() after finitely many steps
with probability one. The following consideration shows that we cannot assume less: if
(4.2) does not hold, there exists with probability one a point x ∈ Q and a neighborhood

Ũ = U ∩ Q of x such that no candidate solution p ∈ Pl lies in Ũ for all l ∈ n. Thus,
no convergence can be guaranteed since a part of the Pareto set can be contained in Ũ
which is never ‘visited’.
We point out that our results also hold for discrete models. In case the MOP is discrete,
assumption (4.2) reads as

∀x ∈ Q : P (∃l ∈ N : x ∈ Pl) = 1, (4.3)

which is e.g. fulfilled if Generate() is a homogeneous finite Markov chain with irre-
ducible transition matrix ((Rudolph, 1998; Rudolph and Agapie, 2000)).
The next theorem shows that under these assumptions a generic stochastic search al-
gorithm (Algorithm 1) coupled with the archiver in Algorithm 4 generates a sequence
of archives which forms with probability one after finitely many steps a (∆, Θǫm)-tight
ǫ-approximate Pareto set.

Theorem 4 Let an MOP F : Rn → Rk be given, where F is continuous, let Q ⊂ Rn

be a compact set and ǫ ∈ Rk
+. Let ǫm := mini=1,...,k ǫi, ǫM := maxi=1,...,k ǫi, further let

∆, ∆̃ ∈ R+ be given such that ǫM < ∆̃ < ∆, let 0 < Θ < 1, and let assumption (4.2)
be fulfilled. Then an application of Algorithm 1, where ArchiveUpdateT ight1ǫ,∆̃ is used to
update the archive, leads to a sequence of archives, such that there exists with probability one an
l1 ∈ N such that Al is a (∆, Θǫm)-tight ǫ-approximate Pareto set for all l ≥ l1.

Proof: First, we turn our attention to the question of which elements are added to the
archive. The crucial expression E (line 3 of Algorithm 4) reads as follows:

(∃a ∈ A : a ≺ p)
︸ ︷︷ ︸

A

or (∃a1 ∈ A : a1 ≺Θǫ p
︸ ︷︷ ︸

B1

and ∃a2 ∈ A : d∞(F (a2), F (p)) ≤ ∆̃
︸ ︷︷ ︸

B2

)
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Since ¬E = (¬A and¬B1) or (¬A and¬B2) and since ¬B1 implies ¬A it follows that
points p ∈ Rn are added to a given archive A if (and only if) one of the two following
expressions is true

(E1) 6 ∃a ∈ A : a ≺Θǫ p, or

(E2) 6 ∃a ∈ A : a ≺ p and ∀a ∈ A : d∞(F (a), F (p)) > ∆̃.
(4.4)

Now we are in the position to prove the theorem. By E1 it follows that all
points, which are added by ArchiveUpdateEps1 to the archive are also added by
ArchiveUpdateT ight1. Thus, by Theorem 1 it follows that there exists with probability
one a l0 ∈ N such that Al is an ǫ-approximate Pareto set w.r.t. F

∣
∣
Q
for all l ≥ l0, since

points a ∈ Al are only removed from the archive if in turn another point ã is added
which dominates a (if x ≺ y and y ≺ǫ z it follows that x ≺ǫ z).
It remains to show the ‘tightness’ of the limit archive. The uniformity level ǫm follows
directly by an inductive argument and using the ‘exclusion strategy’ (4.4). This and the
fact that F (Q) is bounded is the reason that the size of the archive is bounded above
for a given MOP by a number n0 = n0(ǫ, F (Q)), which will be needed for further con-
sideration (see Section 4.3 for more details).
As mentioned in Section 3 (see (3.2) and related discussion) the claim is right for an
archive Al if

F (PQ) ⊂ CAl,∆. (4.5)

Assume that Al is an ǫ-approximate Pareto set for all l ≥ l0 and let l ≥ l0. By
construction of ArchiveUpdateT ight1 it follows that if F (PQ) ⊂ CAl1

,∆ this inclusion
holds for all l ≥ l1 since in this case no further point will be added to the archive (since
the expressions E1 and E2 in (4.4) will be false for all further candidates). That is, it
is sufficient to show the existence of such a number l1. In the following we will do
this by contradiction: first we show that by using ArchiveUpdateT ight1 and under
the assumptions made above only finitely many replacements can be done during the
run of the algorithm. Then—under the assumption that there exists no number l1 with
the above property—we construct a contradiction by showing that infinitely many
replacements have to be done during the run of the algorithm with the given setting.

Let a finite archive A0 be given. If a point p ∈ Rn replaces a point a ∈ A0 (see lines
8 and 11 of Algorithm 4) it follows by construction of ArchiveUpdateT ight1 (see also
(4.4)) that

∃i ∈ 1, . . . , k : fi(p) < fi(a) − Θǫi. (4.6)

Since the relation ‘≺’ is transitive, there exists for every a ∈ A a ‘history’ of replaced
points ai ∈ Ali where Equation (4.6) holds for ai and ai−1. Since F (Q) is bounded
there exist li, ui ∈ R, i = 1, . . . , k, such that F (Q) ⊂ [l1, u1] × . . . × [lk, uk]. After r
replacements there exists at least one a ∈ Al(r) such that the length h of the history of
a is at least h ≥ ⌈r/n0⌉, where n0 is the maximal number of entries in the archive (see
above). Denote by a0 ∈ A0 the root of the history. For a, a0 it follows that

∃i ∈ 1, . . . , k : fi(a) < fi(a0) − sΘǫi,

where s ≥ ⌈h/k⌉. For s̃ > dmax := Θ−1 maxi=1,...,k
ui−li

ǫi
(which is given for

r̃ > n0kdmax + n0 + 1) we obtain a contradiction since in that case fi(a) < li and
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thus F (a) 6∈ F (Q). Hence it follows that there can be done only finitely many such
replacements during the run of an algorithm.

Assume that such an l1 as claimed above does not exist, that is, that F (PQ) 6⊂ CAl,∆ for
all l ∈ N. Hence there exists a sequence of image points

yi ∈ F (PQ)\CAi,∆ ∀i ∈ N. (4.7)

Since F (Q) is compact there exists an accumulation point y∗ ∈ F (PQ), that is, there
exists a subsequence {ij}j∈N with

yij
→ y∗ for j → ∞. (4.8)

Since y∗ ∈ F (PQ) there exists a neighborhood U1 of y
∗ such that the following holds

∀(y, ỹ) ∈ F (Q) × U1 : y ≤p ỹ ⇒ d∞(y, ỹ) ≤ ∆̃ (4.9)

Let Ũ1 := U1 ∩ B∞
(∆−∆̃)/2

(y∗). By (4.2) it follows that there exists with probabil-

ity one an l1 ∈ N and an x̃1 ∈ Pl0+l1 with ỹ1 = F (x̃1) ∈ Ũ1. By construction of

ArchiveUpdateT ight1 there exists an element a1 ∈ Al0+l1 such that d∞(F (a1), ỹ1) < ∆̃
(due to (4.4) there are three possibilities: E2 is false and thus there already exists an
a1 ∈ Al0+l1 which (a) dominates x̃—in this case the claim follows with (4.9)—or (b)
where d∞(F (a1), ỹ1) ≤ ∆̃, or E2 is true and thus (c) a1 = x̃1 is added to the archive).
Thus we have

d∞(F (a1), ỹ) ≤ d∞(F (a1), ỹ1) + d∞(ỹ1, ỹ) < ∆̃ + 2
∆ − ∆̃

2
= ∆ ∀ỹ ∈ Ũ1. (4.10)

By (4.7) and (4.8) there exist j1, l̃1 ∈ N with
yij1

∈ Ũ1\Cl0+l1+l̃1,∆.

Since by (4.10) it holds that d∞(yij1
, F (a1)) < ∆ it follows that a1 6∈ Al0+l1+l̃1

, which is
only possible via a replacement in Algorithm 4 (lines 8 and 11).
In an analogous way a sequence {ai}i∈N of elements can be constructed which have
to be replaced by other elements. Since this leads to a sequence of infinitely many
replacements this is a contradiction to the assumption, and the proof is complete.

Note that the ‘exclusion strategy’ (4.4) prevents convergence of the elements of the
archives toward the Pareto set. This is due to the fact that for points x ∈ Q which are
‘nearly’ optimal, the set of points inQwhich (i) dominate x and (ii) are not ǫ-dominated
by x can be empty. Such nearly optimal archive entries will hence never be replaced
by other better solutions, and thus, the elements in the archive stop improving when
using Algorithm 4 at a certain stage, depending on the value of ǫ. This leads directly to
the next archiver.

4.2 Archiver ArchiveUpdateT ight2

The second archiving strategy we consider here,ArchiveUpdateT ight2which is shown
in Algorithm 5, overcomes the problem stated above by changing the criterion to ac-
cept a candidate solution (which is in fact the only difference between Algorithms 4
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and 5). In turn, by using Algorithm 5 the uniformity of the archive solutions can not
be guaranteed any more and the (theoretical and pessimistic) upper bounds on such
archives increases by one order of magnitude compared to the first archiving strat-
egy (see Section 4.3). The difference of the two archivers ArchiveUpdateT ight1 and
ArchiveUpdateT ight2 is the strategy to accept a candidate solution p ∈ P . Given an
archive A0 ArchiveUpdateT ight2 accepts p if (i) either term E1 or E2 of (4.4) is true
(line 3 of Algorithm 5) or (ii) if there exists an element a ∈ A0 which is dominated
by p (line 8 of Algorithm 5). In case (i) also ArchiveUpdateT ight1 accepts the candi-
date solution, the difference of both archivers is case (ii), which is not considered in
ArchiveUpdateT ight1.
Under the same assumptions as made above for Algorithm 4 the following theorems
show that the same monotonicity result on the approximation quality can be obtained,
and that the distance dist(Al, PQ) of the archives Al to the Pareto set PQ vanishes for
l → ∞ (the elements of the archive ‘converge’ to the Pareto set). Thus, if the limit
archive exists (the sequence |Al| of the magnitudes of the archives is not necessarily
converging), this set forms a ∆-tight ǫ-Pareto set. Though we have to assume in The-
orem 6 that F has to be injective to guarantee the convergence, this property is in fact
not relevant in practice (see e.g., Section 6.2).

Algorithm 5 A := ArchiveUpdateT ight2ǫ,∆̃ (P, A0)

1: A := A0

2: for all p ∈ P do
3: if E1 is true or E2 is true then ⊲ see (4.4)
4: A := A ∪ {p}
5: end if
6: for all a ∈ A do
7: if p ≺ a then
8: A := A ∪ {p}\{a}
9: end if
10: end for
11: end for

Theorem 5 Let l ∈ N, ǫ ∈ Rk
+, 0 < Θ < 1, and 0 < ∆̃ < ∆. Further, let Ai, Pi, i = 0, . . . , l,

be as defined in Algorithm 1, where ArchiveUpdateT ight2ǫ,∆̃ is used to update the archive.
Then

∀x ∈
l⋃

i=1

Pi : ∃a ∈ Al : a ≺Θǫ x. (4.11)

Proof: Analogue to proof of Theorem 3.

Theorem 6 Let (MOP) be given and Q ⊂ Rn be compact, and let there be no weak Pareto
points in Q\PQ. Further, let F be injective and let assumption (4.2) be fulfilled. Then an
application of Algorithm 1, where ArchiveUpdateT ight2ǫ,∆̃ is used to update the archive,
leads to a sequence of archives Al, l ∈ N, where the following holds:
(a) There exists with probability one a l1 ∈ N such that Al is a ∆-tight ǫ-approximate Pareto
set w.r.t. F

∣
∣
Q
for all l ≥ l1.
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(b)

lim
l→∞

dist(Al, PQ) = 0, with probability one.

Proof: All parts of the proof are analogue to parts in proofs of Theorem 2 and
Theorem 4.

4.3 Bounds on the Limit Archive Sizes

Since we are aiming for finite size representations of the Pareto front, the bounds of the
magnitudes of the archives obtained by the new archiving strategies are of particular
interest which we address in this section.

Upper Bounds The upper bounds on the archive sizes which result by the novel
archiving strategies can be derived in analogy to the bounds for the archivers presented
in (Schütze et al., 2008):
The maximal archive size maintained by ArchiveUpdateT ight1 is the same as for
ArchiveUpdateEps1 and given by

|Al| ≤
k∑

i=1

k∏

j=1

j 6=i

⌈
Mj − mj

Θǫj

⌉

, (4.12)

where mi = minx∈Q fi(x), Mi = maxx∈Q fi(x), 1 ≤ i ≤ k, and |A0| = 1. Note
that the magnitude can only be influenced by the value of ǫ. The existence of this
bound is due to the ’exclusion strategy’ (4.4), which makes it possible that the se-
quence of archives converges after finitely many steps. On the other hand, exactly this
feature prevents that we can guarantee dist(F (A), F (PQ)) and thus dH(F (A), F (PQ))
to be small (say ≤ ∆), as the following example shows (compare to Figure 3): as-
sume that the elements a3, a2, a1 are inserted into the archive in this order. By con-
struction of ArchiveUpdateT ight1, these points will not be removed in the subsequent
steps since there exists no point p with F (p) ∈ F (A)\CA,∆ which dominates ai, i ∈
{1, 2, 3}. In such a manner an example can be constructed with dist(F (A), F (PQ)) =
maxi=1,..,k(Mi −mi). However, this (bad) theoretical value has never been observed in
computations.

The maximal archive size obtained by ArchiveUpdateT ight2 is equal to the one ob-
tained by ArchiveUpdateEps2:

|Al| ≤
k∏

i=1

⌈
Mi − mi

Θǫi

⌉

,

wheremi, Mi are as defined above and |A0| = 1.

Lower Bounds The lower bound of |A∞| for both new archiving strategies is obvi-
ously given by 1. For this, consider e.g. f1 = f2 = . . . = fk to be a convex function
which takes its (unique) minimum insideQwhich leads to |PQ| = 1. Though desired, it
is hardly possible to provide meaningful lower bounds for general MOPs since (a) the
archive size is in practice mainly determined by the value of ǫ, in particular when the
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Figure 3: Possible example of a set which was generated by ArchiveUpdateT ight1with
dist(F (A), F (PQ)) > ∆.

entries of ǫ are much smaller than∆, and since (b) the Pareto front can fall into different
connected components. However, if this is not the case, one can obtain the following
result in the bi-objective case, which we state without the (obvious) proof.

Proposition 1 Let m̃i = minx∈PQ
fi(x) and M̃i = maxx∈PQ

fi(x), i = 1, 2, and let F (PQ)
be connected. Then, when using ArchiveUpdateT ight1ǫ,∆̃ or ArchiveUpdateT ight2ǫ,∆̃, the
archive size maintained in Algorithm 1 for the limit archive is bounded by

|A∞| ≥ max
i=1,...,k

⌈

M̃i − m̃i

2∆

⌉

(4.13)

An analogous statement for k > 2—e.g., by estimating the Pareto front by a k-Simplex
in objective space where the vertices are the minima of the objectives—, however, does
not hold since the (k − 1)-dimensional volume of the Pareto front can be arbitrarily
small.

5 Integration into Iterative Search Methods

Since this work deals with the design of archiving strategies, the question that natu-
rally arises is how these methods can be integrated efficiently into an iterative stochastic
search process such as a MOEA, which we address here.
One obvious benefit of aMOEAwhich is equippedwith an (external) archive compared
to a ’classical’ MOEA with fixed population size is certainly given by the convergence
properties of the archiver (see Thms. 4 and 6 of this paper, or the results of the works
discussed in Section 1). Another possible advantage is that the globality of the search
will be increased: in case the external archive is considered for the mating pool, the
number of ’well-converged’ and ’well-distributed’ parent solutions is increased lead-
ing to a potentially more thorough search around the Pareto set. In fact, in (Deb et al.,
2005), where a MOEA with an external archive has been studied, it has been observed
that this algorithm is

’successful in finding well-converged and well-distributed solutions with a much smaller
computational effort than a number of state-of-the-art MOEAs’.
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This algorithm, ǫ-MOEA, can be viewed as a possible prototype for the integration of
an archiving strategy into the evolutionary search process. The procedure is as follows:
the algorithm contains a population (Pl in iteration step l) and an archive (Al in step l).
A new offspring o is created by crossover of an archive solution a0 ∈ Al and an individ-
ual p ∈ Pl. Both sets Al and Pl are then updated by o (following different strategies).
This process is repeated until a prescribed termination criterion is fulfilled. Apparently,
any archiving strategy for the update of the external archive Al can be used, including
for instance the ones proposed in this paper.
However, apart from this universally applicable prototype for the integration of the
archivers into a MOEA, there is a particular property of the two strategies proposed
above which needs special attention: variations of existing archive entries which are
too small will be discarded from the archiver for the subsequent archive. Due to the
‘exclusion strategy’ (4.4) used in Algorithms 4 and 5 there exists for every solution a
from a given archive A a neighborhood Ua of a such that every point u ∈ Ua will be re-
jected from the archive by a. Regarding this, it has to be noted that not every crossover
(as well as mutation) strategy is suitable for a coupling with ArchiveUpdateT ight1 or
ArchiveUpdateT ight2. For instance, there is a potential conflict in terms of efficiency
when using e.g. the simulated binary crossover operator (SBX) and the polynomial mu-
tation, probably the most commonly used operators for crossover and mutation (Deb,
2001). When a0 ∈ Al and p ∈ Pl are used e.g. for crossover

2, the probability is relatively
high that the offspring o is contained in Ua0

(or in Up which leads to the same problem)
since the probability density has a peak at a0 (and a second peak at p). As it has been
demonstrated on numerous benchmark and real world problems, SBX and polynomial
mutation are highly valuable for the evolution of Pl. Thus, the operators will also be
beneficial for the evolution ofAl, but probably only in the long run. In order to obtain a
greedy strategy for the evolution of Al, which is desired for fast convergence, both SBX
and polynomial mutation do not seem to be well suited since in case fast convergence
is sought a minimal distance of the offspring o to a0 is required.
In case gradient information is available (which is for instance assumed in many recent
studies dealing with memetic strategies, e.g., (Brown and Smith, 2005; Bosman and de
Jong, 2005; Sharma et al., 2007; Harada et al., 2007; Schütze et al., 2008)), the minimal
distance of a0 and o such that o 6∈ Ua0

—i.e., that o is possibly accepted by the archiver—

can be estimated as follows: since ∆̃ < ∆we can assume that we are (ideally) interested
in a point o in the neighborhood of a0 such that

‖F (a0) − F (o)‖∞ = ∆, (5.1)

since such point will at least not be discarded due to the exclusion strategies of the
archers proposed above. In case F is Lipschitz continuous there exists an L ≥ 0 such
that

‖F (x) − F (y)‖∞ ≤ L‖x − y‖∞, ∀x, y ∈ Q. (5.2)

Since we are heading in this paper for gap free approximations we can assume that∆ is
’small’, and thus, that a0 and o are close to each other. Hence, it is sufficient to estimate
the Lipschitz constant L locally around a0, which can be done by

La0
:= ‖DF (a0)‖∞ = max

i=1,...,k
‖∇fi(a0)‖1, (5.3)

2An analogue statement holds for the polynomial mutation.
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in case the gradients are available, where DF (a0) ∈ Rm×n denotes the Jacobian and
∇fi(a0) ∈ Rn, i = 1, . . . , m, the objectives’ gradients. An alternative way to approxi-
mate La0

without using gradient information is e.g.

L̃a0
:=

‖F (a0) − F (ã0)‖
‖a0 − ã0‖

, (5.4)

where ã0 is close to a0. Approximation (5.4) is certainly less accurate than (5.3), but we
think that accuracy does not play an important role in this context.
Using such a local approximation La0

(e.g., (5.3) or (5.4)), the distance of a0 and an
offspring owhich satisfies (5.1) can be estimated by

‖a0 − o‖∞ ≈ ∆

La0

(5.5)

Using this, a neighborhood search (or mutation) can e.g. be realized as follows: assume
that the difference of F (a0) and F (o) should be in the range [∆, λ∆], where λ > 1, then
it follows analogue to (5.5) that ‖a0−o‖ ∈ [∆/La0

, λ∆/La0
], and thus, the offspring can

e.g. be taken uniformly at random from the pierced sphere B∞
λ∆

La0

(a0)\B∞
∆

La0

(a0):

(1) compute La0

(2) choose d ∈ B1(a0) and h ∈ [∆/La0
, λ∆/La0

] uniformly at random

(3) set o := a0 + h d
‖d‖∞

We do, however, not investigate the efficiency of this mutation strategy here since
this would go beyond the scope of this paper. Instead, we give evidence that the
step size control (5.5) can be used in a particular local search strategy leading to a
possible efficient hybridization of this method with a MOEA which is equipped with
the archivers presented in Algorithms 4 and 5 (which was one motivation for the need
of gap free approximations).
To be more precise, we want to demonstrate that in the underlying context a hybridiza-
tion with multi-objective continuation methods (e.g., (Hillermeier, 2001), (Schütze
et al., 2005)) could be advantageous since both the concept of ǫ-dominance as well as
the tightness can be directly integrated into it (see also (Schütze, 2004) for a similar
study).

The basic idea of multi-objective continuation methods is, roughly speaking, to move
along the set of (local) Pareto points. To be more precise, in the course of the algorithm
one is faced with the following setting: given a (locally optimal) solution x0 ∈ Q and
a search direction v ∈ Rn with ‖v‖ = 1 (obtained via linearization of the solution set at
x0), the task is to find a ‘suitable’ step size h0 ∈ R+ for the next guess y0 = x0 + h0v.
Motivated by previous considerations one can e.g. ask for a step size h0 such that

‖F (x0) − F (y0)‖∞ = ∆, (5.6)

where ∆ is the tightness value taken in Algorithms 4 and 5 (alternatively, ∆ in (5.6)
can be replaced e.g., by ‖ǫ‖∞ for Algorithms 2 and 3). Following the discussion made
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above and using a local approximation of Lx0
as (5.3) or (5.4), one can use the following

step size control:

h0 =
∆

Lx0

(5.7)

Note that this estimation only holds for small values of ∆ since the Lx0
is a local ap-

proximation. If∆ is too large, Lx0
can not serve as a suitable Lipschitz estimation, and

the value of h0 may not be suitable. The following two examples show, however, that
the control (5.7) can be beneficial for small values of ∆. Such a step size control would
be interesting for hybrids of continuation methods with EMO strategies (e.g., (Harada
et al., 2007; Schütze et al., 2008)) since in this case the archivers presented above could
efficiently be integrated into the entire algorithm as external archives, which we want
to demonstrate on the following two examples.

5.1 Example A

In order to understand the possible impact of the discussion made above on the con-
tinuation methods, we first apply the step size control on an academic example:

F : R2 → R2

F (x) =

(
(x1 − 1)4 + (x2 − 1)4

(x1 + 1)2 + (x2 + 1)2

)

(5.8)

The Pareto set of MOP (5.8) is given by

P =

{(
x
x

)

: x ∈ [−1, 1]

}

.

Figure 4 shows two different discretizations ofP and F (P). In Figure 4 (a) the Pareto set
is approximated by points xi, i = 1, . . . , N , which are placed equidistant in parameter
space:

xi =

(
−1
−1

)

+
2i

N

(
1/

√
2

1/
√

2

)

.

Next, the Pareto set was discretized using the adaptive step size control which is pro-
posed above:

x0 =

(
−1
−1

)

, xi+1 = xi + hi

(
1/

√
2

1/
√

2

)

,

where hi is taken from (5.7) and vi = (1/
√

2, 1/
√

2)T was chosen as the search direction.
Figure 4 (b) shows the discretization points xi for ǫ = (1, 1), ∆ = 1, and Θ = 0.99
yielding a satisfying distribution of the solutions on the Pareto front.

5.2 Example B

Next we consider the following MOP:

f1, f2 : Rn → R
fi(x) =

n∑

j=1

j 6=i

(xj − ai
j)

2 + (xi − ai
i)

4, (5.9)
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Figure 4: Discretizations of the Pareto set of MOP (5.8) with (a) fixed step size and (b)
adaptive step size control.

where
a1 = (1, 1, 1, 1, . . .) ∈ Rn

a2 = (−1,−1,−1,−1, . . .) ∈ Rn,

In Figures 5 and 6 some numerical results are presented, where we have used the con-
tinuation method proposed in (Schütze et al., 2005). To be more precise, we have ap-
plied the step size control on the distance between the current solution and the predictor,
since this point mainly determines the distance of two solutions.
Figure 5 shows the result for n = 3, ǫ = (2, 2), and ∆ = 2. In total, 23 solutions
were obtained. This fits quite well with the bound which is given in Section 4.3 when
choosing Θ = 1 and when replacingMi by the maximal value of fi on the Pareto set,

M̃i := maxx∈PQ
fi(x) = 24, i = 1, 2, andmi = 0. In that case we obtain:

|Ai| ≤
⌈

24 − 0

2

⌉

+

⌈
24 − 0

2

⌉

= 24. (5.10)

This example shows the significant difference between the archivers
ArchiveUpdateEpsi, i = 1, 2 which are ‘merely’ based on ǫ-dominance and the novel
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strategies which aim for a tightness of the approximation: if points with images near to
the middle of the Pareto front in Figure 5 (b) are inserted into the archive, e.g. the points
m1 with F (m1) = (5, 2) and m2 with F (m1) = (2, 5), then no more points with images
at the ends of the Pareto curve will be added further on since these are all ǫ-dominated
either bym1 orm2. The resulting approximation would form an ǫ-approximate Pareto
set, but would apparently not ‘describe’ the appropriate Pareto set graphically. This
would change, however, for one of the novel archiving strategies, which we investigate
more in detail in the next section.
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Figure 5: Result of the continuation method with step size control on MOP (5.9) for
n = 3 in parameter space and image space.

6 Numerical Results

Here we make a comparative study on three test problems in order to illustrate the
effect of the different archiving strategies. For the subsequent comparisons we have
used the following archiving strategies:
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(b) Zoom of (a)

Figure 6: Result of the continuation method with step size control on MOP (5.9) for
n = 20 in image space: all solutions (a) and zoom (b).

(ND) ArchiveUpdateND,
(Eps1) ArchiveUpdateEps1,
(Tight1) ArchiveUpdateT ight1, and
(Tight2) ArchiveUpdateT ight2,

where ArchiveUpdateND is the archiver which stores all nondominated solutions, i.e.,

ArchiveUpdateND(P, A0) := {x ∈ P ∪ A0 : y 6≺ x ∀y ∈ P ∪ A0}.
For an investigation of the convergence properties of ArchiveUpdateND we refer to
(Schütze et al., 2008).
To obtain a fair comparison of the different archivers we have decided to take a random
search operator for the generation process (the same sequence of points for all settings).
The computations have been done on an Intel Xeon 3.2 GHz processor. An implemen-
tation of all the archiving strategies discussed in this work including these examples
can be found in
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Table 1: Comparison of the magnitudes of the final archive (|AN |, rounded) and the
corresponding update times (T , in seconds) for different archiving strategies and for
MOP (5.9). We have taken the average result of 100 test runs.

ND Eps1 Tight1

|AN | 267 27 34
T 36.46 0.29 0.36

http://paradiseo.gforge.inria.fr/index.php?n=Paradiseo.Features

6.1 Example 1

First, we compare the first three different archving strategies on MOP (5.9) from
the previous example. We have taken N = 200, 000 randomly chosen points
in Q = [−1.5, 1.5]3, and the values ǫ = (1, 1) and ∆ = 2. The set obtained by
ArchiveUpdateEps1 forms probably (or is near to) an ǫ-approximate Pareto set, but
reveals gaps, which is not the case in Figure 7 (c), where ArchiveUpdateT ight1 has
been used, and where the solutions are much more regularly distributed. The ‘tightest’
approximation in this case study is certainly obtained when all nondominated points
are kept in the archive (see Figure 7 (b)). However, in that case the time which had to
be spent to update the archive3 was huge compared to the two other strategies (see
Table 1).

6.2 Example 2

Next we consider the following parameter dependent MOP (Witting and von Molo,
2006):

f1, f2 : R2 → R
f1(x, y) =

1

2
(
√

1 + (x + y)2 +
√

1 + (x − y)2 + x − y) + λ · e−(x−y)2

f2(x, y) =
1

2
(
√

1 + (x + y)2 +
√

1 + (x − y)2 − x + y) + λ · e−(x−y)2

(6.1)

Figure 8 shows examples for resulting limit sets. Hereby we have taken N = 10, 000
randomly chosen points in Q = [−1.5, 1.5]2 and λ = 0.85 for the value of the additional
parameter, as well as the values ǫ = (0.1, 0.1), and ∆ = 0.1 for the archiving strategies

(using ∆̃ = ∆ and Θ = 1). Also in this case the result of ArchiveUpdateEps1 reveals
gaps in the approximation, which does not occur when using ArchiveUpdateT ight1
or ArchiveUpdateT ight2. Note that the differences of the latter two solutions are sub-
tle as expected: both approximations are similar, but the final solutions obtained by
ArchiveUpdateT ight2 have converged better. The difference in the magnitudes of the
archive sizes in this example (and in all other examples examined by the authors) do
not differ significantly, though the theoretical upper bounds for both strategies do. Also
in this example,ArchiveUpdateND delivers the ‘tightest’ approximation containing by

3The elements of the all archives were stored using a linear list.
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Figure 7: Three limit achives for MOP (5.9) obtained by different archiving strategies.
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Table 2: Distances of the images of the final archives to the approximation F (AP ) of
the Pareto front of MOP (6.1) (averaged over 100 test runs). The Hausdorff distances of
the solutions obtained by ArchiveUpdateT ight1 and ArchiveUpdateT ight2 are nearly
to the optimum which is given here by∆ = 0.1.

Eps11 Tight1 Tight2 ND

dist(F (Afinal), F (AP )) 0.1029 0.1029 0.0079 0.0135
dist(F (AP), F (Afinal)) 0.9209 0.1092 0.1042 0.0290
dH(F (Afinal), F (AP )) 0.9209 0.1092 0.1042 0.0290

far the most elements which results in a longer running time for the update process.
Since the Pareto set of this MOP is given analytically by

P =

{(
x

− x

)

: x ∈ [−1.5, 1.5]

}

(6.2)

this allows us to have a closer look at the approximation qualities of the obtained solu-
tions. Figure 8 shows the distances between the final archives and the Pareto front. For
the latter we have used the following discretization of (6.2):

AP :=

{(
xi

− xi

)

: xi = −1.5 + 3i/500, i = 0, . . . , 500

}

(6.3)

The Hausdorff distances of the two final archives of the novel archivers are close to 0.1
which is the optimum in this case since this is the chosen value of ∆. The main differ-
ence between the two solutions is the value of dist(F (Afinal), F (AP))whichmeans that
the elements obtained byArchiveUpdateT ight2 are nearer to the Pareto front. The gaps
which can be observed when using ArchiveUpdateEps1 (Figure 8 (a)) are reflected by
its relatively large value of dist(F (Afinal), F (AP )) in Table 2. Best values are obtained
by ArchiveUpdateND, but this has to be ‘paid’ by the much larger amount of elements
in the archive. Further, it can be argued that approximations with Hausdorff distances
less than 0.1 (the values of ∆ and ǫi, i = 1, 2) to the Pareto front are not needed.

6.3 Example 3

Finally we consider a 3-objective model. For this, we extend MOP (5.9) by adding a
third objective which is analogue to f1 and f2, and choose a3 = (1,−1, 1,−1, . . .) ∈ Rn.
In order to demonstrate one possible benefit of ǫ-dominance based archivers against
the classical archiver ArchiveUpdateND, which stores all nondominated solutions, we
fix in this example the running time of the different algorithms (i.e., in our case the
stochastic search algorithm coupled with the different archiver). Figure 9 shows one
comparative result for n = 10 and where the running time was fixed to 5 minutes.
Denote by A the final archive when ArchiveUpdateND was used, and by B the result-
ing archive coming from ArchiveUpdateT ight1. The magnitudes are |A| = 914 and
|B| = 529. It can be observed that compared to A the spread of the solutions of B is
much better while a larger region of the image space is ’covered’ though its magnitude
is less. To measure the approximation quality we use the epsilon indicator (Zitzler et al.,
2003), where Iǫ(A, B) gives the smallest value of ǭ ∈ R such that A is an ǫ-approximate
Pareto set of B where ǫ = (ǭ, . . . , ǭ), i.e.,

Iǫ(A, B) := min{ǭ ∈ R | ∀b ∈ B ∃a ∈ A : a ≺ǫ b}. (6.4)
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Figure 8: Four limit achives for MOP (6.1) obtained by different archiving strategies.
The magnitudes are |Aeps1| = 13, |AND| = 511, |Atight1| = 37, |Atight2| = 41. See Table
2 for their approximation qualities.

In our case, we obtain for A and B

Iǫ(A, B) = 0.9624 and Iǫ(B, A) = 0.85775, (6.5)

indicating that B is a (slightly) better approximation of the Pareto front than A. If the
relative ǫ-dominance

x ≺relǫ y ⇔ F (x) ≤p (1 + ǫ)F (y) (6.6)

is used for the epsilon indicator, the difference of the approximation qualities gets more
significant:

Irel
ǫ (A, B) = 1.082 and Irel

ǫ (B, A) = 0.183. (6.7)

These values can be interpreted as follows: if the objective values of A are scaled up to
20 percent, then A is entirely dominated by B. On the other hand, B has to be scaled
up by more than 100 percent (i.e., the values have to be doubled) such that it gets dom-
inated by A.
The main reason for the difference of the approximations is that an archiver based
on ǫ-dominance accepts in general less solutions than all nondominated ones which
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makes the update process much faster, and thus, more points can be evaluated
by the generator within the given time budget. In this case the algorithm using
ArchiveUpdateND evaluated 6.6e5 different test points while 3.5e7 points where eval-
uated using ArchiveUpdateT ight1within the same time.

(a) ArchiveUpdateND (b) ArchiveUpdateT ight1

Figure 9: Two different solution sets for the MOP in Example 3. We have chosen ǫ =
(1, 1, 1),Θ = 1, and∆ = 5.

7 Conclusions and Future Work

We have proposed two archiving strategies for obtaining finite size and gap free (or
’tight’) Pareto front approximations by stochastic search algorithms and have proven
the convergence of the resulting archives. The limit set using the first archiver forms
with probability one a (∆, Θǫm)-tight ǫ-approximate Pareto set, that is, a gap free Pareto
front approximation—measured by the value of ∆—which provides the guaranteed
uniformity level Θǫm. The limit set of the second strategy forms a ∆-tight ǫ-Pareto set,
which offers a better approximation quality measured in the Hausdorff-sense, but in
turn lacks the uniformity.
For future work, the development of an archiving strategy which produces a sequence
of archives leading to a (∆, ǫm)-tight ǫ-Pareto set would be of particular interest. It
could also be interesting to integrate the archiving strategies directly into the stochastic
search process (as e.g. done in (Deb et al., 2005) for an evolutionary algorithm) in order
to obtain a fast and reliablemulti-objective optimization algorithm. Finally, the analysis
of the archiving strategies could be advanced. The main focus in this paper was on
the limit behavior of the sequence of archives, but there are also further interesting
topics worth investigating. One question which naturally arises is the speed of the
convergence. Related works for single-objective optimization problems (e.g., (Voigt
et al., 1995; Rudolph, 1997b; Rudolph, 1997a)) show that this not straightforward.
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