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Abstract

In the field of metaheuristics, evolutionary computatio@jEmbodies some of the most relevant
optimization algorithms for dealing with continuous pretus, namely, Evolution Strategies (ESs),
Differential Evolution (DE) and Particle Swarm Optimizati (PSO). Many of these algorithms have
been traditionally applied to different test suites to assheir respective performance. However,
many of these test suites include (or are used with) only liomedsional problems which many state-
of-the-art algorithms are capable of solving. For thatoeasnore complex and higher dimensional
test suites have been recently proposed (e.g., the testmoposed for the Special Session on Large
Scale Global Optimization at the 2008 IEEE Congress on Eiwwlary Computation). Ant Colony
Optimization (ACO) algorithms have a long tradition as effiee solvers of combinatorial optimiza-

tion problems. However, several proposals of ACO algorgHor continuous problems have also
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been successfully applied to both academic and real-woddigms in the field of constrained and
unconstrained continuous optimization. This paper aimshatving the behavior of a well-known

ACO algorithm for continuous problems (the so-called AQ@r large scale unconstrained contin-
uous problems by considering a recently proposed test. slitaddition, we propose and study a
simple mechanism to escape from local optima. Our resutts@mpared with respect to those ob-
tained by highly competitive algorithms that have been ss= with the previously mentioned test

suite.

1 Introduction

The Ant Colony Optimization (ACO) metaheuristic [4, 5] endloes a class of algorithms derived
from the main concepts involved in the behavior of real ambmwes. These algorithms imple-
ment a colony of artificial ants aimed at finding good solutiom a problem. The ants in the
colony cooperate among them by indirect communication atediby the environmenst{g-
mergy). The most representative instantiations of the ACO metasigc are: the Ant System
(AS), AS with anelitist strategy for updating the pheromone trail levels, As. (a rank-based
version of Ant System)MAX-MZN Ant System (MMAS), and the Ant Colony System
(ACS) [5]. All of them were originally designed to operate@mbinatorial optimization prob-
lems (including some dynamic versions). There exist séegtansions of the ACO metaheuris-
tic for solving continuous problems: the first ACO extensioroperate on continuous spaces
can be found in Bilchev et al. [2]. Since then, a number of ofgireposals have been intro-
duced, such as the algorithms of Monmarché et al. [17], keinal. [14], Lei et al. [13], Dreo et
al. [6, 7], Qin Lin Chen et al. [15], Pourtakdoust et al. [18png [11], Hu et al. [10], Socha [19]

and Socha & Dorigo [21]. The algorithm adopted here is anresxéa of the ACO metaheuristic



for continuous domains introduced in [21].

It is also worth remarking some successful and recent agipits of the ACO metaheuristic
for continuous problems: Leguizambn & Coello [12] propdbs@ extension of the ACO meta-
heuristic for constrained continuous optimization protde Afshar and Madadgar [1] proposed
an application to solve reservoir operation problems; anch& and Blum [20] proposed an
approach for training of neural networks.

In this work, we study the scalability of AGO[21] when facing unconstrained continuous
optimization problems of large dimensionality. The expemtal study includes a recently pro-
posed test suite of continuous problems which can help tesagbe capacity of optimization
algorithms for dealing with large dimensional problems.d&idnally, a simple mechanism to
escape from local optima is proposed. This pretends to bérghetep towards improving the
ACOg in order to achieve a design of a more advanced and comgefiGO algorithm with
respect to other state-of-the-art metaheuristic algmstfor continuous problems.

The remainder of this paper is organized as follows. Se@ibnefly describes the original
version of the ACQ algorithm and Section 3 presents the test problems adoptexuif exper-
imental study. The section about our experimental studgt{@e4) involves three important
subsections: Section 4.1 presents the results of a prelmnstudy of ACQ in the test suite
(this section is aimed to fine-tune the parameters of A@@d observe its resulting behavior).
Section 4.2 describes a simgleversity mechanism to improve the performance of AC@\-
gorithm ACQ;-Div) and shows the corresponding results which are contparth those found
at a previous stage of the experimental study. In SectioncuBimproved results for the test

suite considered are compared with those found by the se¢t@firauristic algorithms presented



at the CEC’08 competition. Finally, in Section 5 we presantapnclusions based on the results
obtained by both AC® and ACQ;-Div. In addition, some possible lines of future researah ar

also outlined.

2 The ACOg algorithm

Taking into account that the ACO metaheuristic works byeneentally building the solutions
according to a biased (by pheromone trail) probabilistioichd of solution components, the
ACOy algorithm was designed with the aim of obtaining a sgbrobability density functions
(PDFs). Each PDF is obtained from the search experiencesamgkd to incrementally build a
solutionx € R” considering in turn each component(Vi = 1... D).

To approximate a multimodal PDF, Socha & Dorigo [21] progbad&saussian kernel which

is defined as a weighted sum of several one-dimensional @aussctionsy;(z) as follows:
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where: € {1,..., D} identifies the number of dimension, i.e., AgQuses as many Gaussian
kernel PDFs as the number of dimensions of the problem. litiaddG*® is parameterized with
three vectorsw, the vector of weights associated with the individual Garsfunctions;u’,
the vector of means; an#t, the vector of standard deviations. All these vectors haveigality

k, which constitutes the number of Gaussian functions ired/\Figure 1 shows a superposition
of £k = 5 Gaussian functions which are intended to approximate athgpioal multimodal
Gaussian function witlk = 5 kernels.

In ACOg, a solution archive called is used to keep track of a number of solutions anal-



Figure 1: A possible set df = 5 Gaussian functions (dashed line) to achieve, by supeiposd Gaus-
sian kernel (solid line) which approximates a hypothetinaltimodal Gaussian function:), 23, 23, -,
andxg are respectively the values of the solutions at posifi¢he., the mean values for each Gaussian

function). () andu(j) are the respective lower and upper limits for dimengion

ogously to the Population Based ACO (PA0O) proposed by Guntscét al. [8]. The cardi-
nality of archiveT is k, that is, the number of kernels that conform the GaussianekeiFor
each solutiorx; € R”, ACOr maintains the corresponding values of each problem diroapsi
i.e.,zi,..., 2P, and the value of the objective functigifx;) which are stored satisfying that
f(x1) <...< f(x)) <...f(xx). Forexample, Figure 1 could represént 5 ranked solutions
in structureT’, wherez? represents the mean value corresponding to the Gausstabutisn
with the highest probability of being chosen in the next siégolution construction. On the
other hand, the vector of weightsshould satisfy that; > ... > w; > ... > wy.

The solutions il are, therefore, used to dynamically generate probabiitsdy functions
involved in the Gaussian kernels. More specifically, foraiting the Gaussian kernél’, the
three parameters, p, ando’ need to be calculated. Thus, for eaGh the values of the
i-th variable of thek solutions inT" become part of the elements of vecydr that is, u* =

{ps, ...y} = {«%,...,2%}. On the other hand, each component of the deviation vector

5



Algorithm 1 Outline of ACQ algorithm
1: Init(T'w);

N

: Get(o);
3. fortel:tyg do

4: A =BuildSols(, o);

a

T = First,(rank(I" & A));

@

Updateg);

7: end for

o' ={o},..., 0.} is obtained as:

s Lo ai]
0 =8) Y (2)
: z::l k—1
wherel € {1,...,k} is the kernel number with respect to which the deviation isutated

and¢ > 0 which is the same for all dimensions, has an effect similah&b of the pheromone
evaporation rate in ACO. Thus, the higher the valug,dhe lower the convergence speed of the
algorithm.

The pheromone update is achieved by considering ad$edf size N, which maintains
the newly generated solutions regarding Eq. 1. The felin the next algorithm iteration) is
obtained as” = Rank(T @& A), i.e., the old solutions in the archivé plus the set of newly
created solutions! are ranked. In other words, the old solutions compete ag#iesnewly
generated ones to conform the upddtedthich maintains its cardinalityk) through the whole
search process. Algorithm 2 describes a general outlifedh€C; algorithm, where Init() is in

charge of obtaining the initial set of kernels and sets timeesponding weights vector according

The setA represents the set of ants according to Socha and Dorigo [21]



to parameter; Get() calculates the values according to the initial values @t BuildSol()
obtains the new set of solutions; Firgfives the besk solutions from the old set of solutions
(T) plus the new one4); and Update() obtains a newthat will bias the sampling of the new

set of solutions for the next iteration.

3 Benchmark Problems

To conduct the experimental study (next section) we hawextsd 6 problems from the bench-
mark functions prepared for the “Special Session and Catigeon Large Scale Global Opti-
mization” at the2008 |EEE Congress on Evolutionary Computation (CEC’ 08) [22]. The prob-
lems (see Table 3) represent a set of scalable functionsgbrdimensional optimization. Par-
ticularly, the objective of this special session was to gptmthe research community newer and
challenging problems to assess current nature-inspirgghization algorithms as well as other,
novel optimization algorithms. In this way, their respeetcapacities to deal with complex and

high-dimensional problems can be better assessed and oetrgpraongst them.

4 Experimental Study

This section presents the experimental study conductesksisa the performance of the AGO
on high dimensional problems. We first present some preéingiresults obtained from experi-
ments towards observing the behavior of AC@hder different parameters settings. This prelim-
inary study was designed to help us detecting the main wasksef this algorithm when facing
large scale problems. After that, we present the implendgoteposal for dealing with the loss

of diversity and the corresponding results. The last paushes a comparison with recently



Benchmark Problems Search Range f(x*)

fi(x) =3P 2 + fbias;,z=x—o0 [-100,100] | -450
o = (01,09,...,0p); the shifted global optimum
fo(x) = maxi{|z|,1 <i < D} + fbiass,z=x—o0 [-100,100] | -450
o = (01,09, ...,0p); the shifted global optimum

fa(x) = SP5H100 - (22 — %) + (2 — 1)) + fbiasz, z=x—o+1| [-100,100] | 390

o = (01,09,...,0p); the shifted global optimum
fa(x) =3P (22 =10 - cos(27m2;) + 10) + f_biasy,z=x—o0 [-100,100] | -330
o = (01,09, ...,0p); the shifted global optimum
fs(x) =P, ﬁ — 12, cos(ZE) + 1+ f biass,z=x—o [-100,100] | -330
o = (01,09,...,0p); the shifted global optimum
fo(x) = —20exp(~0.2/5 $2, 22) [-100,100] | -330

—exp(3 S P cos(2m2)) + 20 + f_biase),

z =x—0;0 = (01,09,...,0p); the shifted global optimum

proposedad hoc algorithms for solving large dimensional problems. All gageriments were
run on an Intel Pentium (R) 4, CPU 3.00Gz, and 1Gb RAM; OS Linersion 2.6.23.17-88.fc7

(Red Hat 4.1.2-27). The ACQalgorithm was implemented in the C programming language.

4.1 Preliminary Resultson the Test Suite Problems

The experimental design for the AGOncluded a variation of the main following parameters:
0 <qg<1land0 < ¢ < 1. The remaining parameters were kept fixéd= 50 and N, = 50

which represent, respectively, the number of kernels aadhttimber of ants, or, similarly, the



sizes of the structurés and A described in Algorithm 2.

The initial experimentation was aimed at detecting theamgiof parameters values that
produced the best performance. In order to do that, we usead Hgpercube Sampling (LHS)
to obtain a number of design points in a space filling way amsictering problems of dimension
D = 100. From this study, we detected that typical values found énlitlerature for parameters
q and¢ were the best settings for the problems considered. Thusheset = 0.85 and small
values forg. In this case, we specifically chose the settings0.001 andq = 0.01. Both values
produced an algorithm that intensively exploits the infatimn around the Gaussian kernel on
the top of the ranking of solutions, i.e, located at the ficgtipon of the structuré".

In the following, we present the results of Ag@ the set of functiond; to fs for dimen-
sionsD = 100,500, and 1000, respectively in Tables 3, 4, and 5 (see Appendix). The style
adopted for the presentation of the results is similar to fibldowed in the Special Session at
CEC’08. For example, our tables include three differentgpaccording to the number of func-
tion evaluations (FES) which varies depending on the prolslelimension. The variation of
FES will allow us to determine if the algorithm is capable ohtinuing the exploration of the
search space as more evaluations are allowed. All the noahegsults displayed in the tables
represent the Error Values (i.€.(x) — f(x*), wherex andx* are, respectively, the solution
found and the optimal solution). The two possible settimggte parameter are also included
(second column). Additionally, at the end of each group reiteed by FES, the respectiye
values are displayed. These values are obtained by apghengon-parametric Mann-Whitney-
Wilcoxon test to assess the significance on the differencéserespective medians. When the

differences between the results obtained by AG@th ¢ = 0.001 andg = 0.01 are significant



at a level of 5% of confidence, the correspondirgplues are displayed in boldface.

Table 3 (dimensiorD = 100) shows that AC@ performs fairly well on the different func-
tions. For example, the best values are close to the optineafar FES =5.00¢ + 4 and FES
= 5.00e + 5. However, for FES 5.00e + 3, ACOr shows a poor performance (the number of
function evaluations is, certainly, insufficient). Forglidimension, clearly the best performance
is achieved withy = 0.01 (2nd and 3rd groups). In the first group (FES 80e + 3), there is
only one case in which = 0.001 outperforms; = 0.01. In this group, for functiongs, f3, and
f1, no significant differences were detected. Particularhfdioction fg, in all groups, no sig-
nificant differences were found for this parameters setfiige situation is similar foD = 500
and D = 1000 (Tables 4 and 5) with respect to the performance of AG®O the number of
evaluation is increased, i.e., the solutions quality isriorpd but not as much as whéh= 100.
Also, it can observed here that Ag@oes not show a consistent behavior running under the two
selected values for parameterFor the largest number of dimensions consider@d={ 1000,
Tableb5) the quality of the results are farther away from tbenoal values.

It is clear, from this set of results, that AGQeeds an extra mechanism to better explore
high-dimensional search spaces. At this point, itis imgoatrto highlight the influence of param-
eterq in the behavior of ACQ . It is well known that small values for this parameter inigns
the exploitation around the best solution found at eachti@n. The setting = 0.001 induces
a high level of exploitation, whereas= 0.01, although still small, allows the algorithm to be
more exploratory (it must be recalled that AgGhowed the best behavior when studying the
whole space of the design points). Therefore, with- 0.001 the algorithm could suffer of

premature convergence afd- 0.01 will better avoid getting trapped in local optima, but it Wil
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lose the possibility of better exploiting good quality dobns.

To finish this section, we show in Table 1 a summary of the imibgeof the parameter
on the behavior of AC@ for all problems, dimensions, and FES studied. The meanitigeo
symbols are the following>, <, and=; which indicate whether or not there exist significant

statistical differences in the results achieved by therseit= 0.01 with respect ta; = 0.001.

Table 1: Summary of the influence of parameterhere> <, and= establish a ranking relation between

g = 0.01 with respect ta; = 0.001 based on the statistical test.

FES =5.00e + 3 FES =5.00e + 4 FES =5.00e + 5

112|3|4|5|6|1,2,3|4|5(6(1|2]3]4|5|6

D=100 | > |=|=|<|>|=||>|>|>|>|>|=|>|>|>|>]|>]|=

D=500 | =|=|<|=|<|=|>|>|=|>|=|<|>|<|=|>]|=|<

4.2 Proposed M echanism to Deal with the Loss of Diversity

In ACOg, the loss of diversity will produce a multi-modal Gaussiastribution where all the
mean values tend to be the same or very close to each othewillde almost equivalent to a
unimodal Gaussian distribution. When this scenario is ndese ACQ; will produce once and

again the same sampling in the search space since the valhes/ectors are closer and closer
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to 0. One possible mechanism to detect and maintain the kerdigks'sity (i.e., the diversity
of the solutions in structur@’) is to first measure the degree of diversity and then conti| t
evolution of the kernel’'s population. We adopted the follagvfunction [24] to measure the

diversity of T

3)

where Ny, is the length of the diagonal of the search space determipéldebcorresponding
upper and lower limits for each decision variabteis the number of kernels iff, x§ is the
value at dimension of the solution at positionin 7', andx’ is the average of all the values in
dimensionj. Functiondiv (Eq. 3) returns a value in the ranffe0, 0.5]. Therefore, the higher
the values returned, the more diversity is detected in thefdeernels. Based on this measure-
ment of diversity, our mechanism keeps control of the degfegiversity at each algorithm’s
iteration. When a certain thresholdi(,,;,) is reached, it means that the populations of kernels
will not produce any further exploratory sampling. In Figlt (upper left handside) we show
a hypothetical population of kernels clustered arosthdthe best point in the current set of
kernels. The multimodal Gaussian kernel will have a sinslape to that displayed in Figure 2
(lower left handside). To deal with the clustered populate percentagg,,, of solutions inT’
(the worst ones) are replaced by a new set of solutions whecheadomly generated (Figure 2,
upper right handside). This new set of points will incredsevalues of vectos and, conse-
quently, will produce a more exploratory sampling in thédwaling iterations. It must be noticed
that this mechanism keeps the best current ppint as the main attractor. However, a much

more extended region around this point can be further egglsince the Gaussian multimodal
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distribution will now look like the one displayed in Figur€lawer right handside). After the re-
placement of the new randomly generated solutions, weiaddilty considered a time window
(taiv) that allows ACQ to proceed with the exploration of the search space withpplyang

the diversity mechanism. This time window is included beeathe current population is not

completely replaced and a low degree of diversity coulddigghe achieved.

X1 .
\ N . y #
X -
® k‘.'_@} -
LA -
X1 X1

Figure 2. When the algorithm converges (i.e., the degreeivafslty is low) the kernel structure is
partially re-initialized. However, the best current s@uat(x;) still behaves as the main attractor for the

following iterations, at least until a new best solutionasiid in the following samplings.

Figure 4.2 shows the evolution for the Error Values (EV) angeisity Values (DV) when
running respectively AC@and ACQG:-Div (i.e., ACOg incorporating the diversity mechanism)
with valuesq = 0.0001 andg = 0.01. In order to do that, we have chosen functigihsand
f5. Let us first analyze the influence of the diversity mecharsnthe error values for both

values ofg. It can be observed a direct influence on the error valueseamibment in which
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(a) Functionf; with ¢ = 0.001. (b) Functionf; with ¢ = 0.01

T T
NoDiv NoDiv
+o Div v Div
EV-NoDiv|] 10° N EV-NoDiv|]
= EV-Div = EV-Div

EV&DV
EV&DV

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Iterations Iterations

(c) Functionfs with ¢ = 0.001. (d) Functionfs with ¢ = 0.01.
Figure 3: Evolution of the Error Values (EV) and Diversitylies (DV) for functionsf; and f5 when

running ACGy and ACGy-Div with ¢ = 0.001 (left handside) ang0.01 (right handside).

the diversity mechanism takes place. For both functionsDA@ets stuck in a sub-optimal
solution at around iteration 2500. At around the same tilmediversity mechanism is triggered
in ACOg-Div since the threshold on the lowest allowable diversajue for this algorithm has
been triggered. It is also interesting to compare the shaji® plots displaying the evolution
of the diversity values.

Forg = 0.001 (both functions), the diversity values increase immedyattter the respective

mechanism incorporates the new set of randomly generaletiiss. Particularly, a more clear
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effect of this mechanism is observed when applied the fins¢ tiHowever, as the number of
iterations increases, the effect of the diversity mechardgecreases. It must be recalled that
when applied, the diversity mechanism maintains a pergentd the current solutions i’

(the best ones) which makes the algorithm less exploratbthiis stage. However, several
improvements in subsequent iterations are still possbkhawn in the respective EV plots for
ACOg-Div. On the other hand, when comparing the diversity valfe8COr and ACG:-Div

with ¢ = 0.01, it can be seen that the diversity plots for both algorithmes samilar (mainly

for function f;). This explains the exploratory capacity of the algorithth€Or and ACG;-

Div) when increasing the values of parameteNevertheless, better improvements are achieved
through the diversity mechanism when considering the tyuafithe best solutions found.

Since the preliminary results shown in Section 4.1 were patlusive with respect to the
two studied values of the parametemwe conducted experiments considering both values of this
parameter (i.eq € {0.001,0.01}) to study the effect of the diversity mechanism implemented
in ACOg (as metioned before, we call this new version, ACDIv). The added parameters for
ACOg-Div were set asdiv,,;, = 0.01, p,q = 20%, andty;, = 0.2t,,... The corresponding
experimental study is presented next.

Tables 6, 7, and 8 (see Appendix) display the results oldanmen ACO; and ACG;-Div
(in each table, the results are grouped according to FEStendalues of the parametey.

In this case, we have reduced the data shown in the corresptadbles. More precisely, we
show the best values found from tb& trials performed by each algorithm. As for the former
experimental study, we also compare the performance ofigfegibams based on the statistical

differences in their median values through the non-parambtann-Whitney-Wilcoxon test.
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Thus, when there exist statistical differences in the tedubm one algorithm with respect to
another, the respective best value is displayed in boldfaet us proceed with the analysis
of the results from a global perspective, i.e., considedimgensionsD = 100, 500, and1000.

It can be observed that) when there exist significant differences between AGDd ACG;-
Div (either forqg = 0.001 or ¢ = 0.01), the statistical test indicates that AgDiv outperforms
ACOg; ii) when no statistical difference is reported, the best vdluesd are the same or AGO
Div achieved the best oneisi) in general, for functiong, f3;, andf;, ACOg-Div outperforms
ACOx, for both values of parameter Also, this can be observed in some groups (with respect
to FES) for functionf,, however, only for dimension® = 500 and D = 1000; iv) for function
fe no real differences were observed at all for AC&hd ACQ;-Div using any of the two values
considered foy = 0.001 andg = 0.01; andv) when comparing AC®-Div underg = 0.001

andq = 0.01, the best results are achieved by AGOiv with ¢ = 0.001.

4.3 Comparison with somerelevant algorithms

In this section we make an indirect comparison of the resutseved by AC®-Div with the
results reported by the eight ranked algoritAthat participated in the competition at CEC’08:
1) MTS[23], 2) LSDEA-g! [25], 3) jDEdynNP-F [3], 4) MLCC [26]5) DMS-PSO [28], 6)
DEwSAcc [27], 7) UEP [16], and 8) EPUS-PSO [9]. Table 4.3 shitiwe best reported values
for the eight ranked algorithms and also, the best foundegaftom the ACQ@-Div algorithm
(in boldface). In this case, the results correspond to dgoerD = 1000 andFES = 5.00e 46
(i.e., the maximum number of dimensions and function evalona regarding the respective

protocol given in [22]). The values in parentheses indithéd ACO:-Div outperforms (from

2The ranking can be downloaded frdtht p: / / ni cal . ust c. edu. cn/ paper s/ CEC2008_SUMVARY. pdf
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Table 2: Results achieved by the eight ranked algorithmispiudicipated in the competition at CEC’08

and the results obtained by AGDIv with ¢ = 0.001.

Test Functions

Algorithm 1 2 3 4 5 6

1) MTS 0.00e+00 | 4.72e-02| 3.41e-04 | 0.00e+00| 00.0e+00 | 1.24e-11
2) LSDEA-g| (3.22e-13)| 1.04e-05| (1.73e+03)| 5.45e+02| 1.71e-13 | 4.26e-13
3) jDEdynNP-F (1.14e-13)| 1.95+01 | (1.31e+03)| 2.17e-04| 3.98e-14 | 1.47e-11
4) MLCC (8.46e-13) | 1.09e+02| (1.80e+03)| 1.37e-10| 4.18e-13 | 1.06e-12
5) DMS-PSO 0.00e+00 | 9.15e+01| (8.98e+09)| 3.84e+03| 00.0e+00 | 7.76e+00
6) DEWSAcC (8.79e-03) | 9.61e+01| (9.15e+03)| 1.82e+03| (3.58e-03)| 2.30e+00
7) UEP (5.37e-12) | 1.05e+02| (1.96e+03)| 1.03e+04| (8.87e-04)| (1.99e+01)
8) EPUS-PSO (5.53e+02)| 4.66e+01| (8.37e+05)| 7.58e+03| (5.89e+00)| 1.89e+01
ACOg-Div (¢ = 0.001) | 00.0e+00 | 1.50et+02 | 1.29e+03 | 1.23e+04 | 8.00e-09 1.89e+01

the perspective of the best found values) the respectivitig in the table. It can be seen
that ACQG:-Div outperforms some of the compared algorithms in funtiof; [outperforms 6
algorithms], f5 [outperforms 7 algorithms]f; [outperforms 2 algorithms], anf} [outperforms

1 algorithm]. These results indicate that AG&Div is competitive with respect to othead hoc
algorithms (some of which are quite elaborate) developeddtving continuous optimization
problems. However, an enhanced version of AGQv (e.g., with a better diversity preservation
mechanism) and a direct comparison with state-of-thelgdrihms are still required to better
estimate the actual position of AGEDIv in a possible ranking of optimization algorithms used

for solving large scale continuous problems.
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5 Conclusions and Future Work

In this paper we have presented a study of scalability of AG® large continuous optimiza-
tion problems. An early experimental study allowed us tedesome weaknesses of AGO
when dealing with large dimensionality problems. Basedese results, we proposed a simple
mechanism that introduces diversity in the kernels’ pojaawhen it reaches a diversity value
under a certain minimum threshold. This new algorithm wadledaACOx-Div and was capable
of significantly improving the performance of AGO

We have also shown that our proposed ACOIv approach is competitive with respect to
other bio-inspired metaheuristics that have been spetyfidasigned to solve continuous opti-
mization problems.

As part of our future work, we intend to study more elaboragehanisms to detect and/or
deal with the loss of diversity in ACQ We also wish to perform a more comprehensive com-
parison of our approach with respect to state-of-the-ataheauristics used for continuous opti-
mization. Finally, we are also interested in applyadghoc and automatic tools for calibrating

the parameter values of our approach.
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Appendix

Table 3: Errors values for problems 1-B & 100) with ¢ € {0.001,0.01} up t05.00e + 5 FES

FES q Stats 1 2 3 4 5 6

1t (Best) 1.9326e+4 | 9.8291e+1| 0.2217e+10| 8.036le+2 | 1.6193e+2| 2.0307e+1
0.001 || 13" (Median) | 3.2087e+4 | 1.165le+2| 0.5655e+10| 1.1896e+3| 2.4576e+2| 2.1173e+1
25tk (Worst) | 4.8736e+4 | 1.3220e+2| 1.2903+e10| 1.7577e+3| 4.6825e+2| 2.1312e+1
Potets 15t (Best) 1.3583et+4 | 9.5175e+1| 3.3488e+9 | 8.6345e+2| 1.5270e+2 | 1.9405e+1
0.01 13t" (Median) | 2.4099e+4 | 1.1402e+2| 6.1663e+9 | 1.0506e+3| 2.1619e+2| 2.1178e+1
25" (Worst) | 4.7441e+4 | 1.2397e+2| 9.5319e+9 | 1.5163e+3| 5.6468e+ | 2.1337e+1

p-values 0.0179 0.4492 0.6554 0.0209 0.0209 0.9613
15t (Best) 6.0000e-6 | 7.3209e+1| 4.5120e+2 | 6.6045e+2| 1.7520e-1| 0.1888e-1
0.001 || 13*» (Median) | 8.9597e+1| 8.4065e-1| 1.5690e+5 | 8.6218e+2| 0.1623e-1| 2.1065e+1
25tk (Worst) | 1.7527e+3| 1.0279e+2| 5.4189e+8 | 1.0859e+3| 3.6405e+1| 2.1269e+1
Poted 1t (Best) 6.0000e-6 | 5.4617e+l | 2.506le+2 | 5.5227e+2 | 1.0000e-5 | 1.8871le+l
0.01 13t* (Median) | 8.0000e-5 | 7.2852e+1| 4.2594e+2 | 7.0988e+2| 6.6830e-1| 2.1065e+1
257 (Worst) 0.7562e+1 | 9.1319e+1| 1.8281e+3 | 1.0275e+3| 0.4357e+1l| 2.1269e+1

p-values 5.8405e-8 | 4.6094e-5 1.9973e-6 | 3.0245e-5 | 1.8141le-6 0.9923
15t (Best) 1.0000e-6 | 2.0334e+1| 1.7257e+2 | 6.6045e+2| 1.7460e-1| 1.8884e+1
0.001 || 13" (Median) | 4.0630e+1 | 2.6511le+1| 1.5624e+5 | 8.6217e+2| 0.1623e+1| 1.9858e+1
25th (Worst) 1.742e+3 | 3.2984e+1| 5.4189e+8 | 1.0859e+3| 3.6405e+1| 2.1175e+1

5.00e + 5

15t (Best) 0 1.5818e+1 2.0430e-1 5.5227e+2 0 1.7712e+1
0.01 13" (Median) 0 2.2484e+1| 8.7483e+l | 7.0987e+2| 6.6830e-1| 2.0944e+1
25" (Worst) 0.7562e+1 | 2.6203e+1| 1.7667e+2 | 1.0275e+3| 0.4357e+1| 2.1158e+1

p-values 4.1391e-10 | 1.5127e-5 1.5967e-9 3.0245e-5 | 1.6377e-6 0.6871
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Table 4: Errors values for problems 1-B (= 500) with ¢ € {0.001,0.01} up t025.00e + 6 FES

FES q Stats 1 2 3 4 5 6

1t (Best) 2.3922e+5 | 1.5557e+2| 9.4274e+10 7.2027e+3 | 2.8067e+3 | 2.1407e+1
0.001 13t (Median) 4.1694e+5 | 1.6275e+2| 1.4279%e+11 7.9304e+3 | 3.4474e+3 | 2.1451e+1l
25" (Worst) 7.2040e+5 | 1.8704e+2| 2.8528e+11 8.4763e+3 | 5.4779%e+3 | 2.1474e+l
Z0e 15t (Best) 2.8948e+5 | 1.5434e+2| 1.2241e+11 6.8459e+3 | 2.8935e+3 | 2.1398e+1
0.01 13t* (Median) | 3.8390e+5 | 1.6051e+2| 1.8207e+11| 7.7979+3 | 3.8204e+3| 2.1450e+1
25th (Worst) 5.1286e+5 | 1.8704e+2| 2.7521e+11 | 9.5348e+3 | 4.7482e+3| 2.1475e+1

p-values 0.4728 0.7934 5.9408e-004 0.1160 0.0209 0.6139

1t (Best) 5.6686e+1 | 1.4508e+2| 5.9546e+6 6.2038e+3 | 0.28101e-1| 2.1357e+l
0.001 || 13" (Median) | 1.2089e+4 | 1.5043e+2| 1.7269e+9 6.9793e+3 | 5.5363e+1| 2.1437e+l
257 (Worst) 5.4493e+4 | 1.5438e+2| 9.6816e+10 | 7.5168e+3 | 6.3174e+2| 2.1463e+1
et 1t (Best) 1.0082e+1 1.4187e+2 1.3680e+7 5.7009e+3 0.1095e-1 | 2.1398e+1
0.01 13" (Median) | 6.5797e+2 | 1.4935e+2| 5.3053e+8 | 0.65447e+l | 2.6645e+2 | 2.1450e+1
25" (Worst) 6.7055e+4 | 1.5564e+2| 2.9510e+10 7.1207e+3 | 5.0414e+2 | 2.1475e+1

p-values 3.0746e-004 0.0457 0.0808 1.6516e-005 0.1302 0.0328

15t (Best) 5.6633e+1 | 1.064le+2 5.9496e+6 6.2038e+3 | 2.8098e+0 | 1.9923e+1
0.001 || 13" (Median) | 1.2087e+4 | 1.1471e+2| 1.7268e+009| 6.9790e+3 | 5.5362e+1| 2.1397e+1
25th (Worst) 5.4491e+4 | 1.2792e+2| 9.6816e+10 | 7.5166e+3 | 6.3174e+2| 2.144le+1l
0w 15t (Best) 0.7395e+1 1.4508e+2| 1.2545e+7 5.7009%e+3 1.0643e+0| 2.1357e+1
0.01 13" (Median) 6.5714e+2 | 1.5043e+2| 5.3006e+8 6.5447e+3 | 2.6645e+1 | 21.4505

257 (Worst) 6.7053e+4 | 1.5438e+2| 2.9509e+10 7.1207e+3 | 5.0414e+2 | 21.4755

p-values 2.8526e-004 0.0457 0.0808 1.6516e-5 0.1302 0.5094
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Table 5: Errors valuesf{(x) — fi(x*)), fori = 1,...,6; (D = 1000); g € {0.001,0.01} up t050.00e+6

FES
FES q Stats 1 2 3 4 5 6

15t (Best) 7.3434e+5 | 1.6856e+2| 4.4900e+10 | 1.631let4 | 6.5600e+3 | 2.1470e+1
0.001 || 13" (Median) | 8.7221e+5 | 1.7305e+2| 4.3077e+11| 1.7290e+4| 8.0630e+3 | 2.1502e+1
25t (Worst) 1.4940e+6 | 1.9101e+2| 7.1003e+11| 1.8404e+4| 1.2989e+4 | 2.1524e+1
Poetd 15t (Best) 8.5456e+5 | 1.6800e+2| 5.1477e+11| 1.6573e+4| 7.9829e+3 | 2.1465e+1
0.01 13" (Median) 1.0237e+6 | 1.7535e+2| 6.2513e+11| 1.7799e+4| 9.7774e+3 | 2.1500+1
25t (Worst) 1.2356e+6 | 1.8887e+2| 1.2922e+12| 1.9632e+4| 1.1053e+4 | 2.1524e+1

p-values 9.7208e-004 0.1936 3.3440e-007 0.0055 3.0245e-005 0.9381
1t (Best) 9.3070e+2 | 1.6286e+2| 4.0001e+8 | 1.4238e+4| 3.0609e+1 | 1.9980e+1
0.001 || 13" (Median) | 2.1936e+4 | 1.6722e+2| 6.1033e+9 | 1.4893e+4| 1.4342e+2 | 2.1494e+1
25t (Worst) 1.5386e+5 | 1.7263e+2| 8.8517e+10| 1.5697e+4| 1.0235e+3 | 2.1518e+1
o0 1t (Best) 0.5884e+2 | 1.6284e+2| 2.7486e+8 | 1.3694et+4 0.4625e-1 | 2.1462e+1
0.01 13th (Median) 1.4540e+4 | 1.6746e+2| 2.2323e+9 | 1.4649e+4| 8.8825e+1 | 2.148%e+1
25th (Worst) 4.5222e+4 | 1.7042e+2| 1.1079e+11| 1.5801e+4| 4.5928e+2 | 2.1520e+1

p-values 0.0842 0.7269 0.0598 0.0099 0.1206 0.9690
1t (Best) 9.2873e+2 | 1.5107e+2| 3.9600e+8 | 1.4238e+4| 3.0560e+1 | 1.9924et+l
0.001 || 13" (Median) | 2.1936e+4 | 1.5500e+2| 6.0860e+9 | 1.4893e+4| 1.4340e+2 | 2.1483e+1
25th (Worst) 1.5385e+5 | 1.646le+2| 8.8517e+19| 1.5697e+5| 1.0235e+3 | 2.1520e+1
e 15t (Best) 9.4767e+2 | 1.4637e+2| 3.471le+7 | 1.36%4et4 4.6256e+0 | 2.1200e+1
0.01 13th (Median) | 1.0929e+4 | 1.5476e+2| 6.1684e+9 | 1.4648e+4| 8.8636e+1 | 2.1330e+1
25t (Worst) 5.2064e+4 | 1.6461e+2| 1.1077e+11| 1.5801le+4| 4.5928e+2 | 2.1499e+1

p-values 0.1653 0.1837 0.6275 0.0093 0.4244 0.0129
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Table 6: Comparison of AC@Pand ACG:-Div with D = 100 andg € {0.001,0.01}

FES q Stats 1 2 3 4 5 6
Best 1.9326e+4| 9.8291e+1| 0.2217e+10| 8.4231e+2| 5.5226e+2| 2.0307e+1
0.001
Besty;,, | 1.6226e+4 | 9.8291e+1| 0.2217e+10| 8.036le+2| 1.6193e+2 | 2.0307e+1
5.00e + 3
Best 1.3583e+4| 9.5175e+1| 3.3488e+9 | 8.6345e+2| 1.5270e+2| 1.9405e+1
0.01
Besty;, | 1.3583e+4| 9.5175e+1| 3.3488e+9 | 8.7386e+2| 1.5270e+2| 1.9405e+1
Best 6.0000e-6 | 7.3209e+1| 4.5120e+2 | 6.6045e+2| 1.7520e-1| 0.1888e-1
0.001
Besty;,, | 2.0000e-6 | 7.1295e+1| 1.5527e+1 | 6.6043e+2| 1.0000e-6 | 1.8871e+1
5.00e + 4
Best 6.0000e-6 | 5.4617e+1| 2.5061le+2 | 5.5227e+2| 1.0000e-5| 1.8871le+1
0.01
Besty;, | 3.0000e-6 | 5.4617e+1| 2.4322e+1 | 5.5226e+2| 5.0000e-6 | 1.7648e+1
Best 1.0000e-6 | 2.1856e+1| 1.7257e+2 | 6.6049e+2| 1.7460e-1| 1.8884e+1
0.001
Besty;., 0 2.0334e+1| 8.4803et+l | 6.6045e+2 0 1.8857e+1
5.00e + 5
Best 0 1.5818e+1| 2.0430e-1 | 5.5227e+2 0 1.7712e+1
0.01
Besty;., 0 1.4853e+1| 0.1242e+0 | 5.5227e+2 0 1.7712e+1

Table 7: Comparison of ACfpand ACQ:-Div with D = 500 andg € {0.001, 0.01}

FES q Stats 1 2 3 4 5 6
Best 2.3922e+5| 1.5557e+1| 9.4274e+010| 7.4522e+3 | 2.8067e+3 | 21.4077
0.001
Best;;, | 2.0584et+5 | 1.5557e+1| 9.0867e+10 | 7.2027e+3 | 2.0983e+3 21.4077
5.00e + 4
Best 2.8948e+5| 1.5434e+2| 1.2241e+11| 6.7664e+3 | 2.8935e+3 | 21.3983
0.01
Best;;, | 2.8948e+5| 1.5434e+2| 1.2241e+01 | 6.8459e+3 | 2.8935e+3 | 21.3983
Best 5.6686e+1| 1.4508e+2| 5.9546e+6 | 6.2038e+003| 0.28101e+1l| 21.3579
0.001
Besty;, 0.0898 1.4508e+2| 9.4978e+003 6.1980e+3 | 0.00086+1 21.3579
5.00e + 5
Best 1.0082e+1| 1.4187e+2| 1.3680e+7 5.7009e+3 | 0.10951e+1| 21.3983
0.01
Besty;, | 9.1070e-1 | 1.4187e+2| 3.8123et4 5.7207e+3 | 0.02307e+1 21.3983
Best 56.6338 | 1.0641le+2| 1.2545e+7 6.2038e+3 | 2.8098e+0 | 1.9923e+1
0.001
Besty;, 0 1.0000et+2 5.6733et+2 6.1980e+3 0 1.9920e+1
5.00e + 6
Best 7.3952 1.0438e+1| 1.2545e+7 5.7007e+3 | 1.0643e+0 | 1.9889%+1
0.01
Besty;., 0 1.0000e+1 5.5533et+2 5.7005e+3 0 1.9881e+1
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Table 8: Comparison of AC@Pand ACG:-Div with D = 1000 andgq € {0.001,0.01}

FES q Stats 1 2 3 4 5 6
Best 7.3434e+5| 1.6856e+2 | 4.4900e+10| 1.631le+4| 6.5600e+3| 2.1470e+1
000! Besty;, 5.9803et5 2.1565e+0 | 4.4018e+10| 1.6078e+4| 5.2271e+3 | 2.1470e+1
Poted Best 8.5456e+5 | 1.6800e+2 | 5.1477e+11| 1.6573e+4| 7.9829e+3| 2.1465e+1
o Besty;, | 8.5456e+5| 4.8252e+1 | 5.1477e+11| 1.6694e+4| 8.7005e+3| 2.1465e+1
Best 9.3070e+2 | 1.6286e+2| 4.0001le+8 | 1.4238e+4| 3.0609e+1| 1.9980e+1
o001 Besty, | 2.1565e+0 | 1.6286e+2| 4.0899e+5 | 1.4245e+4| 0.1454e+0 | 1.9998e+1
Potets Best 9.5884e+2 | 1.6284e+2 | 2.7486e+8 | 1.3694e+4| 4.6256e+0| 2.1462e+1
oot Besty;, 4.8252e+1 1.6284e+2 | 6.7842e+6 1.3678e+4| 1.4757e+0 | 2.1462e+1
Best 9.2873e+2 | 1.5107e+2| 3.9600e+8 | 1.4238e+4| 3.0560e+1| 1.9924e+1
. Bestyiy 0 1.5010e+2 | 7.0498et+5 | 1.401le+4 0 1.9290e+1
5.00e + 6
Best 9.4767e+2 | 1.5637e+2| 3.471le+7 | 1.3694e+4| 4.6256e+0| 2.1200e+1
o Besty;, | 0.4022e+0 | 1.508%e+2 | 4.7675e+6 | 1.4340e+3 | 0.0212e+0| 2.0988e+1
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