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Abstract The complexity of large-scale mechanical optimization problems is
partially due to the presence of high-dimensional design variables, the nature
of the design variables, and the high computational cost of the finite element
simulations needed to evaluate the fitness of candidate solutions. Evolution-
ary cycles are ruled by competitive games of survival and not merely by
absolute measures of fitness, as well as exploiting the robustness of evolution
against uncertainties in the fitness function evaluations. This paper takes up
the complexity challenge of mechanical optimization problems by proposing a
new fitness granulation approach that attempts to cope with many difficulties
of fitness approximation approaches that have been reported in the special-
ized literature. The approach is based on adaptive fuzzy fitness granulation
having as its main aim to strike a balance between the accuracy and the
utility of the computations. The adaptation algorithm adjusts the number
and size of the granules according to the perceived performance and level of
convergence attained. Experimental results show that the proposed approach
accelerates the convergence towards solutions, when compared to the perfor-
mance of other, more popular approaches. This suggests its applicability to
other complex finite element-based engineering design problems.
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1 Introduction

Since the 1960s, and due to the significant developments in numerical meth-
ods and computing, the finite element analysis (FEA) became a frequent tool
to solve engineering problems that arise in systems with several interacting
components, complex geometries, and which are under the effect of differ-
ent physical phenomena. These (complex) systems elude a thorough physical
analysis with exact techniques which is made possible by means of a system-
atic discretization approach known as the finite element method (FEM) [1].
At the same time that the FEM was developed, efficient and fast optimiza-
tion algorithms have arisen for solving various kinds of mathematical and
optimization problems (OPs). Both trends contributed to the development
of large-scale structural design and optimization problems (SDOPs) and to
the discipline of structural optimization. The aim of structural optimization
is to generate automated procedures for finding the best possible structure
with respect to at least one criterion (the objective), and having to satisfy a
set of constraints, by selecting from a set of geometrical dimensions, material
properties and/or topological parameters [2].

Structural optimization problems are often challenging due to their high
computational demands 1, multi-modality, non-convexity, high dimension-
ality, and multi-objectivity. Because of this, many structural optimization
problems are weakly amenable to conventional mathematical programming
approaches, which motivates the use of alternative solution methods.

Randomized search heuristics are among the simplest and most robust
strategies that are applicable to a wide range of optimization problems in-
cluding structural design (SD). While they can normally provide nearly opti-
mal solutions, they cannot guarantee convergence to the optimum. However,
their computational requirements are normally high. Among the randomized
search heuristics currently available, evolutionary algorithms (EAs) have be-
come very popular in the last few years, mainly because of their ease of use
and efficacy. EAs are stochastic search techniques which operate on a set of
solutions (the so-called population), that are modified based on the principles
of the natural evolution (i.e., the survival of the fittest) [3]. EAs have been
commonly adopted for solving complex SD problems. For example, Walker
and Smith [4] combined the FEM and EAs to minimize a weighted sum of
the mass and deflection of fiber-reinforced structures. Similarly, Abe et al.
[5] used FEM and an EA for structural optimization of the belt construction
of a tire. More recently, Giger and Ermanni [6] applied FEM and and EA to
minimize the mass of composite fiber-reinforced plastic (CFRP) rims subject
to strength and stiffness constraints. However, EAs may suffer from a slow
rate of convergence towards the global optimum, which implies that they may
be too (computationally) expensive for certain SD problems. Consequently,

1 Finite element analysis is computationally costly and may require several days to com-
plete its calculations, even for a relatively simple problem.
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it is challenging to develop computationally efficient evolution-based search
methods.

To alleviate the problem of converging time of computationally expensive
optimization problems, a variety of techniques has been proposed in the lit-
erature. Perhaps the most obvious choice is to use parallelization techniques
[7]. However, another alternative is to rely on fitness approximation tech-
niques, which avoid evaluating every individual in the population of an EA.
In order to do this, these approaches estimate the quality of some individu-
als, based on an approximate model of the fitness landscape. This is the sort
of approach on which this chapter is focused. Section 4 provides a review of
fitness approximation techniques in evolutionary computation. When using
fitness approximation techniques, it is necessary to strike a balance between
exact fitness evaluation and approximate fitness evaluation. In this chapter,
with a view to reducing computational cost, we employ the concept of fuzzy
granulation to effectively approximate the fitness function. The advantages
of this approach over others is the fact that no training samples are required,
and the approximate model is dynamically updated with no or negligible
overhead cost.

The remainder of this chapter is organized as follows. The following section
elaborates upon four SD optimization problems before explaining the genetic
algorithm (GA) approach proposed here for the SD optimization task (see
Section 3). This is followed by a review of the variety of fitness approximation
approaches that have been proposed for EAs in Section 4. In order to accel-
erate the convergence speed of the GA with a minimum number of fitness
function evaluations, a novel method is presented in Section 5. The approach
is based on generating fuzzy granules via an adaptive similarity analysis.
To illustrate the efficiency of the proposed method in solving the four SD
problems introduced in Section 2, the performance results of different opti-
mization algorithms are presented in Section 6. A further statistical analysis
confirms that the proposed approach reduces the computational complexity
of the number of fitness function evaluations by over 50% while reaching sim-
ilar or even better final fitness values. Finally, in Section 8 we provide our
conclusions.

2 Structural design optimization problems

Four SD optimization problems, with increasing complexity are investigated
here. They are the following: (1) the design of a 3-layer composite beam with
two optimization variables, (2) the design of an airplane wing with six deci-
sion variables, (3) the design of a 2D truss frame with 36 decision variables,
and (4) the voltage/pattern design of piezoelectric actuators. We discuss in
more detail the last problem, because of its complexity. Such a problem con-
sists of finding the best voltage and pattern arrangement for static shape
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control of a piezoelectric actuator with 200 design variables. Clearly, this is a
more challenging and heavy optimization task from a fitness/computational
perspective.

2.1 Easier/Smaller problems

The first three SD problems are covered in this section. The ultimate goal in
these optimization problems is to maximize the first natural frequency 2 of
the given structure. To allow more space for the last problem (described in
Subsections 2.2 and 6.4), we limit ourselves here to a short description of the
other problems.

2.1.1 3-Layer composite beam

A multi-layered composite beam is constructed from a combination of two or
more layers of dissimilar materials that are joined together to act as a unit in
which the resulting combination is lighter, stronger and safer than the sum
of its parts. A finite element analysis model has been developed to analyze
the multi-layer composite beams and plates. The objective is to raise the first
natural frequency of the beam.

2.1.2 Airplane wing

An airplane wing is an elastic structure that, in the presence of aerodynamic
loads, starts to vibrate. In this study, we treated the natural frequency as
the design objective since it is quite intuitive and natural to raise the nat-
ural frequencies of the wing so that it is not easily excited by undesirable
disturbances.

2.1.3 2D truss frame

Trusses are the most commonly used structure and in comparison to heavily-
built structures, they have a relatively small dead weight. A truss consists
of bar-elements (members) connected by hinged joints to each other and
supported at the base. Truss design problems belong to the class of load-
supporting structure design problems that are usually finite-dimension opti-

2 Resonance occurs when the excitation frequency is the same as the natural frequency. For
the same excitation energy, the resulting vibration levels at resonance frequency is higher
than other exiting frequencies. The importance of maximizing the first natural frequency
is to avoid the resonance phenomenon to occur.
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mization problems. The design of load-supporting structures plays a key role
in engineering dynamics. The objective (fitness) here is to raise the struc-
ture’s first natural frequency to reduce the vibration domain and to prevent
the resonance phenomenon (in dynamic response) of the structure.

2.2 Voltage and pattern design of a piezoelectric
actuator

Piezoelectric materials exhibit both direct (electric field generation as a re-
sponse to mechanical strains) and converse (mechanical strain is produced as
a result of an electric field) piezoelectric effects. The direct effect is used in
piezoelectric sensors while the converse effect is used in piezoelectric actua-
tors.

Apart from ultrasound applications, energy harvesting, sensor applications
(e.g., strain gauges and pressure sensors), and vibration/noise control do-
mains, piezoelectric materials are widely used as actuators in smart struc-
tures. Smart structures with integrated self-monitoring, self-diagnosis and
control capabilities have practical uses ranging from MEMS, biomedical en-
gineering, control engineering, aerospace structures, ground transportation
systems and marine applications. The smart structures’ technology is widely
used in biomechanics, i.e., to expand obstructed blood vessels or to prevent
further enlargement of blood vessels damaged by aneurysms [8] which most
commonly occurs in arteries. Another apparent practical use of smart and
adaptive structural systems is to properly control the undesirable motions of
geometry-changing structures.

Piezoelectric actuators are also found in an enormous range of applica-
tions for distributed actuation and control of mechanical structures for shape
correction and modification. One example for this is their use in flexible air-
crafts where they improve the aerodynamic performance and deformation
control of conformal antennas [9], through their incorporation within the
structure. For instance, in [10], an optimization algorithm is used to deal
with the shape control of functionally graded material (FGM) plates which
are actively controlled by piezoelectric sensor and actuator patches. A com-
putational intelligence-based algorithm is used to derive the optimal voltage
distribution, by adopting the elements of the gain control matrix as the design
variables.

The optimal shape control and correction of small displacements in com-
posite structures using piezoelectric actuators concern complex engineering
problems. To achieve a predefined shape of the structure of the metal plate,
in this chapter we will present a fast converging global optimization algo-
rithm to find the optimal actuation voltages that need to be applied to the
piezoelectric actuators and to the pattern of piezoelectric patches.
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3 GAs in structural optimization problems

Genetic algorithms (GAs) are perhaps the most popular type of EAs nowa-
days and have been applied to a wide variety of problems [11]. The GA op-
timization procedure for solving SD problems begins with a set of randomly
selected parents (design parameters). If any of these parents does not meet
all the physical constraints, they are modified until they do. In subsequent
generations, each offspring’s phenotype is also checked for its feasibility. Fur-
thermore, the fitness values of the parents and their offspring are compared
and the worst individuals are rejected, preserving the remaining ones as par-
ents of the new generation (known as steady-state population treatment).
This procedure is repeated until a given termination criterion is satisfied.

Due to their robustness, GAs have been frequently used in a variety of
real world optimization applications including optimizing the placement of
actuators on large space structures [12], the design of a low-budget lightweight
motorcycle frame with superior dynamic and mechanical properties [13], and
the evolution of the structural configuration for weight minimization of a
space truss structure [14]. The implementation of a GA can be summarized
as follows:

1. Initialization: Initialize P design vectors X = {X1, X2, . . . , Xi, . . . , XP },
where P is the population size.

2. Constraints check: If satisfied, continue, else modify Xi until the can-
didate solution becomes feasible.

3. Evaluation (Analysis): Evaluate the fitness function f(Xi), i = {1, 2,
. . . , P}.

4. Convergence check:

a. if satisfied stop,
b. else select the next generation parent design vectors, apply genetic

operators (mutation, recombination) and generate the next offspring
design vectors X . Go to step 2.

EAs in general are often expensive in the sense that they may require a high
number of computationally costly objective function evaluations. As a result,
it may be necessary to forgo an exact evaluation and use approximated fitness
values that are computationally efficient. In the design of mechanical struc-
tures, for instance, each exact fitness evaluation requires the time-consuming
stage of FEA which, depending on the size of the problem, may consume
from several seconds up to several days. If we assume a conventional genetic
algorithm with a fixed and modest population size of 100, a maximum of 100
generations, and a very small-scale structural problem that requires 10 sec-
onds for each fitness evaluation, the total execution of the GA would require
30 hours! This should make evident the inhibiting role of the computational
complexity associated to GAs (and EAs, in general) for more non-trivial and
large-scale problems.
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Since one of the crucial aspects for solving large-scale SD optimization
problems using EAs is the computational time required, in the following
section we outline a few existing strategies that have been proposed to deal
with this issue.

4 Fitness Approximation in Evolutionary Computation

As indicated before, one possibility to deal with time-consuming problems
using a GA is to avoid evaluating every individual and estimate instead
the quality of some of them based on an approximate model of the search
space. Approximation techniques may estimate individuals’ fitness on the ba-
sis of previously observed objective function values of neighboring individuals.
There are many possible approximation models [15]. Next, we will briefly re-
view some of the most commonly adopted fitness approximation methods
reported in the specialized literature.

4.1 Fitness Inheritance

This is a very simple technique that was originally introduced by Smith et al.
[16]. The mechanism works as follows: when assigning fitness to an individual,
some times we evaluate the objective function as usual, but the rest of the
time, we assign fitness as an average (or a weighted average) of the fitness of
the parents. This fitness assignment scheme will save us one fitness function
evaluation, and operates based on the assumption of similarity between an
offspring and its parents. Clearly, fitness inheritance cannot be applied all
the time, since we require some true fitness function values in order to obtain
enough information to guide the search. This approach uses a parameter
called inheritance proportion, which regulates how many times do we apply
fitness inheritance (the rest of the time, we compute the true fitness function
values). As will be seen next, several authors have reported the use of fitness
inheritance.

Zheng et al. [17] used fitness inheritance for codebook design in data com-
pression techniques. They concluded that the use of fitness inheritance did
not degrade, in a significant way, the performance of their GA.

Salami et al. [18] proposed a Fast Evolutionary Strategy (FES) in which a
fitness and associated reliability value were assigned to each new individual.
Considering two decision vectors pi

1 = (X i
1, F

i
1, r

i
1) and pi

2 = (X i
2, F

i
2 , r

i
2)

where X i
1 and X i

2 are the chromosomes 1 and 2 at generation i with fitness
values F i

1 and F i
2 and reliabilities ri

1 and ri
2, respectively. In this scheme, the

true fitness function is only evaluated if the reliability value is below a certain
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threshold. Otherwise, the fitness of the new individual and its reliability value
is calculated from:

F i+1 =
S1r

i
1F

i
1 + S2r

i
2F

i
2

S1ri
1 + S2ri

2

(1)

and

ri+1 =
(S1r

i
1)

2 + (S2r
i
2)

2

S1ri
1 + S2ri

2

(2)

where S1 is the similarity between X i+1
1 and X i

1 and S2 is the similarity
between X i+1

1 and X i
2. Also, they incorporated random evaluation and error

compensation strategies. Clearly, this is another (more elaborate) form of
fitness inheritance. Salami et al. reported an average reduction of 40% in the
number of evaluations while obtaining similar solutions. In the same work,
they presented an application of (traditional) fitness inheritance to image
compression obtaining reductions ranging from 35% up to 42% of the total
number of fitness function evaluations.

Pelikan et al. [19] used fitness inheritance to estimate the fitness for only
part of the solutions in the Bayesian Optimization Algorithm (BOA). They
concluded that fitness inheritance is a promising concept, because population-
sizing requirements for building appropriate models of promising solutions
lead to good fitness estimates, even if only a small proportion of candidate
solutions is evaluated using the true fitness function.

Fitness inheritance has also been used for dealing with multi-objective op-
timization problems. Reyes-Sierra and Coello Coello [20, 21] incorporated the
concept of fitness inheritance into a multi-objective particle swarm optimizer
and validated it in several test problems of different degrees of difficulty. They
generally reported lower computational costs, while the quality of their results
improved in higher dimensional spaces. This was in contradiction with other
studies (e.g., [22] as well as this chapter) that indicate that the performance
of the parents may not be a good predictor for their children’s composition
in sufficiently complex problems, rendering fitness inheritance inappropriate
under such circumstances.

4.2 Surrogates

A common approach to deal with expensive objective functions is to construct
an approximation function which is much cheaper to evaluate (computation-
ally speaking). In order to build such an approximation function which will be
used to predict promising new solutions, several sample points are required.
The meta-model built under this scheme aims to reduce the total number of
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(true objective function) evaluations performed, while producing results of a
reasonably good quality.

Evidently, the accuracy of the surrogate model depends on the number of
samples provided (and their appropriate distribution) and on the approxi-
mation model adopted. Since surrogate models will be used very frequently,
it is very important that the construction of such models is computationally
efficient [15]. The following are examples of the use of surrogates of different
types.

Sano et al. [23] proposed a genetic algorithm for optimization of continu-
ous noisy fitness functions. In this approach, they utilized the history of the
search to reduce the number of fitness function evaluations. The fitness of a
novel individual is estimated using the fitness values of the other individuals
as well as the sampled fitness values for it. So, as to increase the number of
individuals adopted for evaluation, they not only used the current generation
but also the whole history of the search. To utilize the history of the search,
a stochastic model of the fitness function is introduced, and the maximum
likelihood technique is used for estimation of the fitness function. They con-
cluded that the proposed method outperforms a conventional GA in noisy
environments.

Branke et al. [24] suggested the use of local regression for estimation, taking
the fitness of neighboring individuals into account. Since in local regression
it is very important to determine which solutions belong to the neighbor-
hood of a given individual, they studied two different approaches for setting
the value of the size of the local neighborhood (relative neighborhood and
adaptive neighborhood). They concluded that local regression provides better
estimations than previously proposed approaches. In more recent work [25],
a comparison between two estimation methods, interpolation and regression,
is done. They concluded that regression seems to be slightly preferable, par-
ticularly if only a very small fraction of the individuals in the population is
evaluated. Their experiments also show that using fitness estimation, it is
possible to either reach a better fitness level in a given time, or to reach a
desired fitness level much faster (using roughly half of the original number of
fitness function evaluations).

Ong et al. [26] proposed a local surrogate modeling algorithm for par-
allel evolutionary optimization of computationally expensive problems. The
proposed algorithm combines hybrid evolutionary optimization techniques,
radial basis functions, and trust-region frameworks. The main idea of the pro-
posed approach is to use an EA combined with a feasible sequential quadratic
programming solver. Each individual within an EA generation is used as an
initial solution for local search, based on Lamarckian learning. They employed
a trust-region framework to manage the interaction between the original ob-
jective and constraint functions and the computationally cheap surrogate
models (which consist of radial basis networks constructed by using data
points in the neighborhood of the initial solution), during local search. Exten-
sive numerical studies are presented for some benchmark test functions and an
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aerodynamic wing design problem. They show that the proposed framework
provides good designs on a limited computational budget. In more recent
work, Ong et al. [27] presented a study on the effects of uncertainty in the
surrogate model, using what they call Surrogate-Assisted Evolutionary Algo-
rithms (SAEA). In particular, the focus was on both the curse of uncertainty

(impairments due to errors in the approximation) and blessing of uncertainty

(benefits of approximation errors). Several algorithms are tested, namelly the
Surrogated-Assisted Memetic Algorithm (SAMA) proposed in [26], a stan-
dard genetic algorithm, a memetic algorithm (considered as the standard
hybridization of a genetic algorithm and the feasible sequential quadratic
programming solver used in [26]), and the SAMA-Perfect algorithm (which
is the SAMA algorithm but using the exact fitness function as surrogate
model), on three multi-modal benchmark problems (Ackley, Griewank and
Rastrigin). The conclusion was that approximation errors lead to conver-
gence at false global optima, but turns out to be beneficial in some cases,
accelerating the evolutionary search.

Regis and Shoemakes [28] developed an approach for the optimization of
continuous costly functions that uses a space-filling experimental design and
local function approximation to reduce the number of function evaluations in
an evolutionary algorithm. The proposed approach estimates the objective
function value of an offspring by means of a function approximation model
over the k-nearest previously evaluated points. The estimated values are used
to identify the most promising offspring per function evaluation. A Symmet-
ric Latin Hypercube Design (SLHD) is used to determine initial points for
function evaluation, and for the construction of the function approximation
models. They compared the performance of an Evolution Strategy (ES) with
local quadratic approximation, an ES with local cubic radial basis function in-
terpolation, an ES whose initial parent population is obtained from a SLHD,
and a conventional ES (in all cases, the They used a (µ, λ)-ES with uncorre-
lated mutations). The algorithms were tested on a groundwater bioremedia-
tion problem and on some benchmark test functions for global optimization
(including Dixon-Szegö, Rastrigin and Ackley). The obtained results (which
include analysis of variance to provide stronger and solid claims regarding the
relative performance of the algorithms) suggest that the approach that uses
SLHDs together with local function approximations has potential for suc-
cess in enhancing EAs for computationally expensive real-world problems.
Also, the cubic radial basis function approach appears to be more promising
than the quadratic approximation approach on difficult higher-dimensional
problems.

Lim et al. [29] presented a Trusted Evolutionary Algorithm (TEA) for
solving optimization problems with computationally expensive fitness func-
tions. TEA is designed to maintain good trustworthiness of the surrogate
models in predicting fitness improvements or controlling approximation er-
rors throughout the evolutionary search. In this case, the most interesting
part was to predict search improvement as opposed to the quality of the
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approximation, which is regarded as a secondary objective. TEA begins its
search using the canonical EA, with only exact function evaluations. During
the canonical EA search, the exact fitness values obtained are archived in a
central database together with the design vectors (to be used later for con-
structing surrogate models). After some initial search generations (specified
by the user), the trust region approach takes place beginning from the best so-
lution provided by the canonical EA. The trust region approach uses a surro-
gate model (radial basis neural networks) and contracts or expands the trust
radius depending on the ability of the approximation model in predicting
fitness improvements, until the termination conditions are reached. An em-
pirical study was performed on two highly multi-modal benchmark functions
commonly used in the global optimization literature (Ackley and Griewank).
Numerical comparisons to the canonical EA and the original trust region line
search framework are also reported. From the obtained results, the conclusion
was that TEA converges to near-optimum solutions more efficiently than the
canonical evolutionary algorithm.

4.2.1 Kriging

A more elaborate surrogate model that has been relatively popular in engi-
neering is the so-called Gaussian Process Model, also known as Kriging [30].
This approach builds probability models through sample data and estimates
the function values at every untested point with a Gaussian distribution.

Ratle [31] presented a new approach based on a classical real-encoded ge-
netic algorithm for accelerating the convergence of evolutionary optimization
methods. A reduction in the number of fitness function calls was obtained by
means of an approximate model of the fitness landscape using kriging inter-
polation. The author built a statistical model from a small number of data
points obtained during one or more generations of the evolutionary method
using the true fitness landscape. The model is updated each time a conver-
gence criterion is reached.

4.3 Artificial Neural Networks

In the last few years, artificial neural networks (ANNs), including multi-layer
perceptrons [32] and radial basis function networks [33] have also been em-
ployed to build approximate models for design optimization. Due to their
universal approximation properties, ANNs can be good fitness function esti-
mators if provided with sufficient structural complexity and richness in their
training data set. Next, some representative applications of the use of ANNs
for building approximate models will be briefly reviewed.
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Fig. 1: The GA-ANN algorithm that is proposed in [34]. Only if the approxi-
mate fitness of an individual is better than the maximum fitness found in the
last population, its fitness is re-evaluated in order to reflect its real fitness
value.

Khorsand et al. [34] investigated structural design by a hybrid of neural
network and finite element analysis that only selectively used the neuro-
estimation when either interpolation was expected (interpolation is generally
expected to be more accurate) or the individual was not deemed to be highly
fit (error in estimation may not be important). The methodology used in
[34] is presented in Figure 1 where r is considered as the maximum fitness of
the individuals in the last generation. As with any other numerically driven
approximation method, the performance of ANNs is closely related to the
quality of the training data.

Jin et al. [35] investigated the convergence properties of an evolution strat-
egy with neural network-based fitness evaluations. In this work, the concept
of controlled evolution is introduced, in which the evolution proceeds using
not only the approximate fitness function value, but also the true fitness func-
tion value. They also introduce two possibilities to combine the true with the
approximate fitness function value: (1) the controlled individuals approach
and (2) the controlled generation approach. Jin et al. defined “controlled” as
evaluated with the true fitness function. Both approaches were studied and
some interesting conclusions/recommendations for the correct use of such
techniques are provided. A comprehensive survey of fitness approximation
applied in evolutionary algorithms is presented in [36].



Fitness Granulation for Large-Scale Structural Design Optimization 13

4.4 Final Remarks About Fitness Approximation

Lack of sufficient training data is the main problem in using most of the
fitness approximation models currently available and hence the failure to
reach a model with sufficient approximation accuracy. Since evaluation of
the original fitness function is very time consuming and/or expensive, the
approximate model may be of low fidelity and may even introduce false op-
tima. Furthermore, if the training data does not cover all the domain range,
large errors may occur due to extrapolation. Errors may also occur when the
set of training points is not sufficiently dense and uniform. In such situations,
a combination of methods may be more desirable. For example, Ong et al.
[26] combined radial basis functions with transductive inference to generate
local surrogate models.

Alternatively, if individuals in a population can be clustered into several
groups as in [37], then only the individual that represents its cluster can be
evaluated. The fitness value of other individuals in the same cluster will be es-
timated from the representative individual based on a distance measure. This
is termed fitness imitation in contrast to fitness inheritance [15]. The idea of
fitness imitation has been extended and more sophisticated estimation meth-
ods have been developed in [38]. A similarity based model is introduced in
[39] and is applied to constrained and unconstrained optimization problems.

In multi-objective optimization problems (MOOP), the complexity of the
problem is normally higher, compared to that of single-objective optimiza-
tion problems (SOOP) [40]. In general, although the fitness approximation
approaches used in SOOP can be simply extended and adapted for MOOP,
such adaptation may require more elaborate mechanisms. One example of
this is constraint-handling.3 It is well-known that in real-world optimization
problems there are normally constraints of different types (e.g., related to
the geometry of structural elements to completion times, etc.) that must be
satisfied for a solution to be acceptable. Traditionally, penalty functions have
been used with EAs to handle constraints in SOOP [43]. However, because
of the several problems associated to penalty functions (e.g., the definition
of appropriate penalty values is normally a difficult task that has a serious
impact on the performance of the EA), some researchers have proposed al-
ternative constraint-handling approaches that require less critical parameters
and perform well across a variety of problems (see for example [41, 44, 43]).
However, when dealing with MOOPs, many of these constraint-handling tech-
niques cannot be used in a straightforward manner, since in this case, the
best trade-offs among the objectives are always located in the boundary be-
tween the feasible and the feasible region. This requires the development of
different approaches specially tailored for MOOPs (see for example [45, 46]).

3 Although constraint-handling techniques are very important in real-world optimization
problems, their discussion is beyond the scope of this chapter, due to space limitations.
Interested readers are referred to other references for more information on this topic (see
for example [41, 42]).
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A similar problem occurs when attempting to migrate single-objective fitness
approximation models to MOOPs. For more details on this topic, see [47].

While the above methods aim to reduce computational cost by approx-
imating the fitness function, the prevalent problems with interpolation in
rough surfaces remains. If the assumption of smooth continuity is not valid,
interpolation may even yield values that are not physically realizable. Fur-
thermore, we may be blinded to the optimal solutions using interpolation as
interpolation assumes a pattern of behavior that may not be valid around
optimal peaks. The next section addresses this problem by introducing the
concept of information granulation.

5 Adaptive Fuzzy Fitness Granulation

Fuzzy granulation of information is a vehicle for handling information, as well
as a lack of it (uncertainty), at a level of coarseness that can solve problems
appropriately and efficiently [48]. In 1979, the concept of fuzzy information
granulation was proposed by Zadeh [49] as a technique by which a class of
points (objects) are partitioned into granules, with a granule being a clump
of objects drawn together by indistinguishability, similarity, or functionality.
The fuzziness of granules and their attributes is characteristic of the ways by
which human concepts and reasoning are formed, organized and manipulated.
The concept of a granule is more general than that of a cluster, potentially
giving rise to several conceptual structures in various fields of science as well
as mathematics.

In this chapter, with a view to reducing computational cost, the concept
of fitness granulation is applied to exploit the natural tolerance of EAs in fit-
ness function computations. Nature’s survival of the fittest is not about exact
measures of fitness; rather it is about rankings among competing peers. By
exploiting this natural tolerance for imprecision, optimization performance
can be preserved by computing fitness only selectively and only to keep this
ranking among individuals in a given population. Also, fitness is not interpo-
lated or estimated; rather, the similarity and indistinguishability among real
solutions is exploited.

In the proposed algorithm, an adaptive pool of solutions (fuzzy granules)
with an exactly computed fitness function is maintained. If a new individual
is sufficiently similar to a known fuzzy granule [49], then that granules’ fitness
is used instead as a crude estimate. Otherwise, that individual is added to the
pool as a new fuzzy granule. In this fashion, regardless of the competitions’
outcome, the fitness of the new individual is always a physically realizable one,
even if it is a crude estimate and not an exact measurement. The pool size
as well as each granules’ radius of influence is adaptive and will grow/shrink
depending on the utility of each granule and the overall population fitness.
To encourage fewer function evaluations, each granule’s radius of influence
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is initially large and gradually shrinks at later stages of the evolutionary
process. This encourages more exact fitness evaluations when competition is
fierce among more similar and converging solutions. Furthermore, to prevent
the pool from growing too large, not used granules are gradually replaced by
new granules, once the pool reaches a certain maturity.

5.1 Algorithm Structure

Given the general overview in the preceding section, the concrete steps of the
algorithm are as follows:

Step 1: Create a random parent population P1 = {X1
1 , X1

2 , . . . , X1
j , . . . ,

X1
t } of design variable vector, where, more generally, X i

j = {xi
j,1, xi

j,2, . . . ,

xi
j,r, . . . , xi

j,m} is the jth parameter individual in the ith generation, xi
j,r

the rth parameter of X i
j , m is the number of design variables and t is the

population size.
Step 2: Define a multi-set G of fuzzy granules (Ck, σk, Lk) according to

G = {(Ck, σk, Lk)|Ck ∈ ℜm, σk ∈ ℜ, Lk ∈ ℜ, k = 1, . . . , l}. G is initially
empty (i.e., l = 0). Ck is an m-dimensional vector of centers, σk is the width
of membership functions (WMFs) of the kth fuzzy granule, and Lk is the
granule’s life index. A number of granules with different widths are shown in
Figure 2.

Fig. 2: A number of gaussian granules with different widths in a 2-D solu-
tion space. Once a new individual is sufficiently similar to a granule in the
granule pool, then that granules’ fitness is used instead as a crude estimate.
Otherwise, that individual is added to the pool as a new fuzzy granule. Each
granules’ radius of influence is determined based on equation (4).
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Step 3: Choose the phenotype of first chromosome (X1
1 = {x1

1,1, x1
1,2, . . . ,

x1
1,r, . . . , x1

1,m}) as the center of the first granule (C1 = {c1,1, c1,2, . . . , c1,r,
. . . , c1,m} = X1

1 ).
Step 4: Define the membership µk,r of each xi

j,r to each granule member
by a Gaussian similarity neighborhood function according to

µk,r

(

xi
j,r

)

= exp

(

−
(

xi
j,r − ck,r

)2

(σk)
2

)

, k = 1, 2, . . . , l , (3)

where l is the number of fuzzy granules.
Remark: σk is the distance measurement parameter that controls the

degree of similarity between two individuals. Like in [50], σk is defined based
on equation (4). According to this definition, the granules shrink or enlarge
in reverse proportion to their fitness:

σk = γ
1

(

eF (Ck)
)β

, (4)

where β > 0 is an emphasis operator and γ is a proportionality constant. The
problem arising here is how to determine the parameters β and γ as design
parameters. The fact is that these two parameters are problem dependent
and, in practice, a number of trials is needed to adjust these parameters.
This trial is based on a simple rule with respect to the acceleration of the
parameter optimization procedure: high speed needs to have enlargement in
the granule spread and, as a consequence of this, less accuracy is obtained
in the fitness approximation, and viceversa. To deal with this rule, a fuzzy
controller is presented in [50].

Step 5: Compute the average similarity of every new design parameter
X i

j = {xi
j,1, xi

j,2, . . . , xi
j,r, . . . , xi

j,m} to each granule Gk using equation (5)

µj,k =

m
∑

r=1

µk,r

(

xi
j,r

)

m
(5)

Step 6: Either calculate the exact fitness function of X i
j or estimate the

fitness function value by associating it to one of the granules in the pool
in case there is a granule in the pool with higher similarity to X i

j than a
predefined threshold, i.e.

f
(

X i
j

)

=







f (Ck) if max
k∈{1,2,...,l}

{µj,k} > θi ,

f
(

X i
j

)

otherwise.
(6)

where f(Cx) is the fitness function value of the fuzzy granule, f(X i
j) is the

real fitness calculation of the individual, θi = α(max{f(X i−1
1 ), f(X i−1

2 ), . . . ,

f(X i−1
t )}/f

i−1
), K = argmax{µj,k} when k ∈ {1, 2, . . . , l}, f

i
=
∑i

j=1 f(X i
j)/t



Fitness Granulation for Large-Scale Structural Design Optimization 17

and α > 0 is a proportionality constant that is usually set at 0.9 unless oth-
erwise indicated. The threshold θi increases as the best individual’s fitness at
generation i increases. As the population matures and reaches higher fitness
values (i.e., while converging more), the algorithm becomes more selective
and uses exact fitness calculations more often. Therefore, with this technique
we can utilize the previous computational efforts during previous generations.
Alternatively, if

max
k∈{1,2,...,l}

{µj,k} < θi

X i
j is chosen as a newly created granule.
Step 7: If the population size is not completed, repeat Steps 5 to 7.
Step 8: Select parents using a suitable selection operator and apply the

genetic operators of recombination and mutation to create a new generation.
Step 9: When termination/evolution control criteria are not met, then

update σk using equation (4) and repeat Steps 5 to 9.
In [48] and [51], additional details on the convergence speed of the algo-

rithm on a series of mathematical testbeds are provided along with a simple
example to illustrate the competitive granule pool update.

5.2 How to control the length of the granule pool?

As the evolutionary procedures are applied, it is inevitable that new granules
are generated and added to the pool. Depending on the complexity of the
problem, the size of this pool can be excessive and become a computational
burden itself. To prevent such unnecessary computational effort, a forgetting

factor is introduced in order to appropriately decrease the size of the pool. In
other words, it is better to remove granules that do not win new individuals,
thereby producing a bias against individuals that have low fitness and were
likely produced by a failed mutation attempt. Hence, Lk is initially set to N
and subsequently updated as below,

Lk =

{

Lk + M if k = K ,

Lk otherwise ,
(7)

where M is the life reward of the granule and K is the index of the winning
granule for each individual at generation i. At each table update, only the
NG granules with the highest Lk index are kept, and the others are discarded.
In [52], an example has been provided to illustrate the competitive granule
pool update law. Adding a new granule to the granule pool and assigning a
life index to it, is a simple way of controlling the size of the granule pool,
since the granules with the lowest life index will be removed from the pool.
However, it may happen that the new granule is removed, even though it
was just inserted into the pool. In order to prevent this, the pool is split into
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two parts with sizes εNG and (1 − ε)NG. The first part is a FIFO (First In,
First Out) queue and new granules are added to this part. If it grows above
εNG, then the top of the queue is moved to the other part. Removal from the
pool takes place only in the (1− ε)NG part. In this way, new granules have a
good chance to survive a number of steps. In all of the simulations that are
conducted here, ε is set at 0.1.

The distance measurement parameter is completely influenced by the gran-
ule enlargement/shrinkage in the widths of the produced membership func-
tions. As in [52], the combined effect of granule enlargement/shrinkage is in
accordance with the granule fitness and it requires the fine-tuning of two
parameters, namely β and γ. These parameters are problem dependent and
it seems critical to have a procedure to deal with this difficulty. In [50] and
[53], an auto-tuning strategy for determining the width of membership func-
tions is presented which removes the need of exact parameter determination,
without a negative influence on the convergence speed.

6 Numerical results

To illustrate the efficacy of the proposed granulation algorithm, the result of
applying it to the problems introduced in Section 2 are studied and analyzed
in the two following sections. The commercial FEA software ANSYS [54] is
used during the analysis and numerical simulation study.

The GA routines utilize initially random populations, binary-coded chro-
mosomes, single-point crossover for the first three problems and 15-point
crossover for the piezoelectric actuator design problem, mutation, fitness scal-
ing, and an elitist stochastic universal sampling selection strategy. Crossover
rate PXOV ER = 1, PMUTATION = 0.01 and the population size is set at 20.
However, due to the number of parameters and complexity of the structural
problems, the number of generations is set to 50 for the first three problems
and 600 for the piezoelectric actuator design problem. These settings were
determined during several trial runs to reflect the best performing set of pa-
rameters for the GA. Finally, the chromosome length varies depending on the
number of variables in a given problem but each variable is still allocated 8
bits.

For performing the FES, a fitness and associated reliability value are as-
signed to each new individual that is truly evaluated if the reliability value is
below a certain threshold T . The reliability value varies between 0 and 1 and
depends on two factors: first is the reliability of parents, and second is how
close parents and children are in the solution space, as explained in equa-
tion (2). Also, as mentioned in [18], T = 0.7 is used for the threshold as we
empirically found that it generally produces the best results. The parameters
of the GA-ANN are the same as in the GA alone. In the GA-ANN approach
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for solving optimization problems, a two-layer neural network is used, having
as input the design variables and as outputs the fitness values.

Furthermore, due to the stochastic nature of EAs, each of the simula-
tions was repeated ten times, and a paired Mann-Whitney U test (also called
the MannWhitneyWilcoxon) was performed except for the last optimization
problem in which, for each algorithm, it was performed only once, due to the
running time needed. The significance level α represents the maximum toler-
able risk of incorrectly rejecting the null hypothesis H0, indicating that the
mean of the 1st population is not significantly different from the mean of the
2nd population. The p-value or the observed significance level of a statistical
test is the smallest value of α for which H0 can be rejected. If the p-value
is less than the pre-assigned significance level α, then the null hypothesis
is rejected. Here, the significance level α was assigned, and the p-value was
calculated for each of the following applications.

The results are presented in Tables 1, 2, 3 and 5, in which FFE stands
for the number of fitness function evaluations needed to perform the opti-
mization task and the training data column presents the number of initial
input/output pairs needed in order to build up the approximation model.
Since the most computationally expensive part of an evolutionary algorithm
is usually, by far, its fitness evaluation, the convergence time improvement

of different algorithms, compared to the standard GA, can be estimated in
terms of the number of fitness evaluations. So, the time improvement per-
centage column is calculated as one minus the difference between the sum
of FFE and training data divided by the number of FFE of the standard
algorithm, i.e., a GA, multiplied by 100.

6.1 3-Layer composite beam

A 3-layer composite beam has been modeled numerically by using the ANSYS
program. The composite layout are the design variables that change in the
region [0 - 180]. The objective here is to raise the first natural frequency
by appropriately choosing 2 composite layers’ angles. In this example, the
Young’s modulus [55] is EX = 210 GPa, EY = 25 GPa, EZ = 25 GPa,
GXY = GYZ = GXZ = 30 GPa, Poisson’s ratio ν = 0.2 and density ρ =
2100 kg/m3. There are two design variables (two degrees of freedom) for this
optimization problem each varying between 0 and 180. For this case, a 2-100-1
ANN architecture is consequently chosen and used for the optimization runs.
The proposed algorithm (called AFFG, for adaptive fuzzy fitness granulation)
and other methods are compared in Table 1. Results indicate that while there
is not a significant statistical difference between the three algorithms in terms
of solution fitness, i.e., rigidity of the beam, the time savings provided by the
proposed method is much higher than that of the GA-ANN. In particular,
the proposed AFFG algorithm finds better solutions on the average with less
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computational time as compared with the GA-ANN. Also, while FES seems
to have found better solutions, the proposed GA-AFFG used less than half
as many evaluations.

FFEs Training data Time improvement (%) Optimum S−1 p-value

GA 1000 Not Needed 19.3722
FES 228.1 Not Needed 77.19 19.369 0.0211
GA-ANN 155.9 100 74.41 19.3551 0.0026
GA-AFFG 97.5 Not Needed 90.25 19.3681 0.0355

Table 1: Performance of the optimization methods (average of 10 runs) for
the 3-layer composite beam, α = 0.9, β = 0.1, γ = 30, M = 5, NG = 250, T
= 0.7.

6.2 Airplane wing

Figure 3(a) shows the initial design of an airplane wing. The wing is of uni-
form configuration along its length, and its cross-sectional area is defined to
be a straight line and a spline. It is held fixed to the body of the airplane at
one end and hangs up freely at the other. The objective here is to maximize
the wing’s first natural frequency by appropriately choosing three key points
of the spline. The material properties are: Young’s modulus = 261.820 GPa,
density ρ = 11031 kg/m3, Poisson’s ratio ν = 0.3.

The optimized shape found by a simple GA is shown in Figure 3(b) and
that found by GA-AFFG is shown in Figure 3(c). A 6-100-1 architecture is
chosen for the ANN used as fitness approximator. Table 2 illustrates that
while the GA-ANN finds inferior solutions as compared with the GA, the
use of the ANN significantly reduces computational time. The application of
AFFG shows an improvement in the search quality while maintaining a low
computational cost. Specifically, the average 10-run performance of the AFFG
solutions is higher than that of any of the competing algorithms including
the GA, FES and GA-ANN. Furthermore, while the Mann-Whitney U test
confirms that the proposed algorithm solutions are at least as good as those
produced by the GA, the proposed algorithm is over 82% faster.

6.3 2D truss frame

A typical truss designed by an engineer is illustrated in Figure 4(a). The
objective (fitness) here is to raise the structure’s first natural frequency to
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Fig. 3: Airplane wing: (a) initial shape, (b) GA optimized shape, and (c)
GA-AFFG.

FFEs Training data Time improvement (%) Optimum S−1 p-value

GA 1000 6.0006
FES 481.6 51.84 5.9801 0.9698
GA-ANN 172.1 100 72.79 5.9386 0.4274
GA-AFFG 173.5 82.65 6.0527 0.3075

Table 2: Performance of the optimization methods (average of 10 runs) for
Airplane wing, α = 0.9, β = 0.5, γ = 1, M = 5, NG = 250, T = 0.7 .

reduce the vibration domain and to prevent the resonance phenomenon (in
dynamic response) of the structure by appropriately choosing the 18 key
point locations (our design variables) as illustrated in Figure 3(a).

In this benchmark, isotropic material properties are assumed (Young’s
modulus E = 210 GPa, Poisson’s ratio ν = 0.3 and density ρ = 7800 kg/m3).
The optimized shapes produced by the GA and the new proposed method
AFFG are shown in Figures 4(b) and 4(c), respectively. The 36-100-1 ANN
architecture is chosen and used for the optimization runs.

The search begins with an initial population. The maximum fitness in
the initial population is nearly 9.32. Over several generations, the fitness
gradually evolves to a higher value of 11.902. Figure 5 shows a plot of best,



22 Davarynejad, Vrancken, van den Berg, Coello Coello

average and worst fitness vs. generation number for one run of our GA-
AFFG. This performance curve shows the learning activity or adaptation
associated with the algorithm. The total number of generations is 50. For a
population size of twenty, this requires 1000 (50×20) fitness evaluations for
the GA while the proposed GA-AFFG required only 570.4 fitness evaluations.
Figure 6 shows the plot of the number of FEA evaluations vs. generation
number corresponding to one run [48].

Fig. 4: 2D truss frame: (a) initial configuration, (b) GA optimized shape, and
(c) GA-AFFG optimized shape.

FFEs Training data Time improvement (%) Optimum S−1 p-value

GA 1000 12.1052
FES 1000 0 11.8726 0.0058
GA-ANN 293 100 60.66 11.8697 0.0257
GA-AFFG 570.4 42.96 12.1160 0.9097

Table 3: Performance of the optimization methods (average of 10 runs) for
the 2D truss, α = 0.9, β = 0.11, γ = 3.05, M = 5, NG = 550, T = 0.7 .
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Fig. 5: Plot of generation number vs. fitness value for the 2D truss frame using
GA-AFFG: best (circle), average (cross) and worst (asterisk) individuals at
each generation.

6.4 Voltage and pattern design of piezoelectric
actuator

Piezoelectric materials have coupled mechanical and electrical properties
making them able to generate a voltage when subjected to a force or de-
formation (this is termed as the direct piezoelectric effect). Conversely, they
exhibit mechanical deformation when subjected to an applied electric field
(this is called the converse piezoelectric effect) [51]. Various applications of
piezoelectric actuators/sensors have appeared in the literature. Lin et al. [56]
investigated the modeling and vibration control of a smart beam by using
piezoelectric damping-modal actuators/sensors. They presented theoretical
formulations based on damping-modal actuators/sensors and numerical solu-
tions for the analysis of a laminated composite beam with integrated sensors
and actuators. A proof-of-concept design of an inchworm-type piezoelectric
actuator of large displacement and force for shape and vibration control of
adaptive truss structures is proposed by Li et al. in [57]. The applications of
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Fig. 6: Plot of the generation number vs. number of FEA evaluations for the
2D truss frame in a single run using GA-AFFG.

such actuators include smart or adaptive structural systems for the car and
aerospace industries.

A fiber composite plate with initial imperfections and under in-plane com-
pressive loads is studied by Adali et al. [58] with a view towards minimizing
its deflection and optimizing its stacking sequence by means of the piezoelec-
tric actuators and the fiber orientations. Krommer [59] studied a method to
control the deformation of a sub-section of a beam. His intention was to apply
a distributed control by means of self-stresses within the sub-section to keep
the sub-section in its non-deformed state. In practical applications such as
deformation control of conformal antennas, this strategy is highly valuable.

Global optimization algorithms [60] along with a finite element formula-
tion are widely used in shape control. For instance in [10], a computational
intelligence based optimization algorithm along with a modified finite element
formulation is used to deal with the shape control of functionally graded ma-
terial (FGM) plates that contain piezoelectric sensor and actuator patches.
In this study, an optimal voltage distribution or a gain control matrix are
used as design variables for the shape control of smart structures. Numerical
simulations have been successfully carried out on the shape control of the
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FGM plates by optimizing the voltage distribution for the open loop shape
control or gain values for the closed loop shape control. Finite element formu-
lation with non-rectangular shaped actuators for laminated smart composite
structure is studied in [61]. For smart cantilever plates, the actuated deflec-
tions are measured and are used to validate the present formulation. They
also investigated the effect of actuator pattern on the optimum values of the
applied voltages and the shape match factors. Numerical results shown that
the actuator patterns may have an important influence on the values of the
optimum voltages applied to each individual actuator and the final shape
match factor.

6.4.1 Piezoelectric equations (constitutive equations)

In this study, the assumption is that the thermal effect is negligible. The
piezoelectric constitutive relationships describe how two piezoelectric me-
chanical and electrical quantities (stress, strain, electric displacement, and
electric field) interact and it is expressed by the direct and the converse
piezoelectric equations respectively [62]:

{D} = [e]{ε} + [ε]{E} , (8)

{σ} = [Q]{ε} + [e]T {E} , (9)

where {σ} is the stress vector, [Q] is the elastic stiffness matrix, {ε} is
the strain vector, [e] is the piezoelectric constant matrix, {E} = −∇ϕ is the
electric field vector. Also, ϕ is the electrical potential, {D} is the electric dis-
placement vector and [ε] is the permittivity coefficient matrix. Equations (8)
and (9) describe the electromechanical coupling. Assuming that a laminated
beam consists of a number of layers and each layer possesses a plane of ma-
terial symmetrically parallel to the x-y plane, the constitutive equations for
the kth layer can be written as [63]:

{

D1

D3

}

k

=

[

0 e15

e31 0

]

k

×

{

ε1

ε5

}

k

+

[

ε11 0
0 ε33

]

k

×

{

E1

E3

}

k

(10)

{

ε1

ε3

}

k

=
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Q11 0
0 Q55

]

k

×
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ε1

ε5

}

k

+

[

0 ε31

ε15 0

]

k

×

{

E1

E3

}

k

(11)

where

Q11 =
E11

1 − v12v21
, Q55 = G13

and are the reduced elastic constants of the kth layer, E11 is the Young’s
modulus and G13 is the shear modulus. The piezoelectric constant matrix [e]
can be expressed in terms of the piezoelectric strain [d] as:
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[e] = [d][Q]

where

[d] =

[

0 d15

d31 0

]

Using the above piezoelectricity analysis and formulation, finite element
model (FEM) of piezoelectric patches and metal plate [64] was built by AN-
SYS [54]. Also, a small deflection and thin plate theory are assumed for the
FEM of the plate.

To validate the software, a clamped free aluminum plate with 4 piezoelec-
tric patches is modeled and the results are compared with the experimental
model of reference [65]. A close agreement between our model and our ex-
perimental results is observed. Also, in order to achieve an acceptable mesh
density, mesh sensitivity 4 is performed.

6.4.2 Piezoelectric design for static shape control

The shape control problem considered here is to find the optimal actuator
pattern design vector P and exiting voltage vector V as design variables.
The (quasi-) static shape control problem can be defined, in the context of
an optimization formulation, as follows:

Find S = [P, V ]T to minimize:

f(S) =

Nx
∑

j=1

Ny
∑

i=1

∣

∣

∣
dd

i,j − df
i,j

∣

∣

∣

∣

∣max
(

dd
i,j

)∣

∣

/ (Nx × Ny) (12)

S is the design variable vector with two components: i) the pattern vari-
able vector P , and ii) the applied voltage variable vector V . Here, f(S) is
the objective function. P is the distribution of active piezoelectric actuator
material (pattern variable) whereas the voltage variables in vector V are the
electrical potentials applied across the thickness direction of each actuator.
The objective function f(S) in equation (12) is a weighted sum of all the
absolute differences between the desired and designed shapes at all nodes.
dd

i,j and df
i,j are the desired and designed (calculated by the FE model) dis-

placements of the ith location, respectively, and max(dd
i ) is the maximum

displacement in the desired structural shape. Plates are considered to be in
the (x, y) Cartesian plane, dd

i and df
i are the transversal displacements or z in

Cartesian plane which is the displacement component in the global displace-
ment vector. As the displacement is small here, there is no need to consider
stress or strain constraint variables for the shape control problem.

4 Mesh sensitivity is performed to reduce the number of elements and nodes in the mesh
while ensuring the accuracy of the finite element solution [66].
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6.4.3 Model description

A cantilever plate clamped at its left edge and subjected to a non-applied
mechanical load is assumed here. The plate has a length of 154 mm; width
of 48 mm and consists of one layer of 0.5 mm in thickness. The piezoelectric
actuators (thickness of 0.3 mm each) are attached to the top surfaces of the
plate (Figure 7). The desired pre-defined surface [65] is defined as:

dd
i,j =

(

1.91x2 + 0.88xy + 0.19x
)

× 10−4 . (13)

The piezoelectric electro-mechanical properties shown in Table 4 according
to PX5-N from Philips Components. After a careful mesh sensitivity analysis,
a FEM is built as illustrated in Figure 8.

CE

11
(N m−2) 13.11 × 1010 d15(m V −1) 515 × 10−12

CE

12
(N m−2) 7.984 × 1010 d31(m V −1) −215 × 10−12

CE

13
(N m−2) 8.439 × 1010 d33(m V −1) 500 × 10−12

CE

33
(N m−2) 12.31 × 1010 εt

11
/ε0 1800

CE

44
(N m−2) 2.564 × 1010 εt

33
/ε0 2100

CE

66
(N m−2) 2.564 × 1010 ρ(kg m−3) 7800

Table 4: Material properties for the PX5-N piezoelectric material [65].

Fig. 7: Geometrical model of the piezoelectric patch adopted here.
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Fig. 8: Finite element model built by ANSYS.

For this SD and optimization problem, there are 200 design variables. Half
of these design variables belong to actuation voltage of piezoelectric patches
which vary between -10 and 20 V and the rest of the design variables are
Boolean, indicating whether or not the voltage should be applied to the piezo-
electric patches. When the ith(i = 1, . . . , 100) piezoelectric pattern variable is
zero, the piezoelectric patch is not built so that there is no actuation voltage,
and viceversa. Figure 9 shows the graph of best, average and worst fitness
vs. generation number and Figure 10 shows the number of FEA evaluations
vs. generation number for a single GA-AFFG run while Table 4 presents the
results of the four optimization algorithms corresponding to one run.

FFEs Training data Time Improved (%) Error (%)

GA 12000 7.313
FES 12000 0 12.82
GA-ANN 2617 5000 36.52 8.093
GA-AFFG 5066 Not needed 57.64 7.141

Table 5: Piezoelectric actuator performance of the optimization methods, α
= 0.9, β = 0.11, γ = 3.05, M = 5, NG = 550, T = 0.7 .

7 Analysis of results

Tables 1, 2, 3 and 5, illustrate the performance of the proposed GA-AFFG
method in comparison with a GA, FES and GA-ANN [48] in terms of com-
putational efficiency and performance for the 3-layer composite beam, the
airplane wing, and the 2D truss design problems as well as for the piezo-
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Fig. 9: Generation number vs. fitness for the piezoelectric actuator using our
proposed GA-AFFG for a single run: best (circle), average (cross) and worst
(asterisk) of individuals at each generation.

electric actuator problem. Due to the stochastic nature of the GA, the first
three design simulations are repeated 10 times and a statistical analysis is
performed. However, for the piezoelectic actuator we could not run the GA
that many times, because of its high computational cost.

The second column in these tables makes a comparison of the three al-
gorithms in terms of the number of FEA evaluations as compared to those
of the GA, while the fourth column makes a comparison in terms of per-
formance. Results indicate that our proposed GA-AFFG finds statistically
equivalent solutions by using more than 90%, 82%, 42% and 57% fewer fi-
nite element evaluations. The GA-ANN also significantly reduces the number
of FEA evaluations, but its average performance is inferior when compared
with our proposed GA-AFFG due to the ANNs approximation error. It must
be noted that the GA-ANN’s improved time includes the number of initial
training data.

For the piezoelectric actuator design problem, Table 5 illustrates a com-
parison of the GA, FES and GA-ANN [51] with respect to our proposed
GA-AFFG in terms of computational efficiency and performance. The sec-
ond column of this table makes a comparison of the four algorithms in terms
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Fig. 10: Generation number vs. number of FEA evaluations, for the piezo-
electric actuator, using our proposed GA-AFFG for a single run.

of the number of FEA evaluations as compared with a GA, while the fifth
column makes a comparison in terms of the quality of the optimal solutions.
Results indicate that GA-AFFG finds at least equivalent solutions by using
57% fewer finite element evaluations as compared to GA. Also, when com-
pared with the GA-ANN, the proposed algorithm finds better solutions while
being more computationally efficient. The main difference here is ANN’s need
for pre-training. Trying various sizes of initial training sets and considering
the 200 design parameters, the ANN required at least 5000 training data
pairs for comparable performance, see Table 5.

Overall, when compared with a GA, the two sets of applications indicate
that FES, GA-ANN and GA-AFFG improve the computational efficiency of
their problem by reducing the number of exact fitness function evaluations.
However, the neuro-approximation as well as fitness inheritance fail with a
growing size of the input-output space. Consequently, the utility of AFFG
becomes more significant in larger and more complex design problems. Fur-
thermore, our statistical analysis confirms that fitness inheritance is more
comparable in terms of performance when the size of the search space is
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smaller (Tables 1 and 2), but its performance deteriorates as the complexity
of the problem increases (Tables 3 and 5).

A comparison of the number of exact fitness function evaluations in terms
of mean and variance that presents the improved computational time is pre-
sented in Tables 6, 7 and 8 for the first three mechanical optimization prob-
lems described before. A Mann-Whitney U test is also performed to study the
significance of lower computation cost. Since the fourth optimization problem
(piezoelectic actuator design) could not be repeated due to the its FEA time
consuming nature, a Mann-Whitney U test could not be performed in that
case.

Simulation results
3-layer composite beam Mean Var p-Value

FES 228.1 4601.2 6.39×10−05

GA-ANN 155.9 511.9 6.34×10−05

GA-AFFG 97.5 406.7 6.39×10−05

Table 6: A Mann-Whitney U test of the number of real fitness calculations
for the 3-layer composite beam (10 runs).

Simulation results
Airplane wing Mean Var p-Value

FES 481.6 38648 6.39×10−05

GA-ANN 172.1 6392.1 6.39×10−05

GA-AFFG 173.5 1600.3 6.39×10−05

Table 7: A Mann-Whitney U test of the number of real fitness calculations
for the airplane wing (10 runs).

Simulation results
2D truss Mean Var p-Value

FES 100 0 Not available
GA-ANN 293 2394.2 6.39×10−05

GA-AFFG 570.4 18477 6.39×10−05

Table 8: A Mann-Whitney U test of the number of real fitness calculations
for the 2D truss (10 runs).
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8 Conclusions

In this chapter, we have proposed a systematic and robust methodology for
solving complex structural design and optimization problems. The proposed
methodology relies on the use of finite element analysis and adaptive fuzzy
fitness granulation. As we saw, adaptive fuzzy fitness granulation provides a
method to selectively reduce the number of actual fitness function evaluations
performed by considering the similarity/indistinguishability of an individual
to a pool of fuzzy information granules. Since the proposed approach does
not use approximation or online training, it is not caught in the pitfalls of
such techniques such as false peaks, large approximation error due to extrap-
olation, and time consuming online training.

The effectiveness and functionality of the proposed approach was verified
through four structural design problems. In the first three of them, the ob-
jective was to increase the first natural frequency of the structure. In the last
problem, a piezoelectric actuator was considered for the purposes of shape
control and/or active control for correction of static deformations. The design
variables were the voltage and the actuator locations and the performance
index was considered as the square root of the error between the nodal pre-
defined displacement and the observed displacement.
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