
A GPU-Based Implementation of Differential Evolution for
Solving the Gene Regulatory Network Model Inference

Problem

Luis E. Ramírez-Chavez
CINVESTAV-IPN (Evolutionary

Computation Group)
Department of Computer

Science
Av. IPN No. 2508, Col San

Pedro Zacatenco
Mexico City, Mexico

eramirez@computacion.cs.cinvestav.mx

Carlos A. Coello Coello
CINVESTAV-IPN (Evolutionary

Computation Group)
Department of Computer

Science
Av. IPN No. 2508, Col San

Pedro Zacatenco
Mexico City, Mexico

ccoello@cs.cinvestav.mx

Eduardo Rodríguez-Tello
CINVESTAV-Tamaulipas,
Information Technology

Laboratory
Parque Científico y

Tecnológico TECNOTAM, Km
5.5 carretera Cd. Victoria
Cd. Victoria, Tamaulipas,

Mexico
ertello@tamps.cinvestav.mx

ABSTRACT
In this paper, we present what we believe to be the first
GPU-based implementation (using CUDA) for solving the
gene regulatory network model inference problem. Our im-
plementation uses differential evolution as its search engine,
and adopts a power law system of differential equations (an
S-System) for modelling the dynamics of the gene regulatory
networks of our interest. Our preliminary results indicate
that the use of GPUs produces an important reduction in
the computational times required to solve this costly opti-
mization problem. This could bring important benefits in
Bioinformatics because of the many practical applications
that the solution of this problem has.

Categories and Subject Descriptors
J.3 [Life and Medical Sciences]: Biology and genetics;
I.2.8 [Problem Solving, Control Methods, and Search
]: Heuristic Methods; G.1.0 [Numerical Analysis, Gen-
eral ]: Parallel Algorithms

General Terms
Heuristics, Bioinformatics, Parallel Computing

Keywords
Gene Regulatory Networks, S-Systems, Evolutionary Algo-
rithms, GPU, CUDA

1. INTRODUCTION
Gene regulatory networks [4] are networks of interaction be-
tween different genes. That is, the level of influence that a
set of genes has on another specific gene to either promote

or suppress the expression of such gene. Knowing and un-
derstanding these relationships is one of the most important
objectives in the study of the functioning of biological sys-
tems, since this knowledge could represent the development
of treatments for diseases for which no treatment currently
exists. This could be done by predicting the behavior of
an organism when using a certain medication. Indeed, the
study of gene regulatory networks may also lead to the intel-
ligent design of synthetic organisms, because it could reveal
one of the basic mechanisms of life [3].

Searching for these models only through biological experi-
ments (e.g., DNA microarrays) is an impractical and costly
task. A better approach is to use a small set of biological
data which had been obtained by direct experimentation,
and then analyze it with a computer, with the aim of doing
some sort of reverse engineering to nature [14]. Clearly, the
aim is to obtain a computational model that can describe
these complex biological mechanisms [6].

A variety of approaches have been undertaken to model gene
regulatory networks [22]. However, when tackling this prob-
lem as an optimization task (particularly, when using evolu-
tionary algorithms to solve it), the most popular modelling
approach has been to adopt ordinary differential equations
[7]. Particularly, S-systems [21] have been the most popular
choice within the evolutionary computation community [18]
in spite of the large number of parameters that need to be in-
ferred when using them. S-systems are nonlinear differential
equations that adopt a canonical power law representation
to approximate the behavior of a dynamic system [24]. How-
ever, the use of S-systems has been found to be a relatively
robust model from which parameters can be inferred using a
metaheuristic (evolutionary algorithms have been the most
popular choice in this regard).

Evolutionary algorithms are very suitable to be parallelized,
and this feature turns out to be very useful when trying to
solve the gene regulatory network model inference problem,
because of its high computational cost. The use of Graph-
ics Processing Units (GPUs), which have become increas-
ingly cheaper, is an ideal choice to process massive amounts



of operations in parallel, achieving higher speed ups than
multi-core processors if properly programmed. The goal of
this paper is precisely to show a GPU-based implementation
of differential evolution, which is tailored to solve the gene
regulatory network model inference problem.

The remainder of this paper is organized as follows. Sec-
tion 1.1 provides a short introduction to evolutionary algo-
rithms in general, and differential evolution in particular,
since the latter is the metaheuristic adopted in this paper.
In Section 2, we give a short introduction to gene regulatory
networks and to S-systems, since that is the mathematical
model that we adopt in this paper. Graphical processing
units and CUDA are introduced in Section 3. Our proposed
approach is described in Section 5. Section 6 describes the
experimental setup adopted for validating our proposed ap-
proach as well as the results obtained. Our conclusions and
some possible paths for future research are provided in Sec-
tion 7.

1.1 Evolutionary Algorithms
The term evolutionary algorithms (EAs) is generically ap-
plied to a set of stochastic techniques inspired by the Neo-
Darwinian theory of natural evolution. EAs are commonly
used to solve search and optimization problems [10]. Al-
though three main paradigms are normally considered within
EAs (i.e., evolutionary programming [11], evolution strate-
gies [23], and genetic algorithms [12]), generally speaking,
any approach whose selection mechanism is based on a mea-
sure of quality of the solutions (the so-called fitness) can be
seen as an EA. EAs mimic (at different levels of similarity)
the evolution of a population of individuals (i.e., a set of so-
lutions to a problem) which are subject to certain variation
operators (e.g., crossover and mutation).

Differential evolution (DE) is a particular type of evolution-
ary algorithm originally proposed in the mid-1990s by Ken-
neth Price and Rainer Storn for continuous optimization [27,
20]. However, unlike simple genetic algorithms, DE does not
use an encoding of solutions and, unlike evolution strategies,
DE does not use a probability density function to self-adapt
its parameters. Instead, DE performs mutation based on
the distribution of the solutions in the current population.
In this way, search directions and possible step sizes depend
on the location of the individuals selected to calculate the
mutation values.

There is a nomenclature scheme developed to reference the
different DE variants. The most popular DE variant is called
“DE/rand/1/bin”, where “DE” means Differential Evolution,
the word “rand” indicates that individuals selected to com-
pute the mutation values are chosen at random, “1” is the
number of pairs of solutions chosen and finally “bin” means
that a binomial recombination is used. The corresponding
algorithm of this variant (which is the one adopted in this
paper) is presented in Figure 1.

The “CR” parameter controls the influence of the parent in
the generation of the offspring. Higher values mean less in-
fluence of the parent. The“F”parameter scales the influence
of the set of pairs of solutions selected to calculate the mu-
tation value (one pair in the case of the algorithm in Figure
1).

2. GENE REGULATORY NETWORKS
A gene regulatory network (GRN) describes the way in which
a group of genes are interacting between them [8]. Genes
can be expressed at diffent rates, known as expression lev-
els. Such an expression level has an influence on the type
of proteins that a gene produces. Conversely, the proteins
that are generated by a gene produce reactions in a cell, and
some of these reactions could constitute the expression level
of the other genes. Such interactions precisely form the gene
regulatory network that are the focus of study of this paper.

To see how the expression level has varied under different
circumstances, biologists created a technique called DNA
microarray, which is a collection of microscopic DNA spots
attached to a solid surface. DNA microarrays can measure
the expression levels of a large number of genes simultane-
ously.

The motivation for understanding how gene regulatory net-
works work, is that such an understanding can lead to pre-
dicting the behavior of such networks, which has lots of ap-
plications in areas such as drug design.

2.1 S-Systems
One of the most commonly used methods to model gene
regulatory networks (particularly when using evolutionary
algorithms in this area) is through a type of systems of or-
dinary differential equations called S-Systems.

The general form of an S-System for representing a gene
regulatory network is the following:

dXi(t)

d(t)
= αi

 
NY

j=1

X
gij(t)

j

!
− βi

 
NY

j=1

X
hij(t)

j

!
(1)

where: N represents the number of genes involved in the
gene regulatory network, gij0 (the G matrix) represents the
values of the kinetic orders for synthesis (promotes expres-
sion), hij (the H matrix) represents the values of the ki-
netic orders for degradation (suppresses expression), α and
β, where α > 0 and β > 0 are rate constants for the S-
System, Xj(t) represent the level of expression of the gene
Xj at time t.

The S-System has a major disadvantage in that it includes
the large number parameters that have to be estimated. The
total number of parameters in S-Systems is 2N(N+1), where
N is the number of genes (Xi). This quadratically increases
the number of parameters to infer for each gene involved in
the network. Thus, the evolutionary algorithm searches the
best parameters gij0 (the G matrix), hij (the H matrix) and
vectors α and β that model the network.

3. GRAPHICS PROCESSING UNITS
Graphics processing units (GPUs) are specialized circuits
design to rapidly manipulate and alter memory in such a
way that graphics related tasks such as the building of im-
ages in a frame buffer are considerably accelerated. GPUs



1 Begin
2 G=0
3 Create a random initial population ~xi,G ∀i, i = 1, . . . , NP
4 Evaluate f(~xi,G) ∀i, i = 1, . . . , NP
5 For G=1 to MAX GEN Do
6 For i=1 to NP Do
7 Select randomly r1 6= r2 6= r3 :
8 jrand = randint(1, D)
9 For j=1 to D Do
10 If (randj [0, 1) < CR or j = jrand) Then
11 ui,j,G+1 = xr3,j,G + F (xr1,j,G − xr2,j,G)
12 Else
13 ui,j,G+1 = xi,j,G

14 End If
15 End For
16 If (f(~ui,G+1) ≤ f(~xi,G)) Then
17 ~xi,G+1 = ~ui,G+1

18 Else
19 ~xi,G+1 = ~xi,G

20 End If
21 End For
22 G = G+ 1
23 End For
24 End

Figure 1: “DE/rand/1/bin” algorithm. randint(min,max) is a function that returns an integer number
between min and max. rand[0, 1) is a function that returns a real number between 0 and 1. Both are based
on a uniform probability distribution. “NP”, “MAX GEN”, “CR” and “F” are user-defined parameters. “D”
is the dimensionality of the problem.

were introduced in 1999, and are defined as1: “a single chip
processor with integrated transform, lighting, triangle se-
tup/clipping, and rendering engines that is capable of pro-
cessing a minimum of 10 million polygons per second.”

In recent years, a new concept that has gained increasing
popularity has been to use a general purpose GPU as a mod-
ified form of a stream processor. The idea is to transform the
massive floating-point computational power of GPUs into
general-purpose computing power. In fact, in some applica-
tions that require massive vector operations, the use of this
general purpose GPUs can yield several orders of magnitude
higher performance than using a conventional CPU.

Since the year 2005, there has been a lot of interest in de-
veloping GPU-based implementations of evolutionary algo-
rithms [29], with the obvious aim of reducing the compu-
tational time required for evaluating expensive fitness func-
tions (e.g., in genetic programming [13]).

3.1 CUDA
In order to motivate applications of GPUs in computation-
ally expensive applications, NVidia [5] developed an API ex-
tension of the C programming language called CUDA (Com-
puter Unified Device Architecture), which allows the defini-
tion of specific functions from a normal C program to run
on the GPU’s stream processors.

The architecture of the GPUs for the CUDA model is illus-

1See: http://www.nvidia.com/object/gpu.html

Figure 2: Nvidia’s GPUs architecture.

trated in Figure 2 in which the cores of the GPU are grouped
in blocks of cores that share a fast access memory that can
only be viewed by the block of cores. However, there is also
a global memory that can be accessed by all the cores of the
GPU. The communication between the GPU and the CPU
takes place through the PCIe port and, passing data from
the CPU to the GPU must be done by copying regions of
memory from the CPU’s memory to the GPU’s global mem-
ory, so that the data stored in the GPU cannot be viewed
by the CPU and vice versa.

GPUs can launch a high number of execution threads per
block which is the reason why GPUs’ parallelism is refereed
to as massive parallelism.



4. PREVIOUS WORK
Several researchers have adopted EAs in recent years, to
tackle the gene regulatory network inference problem [25,
15, 17, 26, 19, 16, 18].

A variety of evolutionary algorithms have been used to solve
this problem, including genetic algorithms with binary en-
coding, genetic algorithms with real-numbers encoding, evo-
lution strategies and differential evolution. In fact, even
multi-objective evolutionary algorithms [26, 17] and hybrids
(e.g., combinations of artificial neural networks and EAs [1])
have been adopted to tackle this problem.

All these approaches have the same basic framework to solve
the GRN model inference problem:

• Each individual in the population encodes the param-
eters that define an S-System.

• The objective of the EA is to do reverse engineering
to the problem, so that we obtain a model that can
reproduce the given target data.

The most common (and perhaps simplest) fitness function
adopted in the specialized literature is the mean quadratic
error between the original data and the candidate solutions:

f =

NX
i=1

TX
t=1

„
Xi,ca,t −Xi,exp,t

Xi,exp,t

«2

(2)

where: N represents the number of genes, Xi,ca,t represents
the level of expression of the gene Xi at time t that has
produced a candidate solution, Xi,xpt represents the level of
expression of the gene Xi at time t of the biological experi-
ment, and T is the number of time points.

Thus, the problem of inferring a GRN model can be viewed
as an optimization problem in which the objective is to min-
imize equation (2).

The following is a general method to solve this problem using
an EA:

1. First, the individuals in the population are randomly
generated (i.e., the S-Systems encoded by each indi-
vidual in the population is randomly generated)

2. The solutions are evaluated by solving the S-System
using a numerical method to solve ODEs (in our case,
we adopt Runge Kutta’s method [2]).

3. After the S-System has been solved, the result ob-
tained is compared with respect to the original data
and the fitness value of each individual is computed
using equation (2).

4. The EA operators are applied to the individuals in the
population.

5. Steps 2 to 4 are repeated until reaching a termination
condition (e.g., a maximum number of iterations).

5. OUR PROPOSED APPROACH
We have developed a GPU-based implementation of differ-
ential evolution that solves the gene regulatory network in-
ference problem. The flowchart of our proposed approach is
shown in Figure 3. In our implementation, we parallelize the
generation of the individuals in the population, the applica-
tion of the operators of the differential evolution algorithm,
and the fitness function evaluations.

Figure 3: Flowchart of our proposed approach

5.1 Memory Allocation
At the beginning of the algorithm’s execution, we reserve all
the memory that the algorithm will require for each individ-
ual of the population, for the parameters of the S-System,
for the matrices G and H. This follows the proposal of
Veronese [9], who reported what seems to be the first GPU-
based implementation of the differential evolution algorithm.
The vectors α and β are mapped into one continuous linear
block of memory as shown in Figure 4. The pseudocode
(in CUDA) for the memory allocation process is shown in
Algorithm 1.

5.2 Parallel Generation of the Population
One of the challenges in the implementation is the require-
ment of a big number of random parameters. For that, we
allocate the memory space required in the global memory
of the device. At the beginning of the algorithm’s execu-
tion, we generate all the numbers that the algorithm will
require. We do that in parallel using the Curand library,
which is a library that was specially designed to generate
random numbers in CUDA. The pseudocode for generating
the population is shown in Algorithm 2.



Figure 4: Memory allocation for the individuals of the population

Algorithm 1 Memory Allocation: We reserve the mem-
ory that the population needs to encode the parameters of
the S-systems, the time series and the fitness of each indi-
vidual.

cudaMalloc d pop G {reserve memory of size
ngenes*ngenes*POPSIZE for matrix G of the population}

cudaMalloc d pop H {reserve memory of size
ngenes*ngenes*POPSIZE for matrix H of the population}

cudaMalloc d pop alpha {reserve memory of size
ngenes*POPSIZE for vector α of the population}

cudaMalloc d pop beta {reserve memory of size
ngenes*POPSIZE for vector β of the population}

cudaMalloc d pop fitness {reserve memory of size POPSIZE for
the fitness of the population}

cudaMalloc d pop X {reserve memory of size
ngenes*npoints*POPSIZE for the time series of each indi-
vidual of the population}

Algorithm 2 Parallel generation of the population

curandGenerateUniform(gen,popG,ngenes*ngenes*POPSIZE)
curandGenerateUniform(gen,popH,ngenes*ngenes*POPSIZE)
curandGenerateUniform(gen,popalpha,ngenes*POPSIZE)
curandGenerateUniform(gen,popbeta,ngenes*POPSIZE)
the we fit the random numbers to the search bounds of the prob-
lem
fitvals< < <grid size,block size > > >(popG, mingij, maxgij)
fitvals< < <grid size,block size > > >(popH, minhij, maxhij)

5.3 Parallel Evaluation of the Population
We implemented a parallel evaluation scheme of the popu-
lation. For that sake, we assigned a thread execution per in-
dividual; thus, in our implementation, each thread performs
one function evaluation. In our implementation, we launch
blocks of 512 threads. The code for the parallel evaluation
of the population is shown in Algorithm 3.

Algorithm 3 Parallel evaluation of the population.

callrungekutta< < < POPSIZE/512 + 1 , 512 > >
>(G,H,alpha,beta,fitness,timeseries)

Each execution thread invokes a fourth order Runge Kutta’s
method to compute the solution of the S-System that is
encoded in each individual in the population. After that,
each thread will also compute the fitness (i.e., the mean
squared error between the target data and the solution of the
S-System) of each individual. This is done in a __device__

function. This process is shown in Algorithm 4.

Algorithm 4 Fitness calculation.
Compute the solution of the S-System of each individual
For each solution in each thread, compute the mean squared error
between the target data and the solution of the S-System

5.4 Parallel Differential Evolution operators
In our implementation, we provide a parallel crossover op-
erator (see Algorithm 5) and a parallel selection mechanism
(see Algorithm 6). These operators were implemented as
suggested in [9].

Algorithm 5 Parallel crossover.
For each individual in the population, we randomly select three
other individuals, using the Curand library. We perform this
in a loop until fulfilling the condition that the four individuals
selected are different
We perform crossover to the selected individuals using one thread
for each individual, so that the operator can be applied simulta-
neously to all the individuals in the population

Finally, we choose the best individual between each parent
and the offspring generated by the crossover operator. This
is also done in parallel using a thread per individual: ker-

nelselection< < < (POPSIZE/512) + 1, 512 > > >(old

population , new population).

The process is repeated until reaching the maximum number
of generations.

6. EXPERIMENTAL SETUP AND RESULTS
To assess the advantages of our GPU-based implementation,
we tested our algorithm using the same instance adopted
by Tominaga [28]. This instance consists of a network of
two genes artificially generated by the parameters shown in



Algorithm 6 Parallel selection

tid = threadIdx.x + (blockIdx.x * blockDim.x);
while tid < POPSIZE do

if new individual tid fitness < old individual tid fitness then
old individual = new individual

end if
end while

i αi βi gi,1 gi,2 hi,1 hi,2

1 3 3 0 2.5 -1 0
2 3 3 -2.5 0 0 2

Table 1: S-System Parameters of the gene regula-
tory network instance adopted to validate our pro-
posed approach

Table 1. The gene expression levels of the network are shown
in Figure 5, and it consists of a data set of 50 time points
of expression level per gene. The parameters for the limits
of the variables are the same adopted by Tominaga: for αi

and βi the search range is [0.20.0] and for gij ,hij , the search
space ranges in [-4.0,4.0].

For the CPU version, the tests were conducted using an
Intel Core 2 Quad processor running at 2.6 GHz and having
2 GB of memory. For the GPU implementation, we adopted
a GeForce GTX 460 with 336 cores running at 765 MHz and
having 1 GB of memory. The parameters of the differential
evolution algorithm were the following: F=0.5, crossover
rate (CR) = 0.8.

6.1 Validating our implementation
In order to know if our implementation is correct, we ran
some tests to see if we could exactly reproduce the target
data. The results of these test is graphically shown in Fig-
ures 6 and 7. It can be seen that the estimated levels of
expression for the genes one and two, are almost identical
to the test data. The final fitness value of these results is
.016232×10−5.

6.2 Results
Table 2 show a comparison of the results obtained by both,
the sequential CPU version and the GPU-based implementa-

Figure 5: Time courses of the test instance for two
genes

Figure 6: Target time-series and estimated time-
series for gene one.

Figure 7: Target time-series and estimated time-
series for gene 2



tions of our algorithm. In Table 2, we show different config-
urations in which we combine different population sizes with
different numbers of generations. On the left handside, we
show the fitness value and CPU times required (in seconds),
for the sequential implementation. The same information is
shown on the right handside of the table.

6.3 Discussion
Our results clearly indicate that our GPU-based implemen-
tation produces a significant time reduction for this costly
problem. For the configuration in which we use the maxi-
mum numbers of individuals (4056) and generations (1024),
our GPU-based implementation provided a speeded of about
145 times with respect to the sequential implementation.
Thus, our GPU-based implementation required in this case
of only 6.35 seconds, while the sequential implementation re-
quired 919.65 seconds. Also, it is worth noting that the final
fitness values achieved are reasonably close to zero, which is
the target value.

It is worth noting that in [28], Tominaga reported that a
genetic algorithm required 4085 seconds to solve the exact
same problem. Tominaga’s implementation used a popula-
tion of 1000 individuals, which ran during 1000 generations,
and achieved a final fitness value similar to ours (8× 10−5).
It is worth noting, however, that Tominaga used older hard-
ware than us.

7. CONCLUSIONS AND FUTURE WORK
Our main conclusion is that the use of GPU-based comput-
ing is a viable alternative for solving the gene regulatory
network model. Our results have shown a significant time
reduction when using our GPU-based implementation, with
respect to the sequential version of the same algorithm.

As part of our future work, we plan to test our GPU-based
implementation using additional problems that have been
reported in the specialized literature, including the use of
larger networks having 5, 10 and up to 20 genes. Such exam-
ples could test the scalability of our implementation, since a
sequential implementation normally requires about 10 hours
to reach an acceptable solution for networks having 5 genes,
while larger networks may require several days.

Acknowledgements
The first author acknowledges support from CONACyT to
pursue graduate studies at the Computer Science Depart-
ment of CINVESTAV-IPN. He also acknowledges support
from CINVESTAV-IPN to present this paper. The second
author acknowledges support from CONACyT project no.
103570.

8. REFERENCES
[1] S. Ando and H. Iba. Estimation of gene regulatory

network by genetic algorithm and pairwise correlation
analysis. In The 2003 IEEE Congress on Evolutionary
Computation (CEC’2003), pages 207–214, Canberra,
Australia, December 2003. IEEE Press.

[2] U. M. Ascher and L. R. Petzold. Computer Methods
for Ordinary Differential Equations and
Differential-Algebraic Equations. SIAM, Philadelphia,
USA, July 1998. ISBN 978-08987-1412-8.

[3] A. Barabasi and Z. Oltvai. Network biology:
Understanding the cell’s functional organization.
Nature Reviews Genetics, 5(2):101–U15, February
2004.

[4] H. Bolouri and E. Davidson. Transcriptional
regulatory cascades in development: Initial rates, not
steady state, determine network kinetics. Proceedings
of the National Academy of Sciences of the United
States of America, 100(16):9371–9376, August 5 2003.

[5] N. Corporation. NVIDIA CUDA Toolkit v3.2 RC2
Release Notes for Linux, October 2010.

[6] S. Das, D. Caragea, S. M. Welch, and W. H. Hsu,
editors. Handbook of Research on Computational
Methodologies in Gene Regulatory Networks. Medical
Information Science Reference, USA, 2009.

[7] C. Davidson. Identifying gene regulatory networks
using evolutionary algorithms. Journal of Computing
Sciences in Colleges, 25(5):231–237, May 2010.

[8] E. H. Davidson. The Regulatory Genome: Gene
Regulatory Networks In Development And Evolution.
Academic Press, London, UK, 2006. ISBN
978-0-12-088563-3.

[9] L. de P. Veronese and R. A. Krohling. Differential
evolution algorithm on the GPU with C-CUDA. In
2010 IEEE Congress on Evolutionary Computation
(CEC’2010), Barcelona, Spain, July 2010. IEEE Press.

[10] A. Eiben and J. Smith. Introduction to Evolutionary
Computing. Springer, Berlin, 2003. ISBN
3-540-40184-9.

[11] L. J. Fogel. Artificial Intelligence through Simulated
Evolution. John Wiley, New York, 1966.

[12] D. E. Goldberg. Genetic Algorithms in Search,
Optimization and Machine Learning. Addison-Wesley
Publishing Company, Reading, Massachusetts, 1989.

[13] S. Harding and W. Banzhaf. Fast Genetic
Programming on GPUs. In M. Ebner, M. O’Neill,
A. Ekárt, L. Vanneschi, and A. I. Esparcia-Alcázar,
editors, Genetic Programming, 10th European
Conference, EuroGP 2007, pages 90–101. Springer,
Lecture Notes in Computer Science Vol. 4445,
Valencia, Spain, April 2007.

[14] J. Hasty, D. McMillen, F. Isaacs, and J. Collins.
Computational studies of gene regulatory networks: In
numero molecular biology. Nature Reviews Genetics,
2(4):268–279, April 2001.

[15] S. Kimura, M. Hatakeyama, and A. Konagaya.
Inference of s-system models of genetic networks using
a genetic local search. In The 2003 IEEE Congress on
Evolutionary Computation (CEC’2003), pages
631–638, Canberra, Australia, December 2003. IEEE
Press.

[16] P. Koduru, S. Das, S. Welch, and J. L. Roe. Fuzzy
Dominance Based Multi-objective GA-Simplex Hybrid
Algorithms Applied to Gene Network Models. In
K. D. et al., editor, Genetic and Evolutionary
Computation–GECCO 2004. Proceedings of the
Genetic and Evolutionary Computation Conference.
Part I, pages 356–367, Seattle, Washington, USA,
June 2004. Springer-Verlag, Lecture Notes in
Computer Science Vol. 3102.

[17] P. Koduru, S. Das, S. M. Welch, J. L. Roe, and
E. Charbit. A Multiobjective Evolutionary-Simplex



Number
of in-
divid-
uals

Max
Gener-
ations

CPU
time
in sec-
onds

CPU fitness GPU
time
in sec-
onds

GPU fitness Speedup

32 100 0.68 4.39158 0.64 5.03668 ×1.0625
64 100 1.36 5.17165 0.63 4.39576 ×2.1587301587
128 100 2.66 5.23209 0.62 3.50573 ×4.2903225806
256 100 5.33 5.17518 0.63 5.09926 ×8.4603174603
512 100 10.71 5.15556 0.66 5.20999 ×16.2272727273
1024 100 21.56 4.45661 0.65 4.78358 ×33.1692307692
2048 100 42.72 4.15864 0.65 4.42818 ×65.7230769231
4056 100 84.63 2.72947 0.66 4.837 ×128.2272727273
32 500 3.53 1.20813 3.07 0.1357531 ×1.1498371336
64 500 7.09 0.0238907 3.14 0.0110196 ×2.2579617834
128 500 13.97 0.0242551 3.15 0.0172489 ×4.4349206349
256 500 27.86 0.0127262 3.17 0.00386007 ×8.7886435331
512 500 55.6 0.0175084 3.12 0.00935788 ×17.8205128205
1024 500 110.86 0.0200963 3.18 0.00658496 ×34.8616352201
2048 500 234.31 0.0184026 3.14 0.0043593 ×74.6210191083
4056 500 438.5 0.0143981 3.16 0.00700156 ×138.7658227848
32 1000 7.32 1.89028 6.24 0.000593101 ×1.1730769231
64 1000 14.64 0.003957 6.28 0.000440774 ×2.3312101911
128 1000 29.31 2.48775e-05 6.3 0.000226659 ×4.6523809524
256 1000 58.21 2.82812e-05 6.29 8.89689e-05 ×9.2543720191
512 1000 116.57 2.84008e-05 6.36 8.85665e-05 ×18.3286163522
1024 1000 232.72 3.69976e-05 6.29 0.000360468 ×36.9984101749
2048 1000 463.56 6.2814e-05 6.31 8.13485e-05 ×73.4643423138
4056 1000 919.65 5.3545e-05 6.35 8.016232e-05 ×144.8267716535

Table 2: Comparison of results and computational times (in second) between our GPU-based version and
our CPU version.



Hybrid Approach for the Optimization of Differential
Equation Models of Gene Networks. IEEE
Transactions on Evolutionary Computation,
12(5):572–590, October 2008.

[18] N. Noman and H. Iba. Inference of gene regulatory
networks using s-system and differential evolution. In
Proceedings of the 2005 Conference on Genetic and
Evolutionary Computation (GECCO’2005), pages
439–446, New York, NY, USA, 2005. ACM Press.

[19] N. Noman and H. Iba. Inferring Gene Regulatory
Networks using Differential Evolution with Local
Search Heuristics. IEEE/ACM Transactions on
Computational Biology and Bioinformatics,
4(4):634–647, October-December 2007.

[20] K. V. Price, R. M. Storn, and J. A. Lampinen.
Differential Evolution. A Practical Approach to Global
Optimization. Springer, Berlin, 2005. ISBN
3-540-20950-6.

[21] M. Savageau. Introduction to s-systems and the
underlying power-law formalism. Mathematical and
Computer Modelling, 11:546–551, 1988.

[22] T. Schlitt and A. Brazma. Current approaches to gene
regulatory network modelling. BMC Bioinformatics,
8(6), 2007. Article Number S9.

[23] H.-P. Schwefel. Evolution and Optimum Seeking. John
Wiley & Sons, New York, 1995.

[24] D. Searson, M. Willis, S. Horne, and A. Wright.
S-systems and evolutionary algorithms for the
inference of chemical reaction networks from fed-batch
reactor experiments. In Proceedings of the 17th
International Congress of Chemical and Process
Engineering (CHISA 2006), Prague, Czech Republic,
27-31 August 2006.

[25] C. Spieth, F. Streichert, N. Speer, and A. Zell.
Optimizing Topology and Parameters of Gene
Regulatory Network Models from Time-Series
Experiments. In Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO
2004), pages 461–470. Springer, Lecture Notes in
Computer Science Vol. 3102, 2004.

[26] C. Spieth, F. Streichert, N. Speer, and A. Zell.
Multi-objective Model Optimization for Inferring
Gene Regulatory Networks. In C. A. Coello Coello,
A. Hernández Aguirre, and E. Zitzler, editors,
Evolutionary Multi-Criterion Optimization. Third
International Conference, EMO 2005, pages 607–620,
Guanajuato, México, March 2005. Springer. Lecture
Notes in Computer Science Vol. 3410.

[27] R. Storn and K. Price. Differential Evolution - A Fast
and Efficient Heuristic for Global Optimization over
Continuous Spaces. Journal of Global Optimization,
11:341–359, 1997.

[28] D. Tominaga, M. Okamoto, Y. Maki, S. Watanabe,
and Y. Eguchi. Nonlinear Numerical Optimization
Technique Based on a Genetic Algorithm for Inverse
Problems: Towards the Inference of Genetic Networks.
In German Conference on Bioinformatics’99, pages
127–140, 1999.

[29] M.-L. Wong, T.-T. Wong, and K.-L. Fok. Parallel
evolutionary algorithms on graphics processing unit.
In 2005 IEEE Congress on Evolutionary Computation
(CEC’2005), volume 3, pages 2286–2293, Edinburgh,

Scotland, September 2005. IEEE Service Center.


