
An Adaptive Evolutionary Algorithm Based on Typical
Chess Problems for Tuning a Chess Evaluation Function

Eduardo
Vázquez-Fernández

Computer Science
Department

Centro de Investigación y de
Estudios Avanzados del IPN

México, DF
eduardovf@hotmail.com

Carlos A.
Coello Coello

Computer Science
Department

Centro de Investigación y de
Estudios Avanzados del IPN

México, DF
ccoello@cs.cinvestav.mx

Feliú D.
Sagols Troncoso

Mathematics
Department

Centro de Investigación y de
Estudios Avanzados del IPN

México, DF
fsagols@math.cinvestav.edu.mx

ABSTRACT

This paper presents a method for adjusting weights of the
evaluation function of a chess engine. Such an adjustment is
carried out through an evolutionary algorithm which adopts
a mechanism that selects the virtual players (individuals in
the population) that have the highest number of problems
properly solved from a database of typical chess problems.
This method has the advantage that we only mutate those
weights involved in the solution of the current problem. Fur-
thermore, the mutation mechanism is adapted through the
number of problems solved by each virtual player. Our re-
sults indicate that the material values obtained by our a-
pproach are similar to the values known from chess theory.
Additionally, we also show that, using the approach pro-
posed here, the strength of our chess engine is increased in
335 points.

Categories and Subject Descriptors

I.2 [Artificial Intelligence]: Learning

General Terms

Algorithms

Keywords

Evolutionary algorithm, chess program, evaluation function

1. OUR CHESS ENGINE
To carry out our experiments, we implemented a chess

engine with the following characteristics: election of move-
ments through the alpha-beta algorithm [3], search depth
of 4 ply, stabilization of positions through the Quiescence
algorithm that takes into account the exchange of material
and king’s checks, and use of hash tables [1]. During the
evolutionary process, our chess program evaluates a given
position for a particular side, with the following expression:

eval =
r

X

i=1

Mi +
s

X

i=1

Pi (1)

Copyright is held by the author/owner(s).
GECCO’11, July 12–16, 2011, Dublin, Ireland.
ACM 978-1-4503-0690-4/11/07.

where: r is the number of pieces of one side in particular,
regardless of the king, s is the number of pieces of one side
in particular, Mi represents the material value for piece i (it
is a static value) and Pi represents the positional value for
piece i (it is a dynamic value that depends on the features
of a position).
The positional value Pj of the piece j is given by:

Pj =
4

X

i=1

Xj,i ∗ Fj,i (2)

where: j can be a king, rook, knight or pawn, Xj,i is the
weight of factor Fj,i, Fking,1 is the sum of material values of
pieces that defend their king, Fking,2 is the sum of material
values of pieces that attack the king, Fking,3 is 1 if and only
if the king is castled, Fking,4 is the number of pawns that
protect their king, Frook,1 is the mobility of the rook, Frook,2

is 1 if and only if the rook is in an open column, Frook,3 is
1 if and only if the rook is in the seventh row, Frook,4 is 1 if
and only if there are two rooks in the seventh row, Fknight,1

is the mobility of the knight, Fknight,2 is 1 if and only if the
knight is in the periphery of the board, Fknight,3 is 1 if and
only if the knight is defended by a pawn, Fknight,4 is 1 if
and only if the knight cannot be evicted by an enemy pawn,
Fpawn,1 is 1 if and only if the pawn is doubled, Fpawn,2 is 1
if and only if the pawn is isolated, Fpawn,3 is 1 if and only if
the pawn is central (i.e., if it is in c4, c5, d4, d5, e4, e5, f4
or f5 square), Fpawn,4 is 1 if and only if the pawn is passed.

The purpose of this paper is to tune the weights of equa-
tion 1 and 2 using evolutionary programming [2] and a data-
base of chess problems [5] (in all the previous works that we
found in which the authors use evolutionary algorithms, this
decision is based on the outcome of the game).

2. OUR PROPOSED APPROACH
Algorithm 1 shows the evolutionary algorithm used to ad-

just the weights of our chess engine. The initial population
of our evolutionary algorithm consisted of N = 8 virtual pla-
yers whose weights were randomly initialized within their a-
llowable bounds using a uniform distribution. These bounds
were defined by a chess expert. The left and right bounds for
the material values Mi for the knight and bishop, the rook,
and the queen were [200, 400], [400, 600] and [800, 1000], re-
spectively. The left and right bounds for the weight Xj,i

for the king, rook, knight and pawn were [−200, 200]. The
number of training chess problems numP was set to 40.



Algorithm 1 EvolutionaryAlgorithm()

1: P ← chooseProblems(S);
2: for each problem p in P do

3: for each virtual player i do

4: foundSolution[i] ← sol[i] ← 0;
5: end for

6: establishWeightsToMutate();
7: setPosition(p);
8: m ← solution(p);
9: g ← 0;

10: while g++< Gmax do

11: for each virtual player i do

12: n ← nextMovement(i);
13: if m == n then

14: foundSolution[i] = TRUE;
15: sol[i]++;
16: end if

17: end for

18: if allProblemsFoundSolution()==TRUE then

19: break;
20: end if

21: selection();
22: mutation();
23: end while

24: end for

Each parent that passes to the following generation is en-
titled to mutate itself in order to produce an offspring. The
values that are mutated are the weights Mi and Xi from
the equations 1, 2. In our implementation, we adopted
Michalewicz’s non-uniform mutation operator [4]. Under

this operator, V
′

k , the mutated weight, is obtained using the
following equation:

V
′

k =



Vk + ∆(t, UB − Vk) if R=TRUE
Vk − ∆(t, Vk − LB) if R=FALSE

(3)

where the weight Vk ∈ [LB, UB] and R = flip(0.5). The
function flip(p) returns TRUE with a probability p. The
expression for ∆(t, y) is:

∆(t, y) = y ∗ (1 − r(1−t/T )b

) ∗ (1 − sol[i]/numP ) (4)

where r is a uniformly distributed random number between
0 and 1, T is the maximum number of generations and b is a
user-defined parameter; in our case, b = 2. The probability
of mutation is adapted through the evolutionary process by
the term (1 − sol[i]/numP ), where sol[i] denotes the num-
ber of problems solved by the virtual player i, and numP
denotes the number of problems chosen from the database
for adjusting the weights.

3. EXPERIMENTAL RESULTS

3.1 Tuning weights
In our experiments, we tuned the weights Mi and Xj,i

of equations 1 and 2, respectively. If, after mutation, any
weight falls, either to the left or to the right of the allowable
range [Xi,low, Xi,high], then its value is set to Xi,low, or to
Xi,high, respectively. At the beginning of the evolutionary
process for run #30 the (average material value, standard
deviation) were (306.7, 55.4), (285.3, 49.4), (506.8, 39.5), and

(887.4, 34.9) for Mknight, Mbishop, Mrook, and Mqueen, re-
spectively. At the end of the evolutionary process for run
#30 the (average material value, standard deviation) were
(259.9, 0.0), (278.2, 0.0), (472.4, 24.4), and (913.6, 16.9) for
Mknight, Mbishop, Mrook, and Mqueen, respectively. Note
that the material values of the pieces are nearby their theo-
retical values [6], which are: 300, 330, 500 and 900 for the
knight, bishop, rook and queen, respectively. The material
value for the pawn is always 100. The weights of a virtual
player without evolution (corresponding to run #30) were
used to play 10 games against a chess player with 1820 ra-
ting points. In this case, our chess engine recorded a rating
of 1425 points. The same chess player also conducted ten
games against a virtual player with adjusted weights. In this
case, our chess engine recorded 1760 rating points.

4. CONCLUSIONS AND FUTURE WORK
The method that has been presented in this paper is based

on an evolutionary algorithm whose selection mechanism
gives priority to the virtual players who had properly solved
more problems selected from a database. Our proposed
method allows to mutate only those weights involved in the
current problem, preventing incorrect mutations that can
lead to incorrect values for future evaluations of board posi-
tions. Moreover, our method adapts the mutation rate based
on the number of problems that have been solved for each
virtual player. The material values of the pieces obtained
by our approach are similar to the values known from chess
theory, and the strength of the chess engine was increased
from 1425 to 1760 points during the evolutionary process (a
chess player intermediates). As part of our future work, we
plan to run our evolutionary algorithm with a larger number
of chess problems (both tactical and positional in nature)
and with a larger number of weights (mainly, the weights
associated with the positional values of the bishop and the
queen) in our evaluation function in order to increase the
rating of our chess engine as much as we can.

Acknowledgements

The first author acknowledges support from CINVESTAV-
IPN, CONACyT and the National Polytechnical Institute
(IPN) to pursue graduate studies at the Computer Science
Department of CINVESTAV-IPN. The second author ac-
knowledges support from CONACyT project no. 103570.

5. REFERENCES
[1] D. Beal and M. C. Smith. Multiple probes of

transposition tables. ICCA Journal, 19(4):227–233,
1996.

[2] L. J. Fogel. Artificial Intelligence through Simulated

Evolution. John Wiley, New York, 1966.

[3] D. E. Knuth and R. W. Moore. An analysis of
alpha-beta pruning. Artificial Intelligence,
6(4):293–326, 1975.

[4] Z. Michalewicz. Genetic Algorithms + Data Structures

= Evolution Programs. Springer-Verlag, second edition,
1996.

[5] F. Reinfeld. One Thousand and One Winning Chess

Sacrifices and Combinations. Wilshire Book Company,
1969.

[6] C. Shannon. Programming a computer for playing
chess. Philosophical Magazine, 7(41):256–275, 1950.


