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Abstract—This paper presents a Multi-Region Differential results were competitive when compared to those of the other
Evolution (MRDE) algorithm as an extension of a classical algorithms that participated in the contest.
version of differential evolution (DE) (i.e., as an extensin of More recently (at the CEC 2010 contest) Brest et al. [2]

DE/rand-to-best/1/exp). MRDE is designed to simultaneolsg . .
search on different and evenly distributed sub-regions on he presentedjDElsgo, an extended version ofDEdynNP-F,

whole search space. The number and extent of the search regw Which was developed by the same author in order to deal
change during the execution of the algorithm, in such a way tht, with large scale optimization problems. Wang et al. [15],

at the final stage of the evolutionary process, only one regio for the same contest, presented a sequential DE algorithm
remains (i.e., the whole search space). Our proposed MRDE is enhanced by neighborhood sear@DENS). This algorithm

compared with respect to the classical DE algorithm on a set . | tw in st 1) f h individual. t trial
of well-known benchmark problems. The results achieved sho involves two main steps: 1) from each individual, two tria

enough evidence of the benefits of distributing the populatin of ~ VECtor are generated by applying, respectively, local dololag
vectors when dealing with large-scale optimization problms. neighborhood search, and 2) the fittest vector among thettarg

one and the two trial vectors is selected to be part of the
next generation. In addition, a DE with one array is used
Differential Evolution (DE) is a metaheuristic that wago promote convergence. Both, jDEIsgo and SDENS achieved
originally proposed in the mid-1990s by Kenneth Price argbod quality solutions for the benchmark problems adopted.
Rainer Storn [11], [9], [10], [12]. More recent perspectiveHowever, none of them outperformed the other algorithms
about DE and its different variations and applications apmesented at this contest.
provided in Feoktistov [5] and Chakraborty [3]. Regarding the use of multi-region (or multi-trajectory)
DE has been widely accepted as one of the most efficianechanisms to explore by regions the whole search space
algorithms for solving continuous optimization problens. in continuous domains, we can mention the works of Tseng
that regard, several recent research efforts have beeriedevand Chen [13], Zhao et al. [17], and Hu et al. [6]. It is
to use DE to solve large scale optimization problems. Theorth remarking that none of the above algorithms are based
previous CEC 2008 and CEC 2010 competitions includemh DE. Tseng and Chen [13] presented a multiple trajectory
several DE-based proposals which were relatively suagesstearch (MTS) algorithm which achieved the highest ranking i
when compared to other types of metaheuristics. For examphlee CEC 2008 contest. MTS uses multiple agents that apply
the proposals of Brest et al. [1] and Zamuda et al. [16] showede of three candidate of iterated local search on different
competitive results in the CEC 2008 competition. Brest eegions distributed according to orthogonal arrays. MTé» al
al. [1] presented a Self-Adaptive Differential Evolutioly@ includes the concept of “foreground” solutions. These dgé h
rithm (jDEdynNP-F) in which parameterg’ and C,. are self- quality solutions found at earlier iterations and used aeba
adapted, together with the paramef€” (reduction on the solutions to find newer and better solutions in further tieres
population size). In addition, a mechanism for changing tteé the algorithm. Another interesting PSO based algorithm
sign of I is also incorporatedDEdynNP-F reaches high qual- is DMS-PSO-SHS presented in the CEC 2010 contest by
ity solutions for the benchmark adopted. On the other harthao et al. [17]. DMS-PSO-SHS is an extension of DMS-
Zamuda et al. [16] designddEwSAcc, a DE-based algorithm PSO (see [19]), which implements a multiple trajectory skear
extended by a log-normal self-adaptation mechanism for itsechanism hybridized with sub-regional harmony searcle. Th
main parameters (i.ef’ and C,). DEwSAcc also includes whole swarm is divided into a large number of sub-swarms
a cooperative co-evolution mechanism aimed to decompd®ath dynamic size) to conform each one the population of
the dimensions of the problem. Althou@EwSAcc was less the harmony search algorithm. The results from DMS-PSO-
competitive with respect to the other DE-based algorith®HS showed to be highly competitive on the benchmark
available at the CEC 2008 competitiofDEdynNP-F), its problems considered. Regarding the Ant Colony Optimizatio
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(ACO) metaheuristic [4], an orthogonal search algorithns wa
presented by Hu et al. [6]. The algorithm, called Continuous
Orthogonal Ant Colony (COAC), distributes a set of ants oriv)
different regions of the search according to an orthogonal
array. To enhance diversity, COAC implements and adaptive
regional radius mechanism by either expanding or shrinking
the area of exploration of each ant. The performance of
COAC was compared with two ACO-based algorithms (API
and CACO) on a set of seventeen continuous optimization
problems. Although the results obtained by COAC seem to
be encouraging, it is not clear from the contents of the paper
which was the dimensionality of the problems considered by
the authors for their experimental study.

The rest of the paper is organized as follows. The next
section describes a basic DE algorithm which will be the
baseline algorithm of our proposal (MRDE) presented in
Section Ill. Our experimental study is described in Sectdn v)
where the benchmark problems adopted are introduced, as
well as a performance comparison between DE and MRDE.
Finally, the conclusions and lines of future research aagvdr

which r1, ro, andr, are selected or by using additional
difference vectors for mutation, among others.
Crossover

This operator which is aimed at enhancing the diversity, is
a binary operator that mixes the resulting veatorfrom

the mutation operator and the so-called target vect@n.
The resulting vectory) can be obtained as:

u = (u1,uz,...,up), where
o omy if (U]0,1)<C,)
Ui = { z; ;(t) otherwise. (2)

for j € {1,...,D}.

Similarly to eq. (1), other alternatives are also possible
for the crossover operator as described in [5], [10].
Selection

In order to bias the search towards high quality solutions,
a simple one-to-one selection process is applied where
the recently generated trial vectarcompetes against the

in Section V. target vectorx;, i.e., the best performer vector regarding
the objective function value survives for the next genera-

Il. BAsiCs ONDE tion. Basically, the process is as simple as follows (for a

Following the early concepts from Price et al. [10], DE can Minimization problem):
be described as a population-based metaheuristic thatesval u
set of NP vectors{x,...,xyp} which undergo differential x;(t) = { i (t)
mutation and crossover operators as well as a one-to-one !
selection operator used to bias the search towards sadutionThe above description corresponds to a classical DE al-

of higher quality. More precisely, the DE algorithm inclsdedorithm. However, several other variants can be found in
the main following components: literature. The usual notation to indicate a particulaiavaris

given by the expression DEY/z, wherex indicates the base

if eval(u) < eval(x;)
otherwise.

®3)

i) ;czgulitlg(t) xwp(®)] for t = 0,1 . apd Vector ¢ in eq. (1)),y represents the number of difference
xi(1) = {x“(t’)’”’. 2 p(1)}, wheret in(’tlicat’eg“tlﬁe cur- Vectors considered (this also affects eq. (1)), andenotes

éhe crossover method (variant of eq. (3)). In our work, we
adopted the variant DE/rand-to-best/1/exp which is extdnd
Initialization process Fo optain our proposed algorithm MRDE as further explained
It is usually achieved by generating a uniform randon] this paper. The general outline of DE/rand-to-best/i/ex
number subject to the corresponding lower and upp'@r presented in Algorithm 1 which will be the base _pseudo—
limits for each problem dimension: codg to present and better understgnd our proposal in th_e nex
section. The components of Algorithm 1 are self-explained:
a) Population initialization (line 1), b) mutation openato
according eq. (1) (lines 4 and 5), c) crossover (line 6), and
wherel; and u; are, respectively, the lower and uppefinally d) one-to-one selection (lines 7-9).
limits for dimensionj and U(0,1) returns a uniformly
distributed random number in the ranffe 1), different
for each parameter. Our proposed MRDE algorithm consists in evolving a set
Differential Mutation NP of vectors distributed inVR initial regions of NPR
To apply this operator a base vectgy, (t) € P(t) is vectors each, i.elNP = NR x NPR. Before presenting the
perturbed by a difference vector based mutation in ordpgeudo-code for MRDE, it is necessary explaing some basic
to generate the mutated vector as follows: ideas behind its design. The initialization process ingslthe
determination of a set aV R anchor points. These so-called
anchor points determine the position of the respectiveoregi
regarding the whole search space. In our case, we adopted
wherery, 72, andrs are three different indexes randomlya Latin Hypercube Sampling to evenly distribute the anchor
chosen form the sefl,..., NP}. There exist several points and afterwards determine the respective lower apdrup
alternatives to define eq. (1), e.g., changing the way limits of each region. We have introduced a paraméiet

rent generation and the number of problem parameter

or dimensionality.

zj(t) = U[0,1) - (uj — ;) +1;

[1l. THE PROPOSEDMULTI-REGIONDE (MRDE)

ii)

m = X, (t) + I (XTS (t) = Xry (t))v 1)



Algorithm 1 General outline of DE/rand-to-best/1/exp for ‘
a minimization problem. ub) |

1: |nit(X1(0), e ,XNP(O));
2. fort€1l:tnq: do

3 foriel:NP do
4 Obtaings,rs); [r1 = best_it] Yy
5: m — MutateTargetVectox;(t), best_it, o, r3, F);
6 u «— Crossover;(t), m, C,.); I
7 if (costfn) < cost;(t)) ) then
8 x;(t + 1) < u; [replace the target by the trial
vector] |
o: end if T
10. end for

Fig. 2. Latin Hypercube sampling of five points in one of the si
11: end for search regions previously determined in Fig. 1 whiré, and v/, u/, are
respectively the (temporary) lower and upper limits for éimsions 1 and 2
in the region determined by anchor pojnt.

which defines the extent of search of each region around the

corresponding anchor point. Figure 1 shows a 2-dimensional , , .
search space on which 6 anchor points have been sample@ " o keep fixed the basic components of a classical DE

can be observed that 3 regions have been highlighted, whiid only incorporate those components that are necessary
correspond to the anchor points, ps, andps. The region to manage the multiple regions. This will let us better as-

determined by anchor point, covers on all dimensions to S€SS the potential benefits of the new components. Function
the maximum extent, whereas for anchor poiptsand ps, Get Anchor Poi nt s() generatesVR anchor points spread

the extent of the regions is limited by the lower an uppé)rVer the whole sear_ch_ space. After that (line 2-5) the rqmc
limits originally specified for the corresponding dimensio lower and upper limits are calculated for each region and

More precisely,Ext indicates that the ratio of search is ndach dimension (it should be noticed that those boundaries
greater than&zt x ((u; — 1;)/NR) for j € {1 D}. For can be different for each dimension) and th&hP R points
i =1 ..., D}.

example, in Figure 1 the extent of search for each region35 Sampled on each region. Thus, at the end of this itetation
Ext ~ 9. N P vectors are sampled. The inner iteration found in Algo-
rithm 1 is here decomposed in two iterations (line 12-21).
The outer one is governed by the number of regions whereas
the inner one controls the application of the basic opesator
in each region of N PR vectors. Notice thabest_it* (line

5) represents the best-so-far solution found in regiorin
addition, a condition to proceed with the merge of regions
is incorporated (lines 7-11). This step aims to increase the
extent of the search area as the algorithm execution pregges
FunctionMer ge() merges the regions based on the distance
between the original anchor points. We considered to change
from NR to NR/2 regions when the merge process takes
place. Consequently, the number of vector in each region is
duplicated at this point. As will explained in Section 1Vjgh

mechanism works foiV R = 2™, for m € N.
Fig. 1. Search space iR? divided in six regions of search. The anchor
points representing each region are a product of a Latin Hybe sampling

IV. EXPERIMENTAL STUDY

After the process of determining the extent of each of This section presents an experimental study on the se-
the N R regions, an initialization process must take place fected benchmark problems (Section IV-A) to assess the
sample theV PR vectors on every region. The sampling of theerformance of our proposed algorithm. A preliminary ex-
vectors is also based on a Latin Hypercube to better dis&ribyerimental study was conducted to select the strategy to
the points. However, any other mechanism could be used hepply among the ten strategies originally implemented in
as well as in the step of sampling the anchor points explainte classical DE source code [8] where five strategies apply
above. Figure 2 shows an example of 5 vectors sampled in tegp’ crossover and five apply ‘bin’ crossover. The results
region determined by anchor poip (first shown in Figure 1) on the benchmark problems)( = 500 was used at this
with the corresponding lower and upper bounds. stage) showed that DE/*/*/fexp outperform DE/*/*/bin vari-

Algorithm 2 describes the main steps involved in MRDEants. Particularly, DE/rand-to-best/1/exp showed an@atde
It should be noticed that MRDE extends Algorithm 1 irperformance along the whole set of problems. For that reason



Algorithm 2 General outline of MRDE/rand-to-best/1/exp TABLE |
A SUBSET OF THE TEST SUITE ORIGINALLY PROPOSED FOR THISPECIAL

for a minimization problem. It must be noticed th&tP (in ISSUE OFSOFT COMPUTING: A FUSION OF FOUNDATIONS,

Algorithm 1) is equivalent taV PR x N R in this algorithm. METHODOLOGIES ANDAPPLICATIONS ONSCALABILITY OF
: ; EVOLUTIONARY ALGORITHMS AND OTHERMETAHEURISTICS FORLARGE
L GEtAnChorpomtSLHsz)’ SCALE CONTINUOUSOPTIMIZATION PROBLEMS” [7]
22for kel: NRdo

3: (Lk, Uk) — Getl_()werUppeﬂ(, Ext); Benchmark Problems [ Search Range [ f(x¥)
. i k k . H
& Imt—tHS(xl (8);--xxpp(t)); [k denotes a region Fi(x) =3P, 2 + f bias1,z=x—o [-100,100] -450
number] o = (01,02, ..,0p); the shifted global opti-
5: end for mum andf_bias; = —450
6: for t € 1:t,,4, do
7. if ( merge condition is TRUE )then ?215:;) = maz;{|z,1 < j < D} + [-100,100] -450
8: xgge(?\?;}% p P ‘?Zii;" , OOD); the shifted global opti-
9: — ; mum andf_biass = —450
10: NPR = NPR % 2;
11:  end if Fs(x) = 2 P51(100 - (22 = 25)2 + (25 — [-100,100] 390
12:. for kel:NRdo 1)?) + f_biass,
13: forie1: NPR do zhig“lgrl;-":<°g‘;ﬁ““’°§9>(j‘“e
. . shiited global optimum ang _orass =
14: Obtaing,rs);
: ok
15: m —MutateTargetVecto;(t), best_it*, rq, r3, Fu(x) = 522, (22 — 10-cos(2mz;) 1 10) + [5.5] 330
F)a f_biasg,z=%x—o0 ) )
16: u —Crossover;(t), m, C;.); %u:m ;OTTIdf?2b7,as4 1D1;3t£1§ shifted global opti-
17: if (costfm) < cost;(t)) ) then )
18: x;(t + 1) < u; [replace] L2 _
19: end if ?slg?c) =37 qobo — 17, cos(h)+1+ [-600,600] -180
_biass,z=x—o0
20: end for o= (051, 02, .., op); the shifted global opti-
21: end for mum andf_biass = —180
22: end for
Fs(x) = —20exp(—0.24/ % ZJ'D:1 z]z) - [-32,32] -140
cxp(% Zle cos(27z;)) + 20 + f_bia_slg)
we have chosen this DE variant; however, our proposed MRDEZI;; gpt‘i’r;ﬁm:a%}’ binse ;"fl);g‘e shifted
could be applied and studied on any of the other De variants N
currently available. Indeed, as will be further indicateeeral ~ Fr(x) = XiZy l=il + [T, [10.10] 0
alternatives of the core DE algorithm can be considered for )
more advanced versions of MRDE. For the sake of simplicity, Fs(x) = >, (), #;)° [-65.536,65.636] | 0O
further references to classical DE/rand-to-best/1/exp lvé
referred to as simply DE. Their corresponding extensiols wi  ry(x) = (25 fio(wi, mig1)) + [-100,100] 0
fro(zp, z1)
be called MRDE _ . Wlhoere];m(lz,y) = (@2 4 y?)%25 . (sin2(50 -
All the experiments reported in this paper were run on (22 +42)%1) 4 1)
an Intel Pentium (R) 4, CPU 3.00Gz, and 1Gb RAM; OS b s 2
. . Fio(x) = i (xp 4+ 227, — [-15,15] 0
Linux version 2.6.23.17-88.fc7 (Red Hat 4.1.2-27). DE €@K ( 3c05(3ma,) — 0/dcos(dnaisy) 4 0.7)
from [8]) and its extension MRDE were implemented in the
C programming language. Fu) = TEIEE 4+ a2, [-100,100] 0
A. Test Problems (sin?(50(a} + 0f,1)"") +1))

We selected 11 test problems from the benchmark prepared
for the “Special Issue of Soft Computing: A Fusion of
Foundations, Methodologies and Applications on Scalgbilig. pDE vs MRDE
of Evolutionary Algorithms and other Metaheuristics forga
Scale Continuous Optimization Problems” [7]. The problems The parameter setting chosen for both algorithms is as
represent a set of scalable functions for high-dimensiorfallows: FF = 0.85, C,. = 0.9, the maximum number of
optimization. See Table IV-A for a description of these prod~ES (function evaluations) was set t© x 5000, where
lems and their corresponding optimum values. Particyléryy D is the problem’s dimensionality. As we aim to deter-
objective of this special session was to bring to the reseamine the scaling properties of the algorithms, we consitlere
community newer and more challenging problems to asse@3se {500, 1000, 1500}. For MRDE, two additional param-
current nature-inspired optimization algorithms as wedl aters have to be considerediR = 4 (number of initial
other, novel optimization algorithms. regions) andExzt = 1 (extent of the region around the



TABLE I
COMPARISON OFDE AND MRDE BASED ON THE
MANN-WHITNEY-WILCOXON TEST FOR DIMENSIOND = 500. SYMBOLS
‘+',‘-’, AND ‘=" INDICATE, RESPECTIVELY, IF THERE EXIST SIGNIFICANT
STATISTICAL DIFFERENCES OFMRDE WITH RESPECT TODE.

TABLE Il
COMPARISON OFDE AND MRDE BASED ON THE
MANN-WHITNEY-WILCOXON TEST FOR DIMENSIOND = 1000.
SYMBOLS ‘+’, -, AND ‘=" INDICATE, RESPECTIVELY, IF THERE EXIST
SIGNIFICANT STATISTICAL DIFFERENCES OAMRDE WITH RESPECT TO

corresponding anchor points). These parameter values were

DE.
Prob. DE MRDE p-value +/-I=
1 0 0 1 = Prob. DE MRDE p-value +/-I=
(0) (0) T 0 0 1 =
2 122.2123 44,4528 1.41e-09 + (0) (0)
(2.5196) (1.1610) 2 164.8760 68.5130 1.4157e-09| +
3 441.4288 412.2743 6.96e-5 + (1.8935) (1.1992)
(15.1254) (55.9263) 3 986.4420 911.3352 | 6.9619e-05| +
4 375.2653 305.1120 1.41e-9 + (15.8624) (56.2462)
(11.9744) (17.0310) q 657.3982 640.2191 | 1.4157e-09| +
5 0 0 1 = (13.9735) (32.4988)
(0) (0) 5 0 0 1 =
6 0 0 1 = (0) (0)
0) 0) 6 0.0644 0 8.8575e-05| +
7 0 0 1 = 6.6442 0
(0) (0) 7 0 0 1 =
8 2.0256e+05 | 0.3311e+05 | 1.4157e-9| + (0) (0)
(0.1076e+05) | (0.3070e+04) 8 8.8434e+05 | 2.0081e+05| 1.4157e-09| +
9 0.2055 0.0141 1.4157e9| + (0.3460e+05) | (1.312e+04)
(0.0134) (0.0086) 9 0.4748 0.0240 1.4157e-09| +
10 0 0 1 = (0.0211) (0.0111)
(0) (0) 10 0 0 1 =
11 0.2015 0.0083 1.4157e-9| + (0) (0)
0.0078 0.0041 11 0.4955 0.0249 3.1615e-09| +
(0.0144) (0.0111)
TABLE IV

COMPARISON OFDE AND MRDE BASED ON THE

determined on a preliminary experimental study on the test ManN-WHITNEY-WILCOXON TEST FOR DIMENSIOND = 1500.

suite problems withD = 500. Both a|gorithms were run SYMBOLS ‘+’,'-’, AND ‘=" INDICATE, RESPECTIVELY IF THERE EXIST

25 timeS under different random SeedS on each problem an%fGNIFICANT STATISTICAL DIFFEI;ITENCES OFMRDE WITH RESPECT TO

parameters setting. The “merge condition” in Algorithmigél '

7) will become TRUE when the current generation is equal to: Prob. DE MRDE pvalue [ 4=

(t%(tmaz/(NR—1) == 0))) . In this way, MRDE promotes ! (8) (8) ! B

first the search on the initidV R regions separately and then 2 157.6307 67.6965 14157e-09| +

merges the regions until searching in only one region (the . Oy | e e —

whole original search space). In our caseNaR = 4, MRDE (7.5215) (57.6894)

will search on four regions during the first generations eAft 4 (727()?'5‘227%55 (‘33"'1?'5(201‘29; 1.4157e-09|  +

the first ‘merge’, it will search on two regions and, finallg, i 5 0 0 +

one region. 6 O.E)OZ)% (8) 1.46;8e-08 :
Tables II, Ill, and IV show, for each problem, and for the (6.3681) ©)

algorithms DE and MRDE, the median of the error measure 7 (8) (8) 1 =

out of 25 runs and the corresponding standard deviation 3 8.67016+05 | 2.02456+05 | 1.4157609| +

(between parentheses). To assess the statistical sigiifica 5 (0-%23329205) (0-%4322%05) T —

based on the medians, the non-parametric Mann-Whitney- (0.0157) (0.0305) ’

Wilcoxon test at a level of 95% of confidence was applied. 10 0 0 1 =

Thus, ap-value < 0.05 indicates that, based on the median i 0,207)18 0}%_338 14157609

values, MRDE outperforms DE. An additional column was (0.0143) (0.0165)

included to indicate, based on both, fhealues and medians,
if MRDE outperforms DE (+) or DE outperforms MRDE (-),

i.e., significant differences were found. On the other haoth degree the results from DE in the remaining problems (in-
have similar performance (=), i.e., no significant diffeses dicated by the correspondingvalues and symbol “+"). The
were found. best improvement of MRDE was on test problem 8 for all

First of all, is can be highlighted that DE performs fairlydimensions, as well as on test problems 2, 9, and 11. Although
well on all the test problems adopted. It also can scale ap test problems 3 and 4, MRDE also outperforms DE, the
for some problems (1,5,7, and 10) from dimensigd0 to extent of degree achieved is lesser. Finally, we can see the
1500 without losing the capacity to find the optimal solutionscapacity of both algorithms to scale up from dimension0
However, we can observe, on the one hand, that MRDE alenl1500 as the solutions found, when compared one-to-one for
scales up to the optimum for the same problems previoushese two dimensionalities, have similar objective values
mentioned and also for test problem 6. On the other handSince it is important to analyze the performance of MRDE
we see that MRDE was capable of improving at a differemtith respect to state-of-the-art algorithms for large ewmus



TABLE V
COMPARISON OFMRDE AND SADE-MMTS[18] ON THE TEST
PROBLEMS CONSIDERED HEREWITH D = 1000) BASED ON THE MEDIAN
VALUES REPORTED FOR EACH ALGORITHM

Prob MRDE SaDE-MMTS
1 0 0
2 6.8513e+01| 4.6414e+01
3 9.1133e+02 0
4 6.4021e+02| 3.0655e+01
5 0 0
6 0 0
7 0 0
8 2.0081e+05| 1.2564e+03
9 0.0240 8.5612e+01
10 0 0
11 0.0249 9.3347e+01

we can see that MRDE reaches the optimal solution earlier
than DE. Although test problem 8 is not optimally solved by
these algorithms, a similar situation as the one describedea

is also observed, i.e., MRDE shows an accelerated (but not
premature) velocity of converge.

- — —MRDE
- DE

optimization problems, we have chos@&DE-MMTS [18],
a recently proposed algorithm that also implements, as in
our MRDE, a multi-trajectory approach to explore the search
space. Although the comparison does not include any sta-
tistical test, it gives us some useful indications about the
comparative performance of these algorithms. Table V displ Fig. 3.
the results (in terms of median values) for algorithms MRDE
and SaDE-MMTS. On the one hand, a similar behavior of
both algorithms can be observed for test problems 1, 5, 6, 7,
and 10. On the other hand, SaDE-MMTS shows a superior
performance on test problems 3 (the biggest difference), 4,
8, and finally 2, showing for the last one (test problem 2) the
smallest difference when compared to the remaining problem
of this group—i.e., problems 3, 4, 8 and 2. Interestingly,
MRDE was able to outperform SaDE-MMTS in two problems,
namely test problems 9 and 11. This short analysis show us
a potential for MRDE (by improving our current version) to
cope with large continuous optimization problems

To conclude this section we have selected two problems
to show some features of the behavior of DE and MRDE
with respect to the velocity of convergence and diversity ofig. 4.
the population. The selected problems are test problem 8 (a

Obj

2 R
Iteration

Convergence plot (Objective Value) for test problénD = 500.

' - - —MRDE
208
-1077 7

2 .3 4
Iteration 10"

Convergence plot (Objective Value) for test problénD = 500.

difficult problem for our algorithms) and test problem 6, an The behavior previously observed can also be seen from
easier one. To measure the degree of population diversity #e perspective of a diversity metric (eq. (4)). Figures 8 @én
adopted the following function [14]: display for the same test problems (8 and 6) the behavior of
DE and MRDE regarding the diversity metric. It can be clearly
seen that MRDE has a faster loss of diversity. However, this
(4)  does not mean performance degradation (Tables I1, 1ll, &d |
support this claim). We hypothesize that the fast convergen
where Ny, is the length of the diagonal of the search spacd MRDE is because this algorithm rapidly finds promising
determined by the corresponding upper and lower limits f6f9ions of the search space that are exploited first by the
each decision variables; ; is the value at dimensiop of solutions belonging to those regions. Thus, as the exetutio
solutioni in P(t), and/ is the average of all the values inof I\I/IRDE.progresses, the solutions (vectors) in unsuccessfu
dimensionj. Function Div (eq. (4)) retumns a value in the€9ions displace the most successful ones when the merge
range[0.0, 0.5]. Therefore, the higher the values returned, tHY0Cess takes place.
m?:r.e diverzity isddzt((ejgtetlj in t:e population of V(leé;[;rs. V. CONCLUSIONS ANDFUTURE WORK
orobieme & and 617 S0 rougnent ine o ran. W presented in this paper the aigorthm MROE, which is
Test problem 6 is solved by the two algorithms; howeve?,n extension of a c_IassmaI DE_ algorithm, aimed o explore
simultaneously on different regions of the search space. Th
results reported here show a clear potential of this altema
approach to solve large scale dimensional problems.

11t must be noted that, at each iteration, both DE and MRDEuetel the
same number of solutions.
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Fig. 5. Convergence plot (Diversity metric) for test prahl®, D = 500.
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Fig. 6. Convergence plot (Diversity metric) for test prablé, D = 500. [14]
[15]

Nevertheless, we consider that a deeper investigation of
this multi-trajectory approach is still necessary. In trese
of MRDE, it is necessary an in-depth study and a furtheyg
analysis of performance of the effect 8fR and Ext in the
algorithm as well as the characteristics observed in thecitgl
of convergence as well as the loss of diversity when varying,
them. In addition, we devise the development of an alteraati
MRDE approach by considering more advanced versions of
the core DE algorithm as our search engine. We believe thaj
such an approach could constitute a viable alternative for
the efficient and effective solution of large scale dimenalo
problems.
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