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Abstract—This paper proposes an algorithm for dealing Here, we present a novel multi-objective optimization
with nonlinear and unconstrained multi-objective optimization  algorithm based on direct search methods (i.e., those that
problems (MOPs). The proposed algorithm adopts a nonlinear 44 ot require gradient information). The proposed apgroac

simplex search scheme in order to obtain multiple approxima . ! \
tions of the Pareto optimal set. The search is directed by a vile analyzes and exploits the properties of Nelder and Mead's

distributed set of weighted vectors. Each weighted vectorefines method [16] (which was originally proposed for single-
a scalarization problem which is solved by deforming a simgx  objective optimization) in order to generate multiple solu

according to the movements described by Nelder and Mead's tions along the Pareto front of a problem. The main goal of
method. The simplex is constructed with a set of solutions the proposed strategy is to speed up convergence by means

which minimize different scalarization problems defined by f ¢ ided b th tical inal tech
a set of neighbor weighted vectors. The solutions found in O MOVEMENLS guided Dy mathematical programming tech-

the search are used to update a set of solutions considered Niques, while maintaining a re{_slsonably good represenmtatio
to be the minima for each separate problem. In this way, of the Pareto front. As we will see later on, our results

the proposed algorithm collectively obtains multiple trade-offs  jndicate that our proposed approach is computationally ef-
among the different conflicting objectives, while maintaiing a  gicjent (in terms of the objective function evaluations that

well distributed set of solutions along the Pareto front. Tre main . o .
aim of this work is to show that a well-designed strategy usig it performs) and produces competitive results when dealing

just mathematical programming techniques can be competitie ~ With multi-objective optimization problems (MOPs) of low

with respect to a state-of-the-art multi-objective evolutonary  and moderate dimensionality. Our main aim is to raise the

algorithm. interest of people working with MOEAs to hybridize their

| INTRODUCTION approaches with methods such as ours, in order to combine
the main advantages of these two types of multi-objective

Mathematical programming techniques for solving mu'“'optimization algorithms.

objective optimization problems have shown to be an effec- 1o remainder of this paper is organized as follows.

tive tool in many domains, at a reasonably low computationgl, section 11, we provide the basic background required
cost. However, they have several limitations, including the,, understanding the rest of the paper. In Section III, we

fact that many of them generate a single nondominateflscrine in detail our proposed approach. In Section IV, the
solution per run, and that many others cannot properly Eandlgs hroplems adopted to validate our approach are decribe

non-convex, or disconnected Pareto fronts. _In Section V, we show the results obtained by our proposed
On the other hand, multi-objective evolutionary algo”thmapproach. Finally, in Section VI, we provide our conclusion
(MOEAs) have been found to offer several advantagegng some possible paths for future research.

including generality (they require little domain inforriaat
to work) and ease of use. However, they are normally com- II. BAsiC CONCEPTS
putationally expensive (in terms of the number of objectivey, Multi-Objective Optimization
function evaluations required to generate a reasonablyg goo
approximation of the Pareto front), which limits their use i
some real-world applications.

The characteristics of these two types of approaches .
naturally motivates the idea of hybridizing them. This idea ven {7} @)
has been explored by a number of researchers using bgifere ) define the decision space adtis defined as the
gradient-based methods and direct search methods in comfctor of the objective functions:
nation with MOEASs (see for example [8], [10]). However, the
development of multi-objective mathematical programming F:Q— R, F(z) = (fi(z),..., fu(@)T
approaches that take ideas from MOEAs and show a similar . ) )
or better performance than them has been rare (see ipere fi : R" — R is a continuous and unconstrained

example [9]), and is precisely the focus of this paper. function. o _
In multi-objective optimization, we aim to produce a
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A continuous and unconstrained multi-objective optimiza-
tion problem, can be stated as follows



Thus, in order to describe the concept of optimality in which
we are interested, the following definitions are introduced

Definition 1. Let z,y € Q, we say thatr dominatesy
(denoted byx < y) if and only if, f;(z) < fi(y) and
F(z) # F(y).

Definition 2. Let z* € 2, we say that* is aPareto optimal
solution, if there is no other solutiape 2 such thaty < z*.

» C/,w Pareto Front
Attainable Objective Set
»

Definition 3. The Pareto Optimal SePS is defined by: i >
/i

PS = {z € Q|z is Pareto optimal solutign

and its image (i.e.PF = {F(x)|x € PS}) is calledPareto
Optimal Front

We are interested in maximizing the number of elements | i way, the PBI approach can generate a good approx-
of the Pareto optimal set and maintaining a well-distridute.

t of solui | the Pareto front imation along the Pareto optimal front by defining a well-
set of solutions along the Fareto front. distributed set of weighted vectors.

Fig. 1. lllustration of the Penalty Boundary IntersectidB() approach.

B. Decomposing Multi-objective Optimization Problems
In the specialized literature, there are several appreaché. The Nonlinear Simplex Search

for transforming a MOP into multiple single-objective opti  Neolder and Mead’s method [16] also known as the
mization subproblems [15]. These approaches use a weighiggnjinear Simplex SearckNSS), is an algorithm based

vector as their search direction. In this way and under tertag, ihe simplex algorithm of Spendley et al. [20], which
assumptions (e.g. the minimum is unique, the weightingas introduced for minimizing nonlinear and multi-

coefficients are positive, etc.), a Pareto optimal point i§imensjonal unconstrained functions. While Spendley et
achieved by solving such subproblems. Among these methrs 5gorithm uses regular simplexes, Nelder and Mead’s

ods, probably the two most widely used are Tanebycheff \oihod generalizes the procedure to change the shape and
and theWeighted Sunapproaches. However, as it has beeg;,e of the simplex. Therefore, the convergence towards
previously discussed in [3], [24], the approaches based of\minimum value at each iteration of the NSS method is
boundary intersection possess certain advantages ov& thQy 4, cted by three main movements in a geometric shape

based_ on either Tchebychefr or the_ _Weighted Sum. In thgyjeq simplex The following definitions are of relevance
following, we introduce a decomposition approach based

the boundary intersection, which is the approach adopted in
this work.

1) Penalty Boundary Intersection Approachhe Penalty
Boundary Intersection (PBI) approdchvas proposed by
Zhang and Li [24], and uses a weighted vectorand a
penalty valued for minimizing both the distance to the
utopian vector ¢;) and the direction error to the weighted
vector () from the solutionF'(x) (see Fig. 1). Mathemati-
cally, the PBI problem can be stated as follows:

Letw = (wy,...,wy)T be a weighted vector, i.ew; > 0
foralli=1,...,k ande:1 w; = 1. Then, the optimization
problem is defined as:

Definition 4. A simplex or n-simplex A is a convex
hull of a set of n + 1 affinely independent pointg\;
(t=1,...,n+1), in some Euclidean space of dimensien

Definition 5. A simplex is callechondegeneratedf and only

if, the vectors in the simplex denote a linearly independent
set. Otherwise, the simplex is callelégeneratedand then,
the simplex will be defined in a lower dimension than

The full algorithm is defined stating three scalar pa-
rameters to control the movements performed in the sim-

minimize: g(z|w,2*) = di + 0d (2) plex: reflection (), expansion (y) and contraction (3).
such that: At each iteration, then + 1 vertices A; of the simplex
|(F(z) — 2*)Tw]| represent solutions which are evaluated and sorted aceprdi
di = to: f(A1) < f(A2) < -+ < f(Anpr). In this way, the
[[w]] movements performed in the simplex by the NSS method
and dp = H(F(x) —2") - dlﬁ“ are defined as:
wherez € R, § is the penalty value ang = (zf, ..., z;)7 1) Reflectionz, = (1+ a)zc — a4
is the utopian vector, i.ez* = min{f;(z)|z € Q} for each  2) Expansionz. = (1 + avy)z. — ayAn41.
i=1,...,k. 3) Contraction

2pBI is based on the well-known Normal Boundary Interseciiil) a) OUFSIde Teo = (1 + aff)zc — afflnys.
method [3] b) Inside z.; = (1 — B)zc + BAny1.



wherezx, = %Z?:1Ai is the centroid of the: best points if it is not allocated in the same dimensionality as the

(all vertices except fo\,,+1), A1 andA,,; are the best and simplex [11]. On the other hand, a degenerated simplex could
the worst solutions identified within the simplex, respealil. be used to obtain local optimal solutions, at least, in the
Fig. 2 shows all the possible movements made by the NSfmensionality defined by the simplex.

method. At each iteration, the initial simplex is modified In most real-world MOPs, the features of the Pareto opti-
by one of the above movements, according to the followinal set are unknown. If the Pareto optimal set is contained

rules: in a lower dimension than the number of decision variables,
1. If f(AL) < f(x,) < f(AL), thenA, 1 = z,. then, the property that exists when using a degenerated
2. If f(ze) < flzr) < f(AY), thenA, 1 = ., simplex in the search could be exploited. Since the MOP is
otherwiseA,, | = z,. decomposed into several single-objective subproblems and
3. If f(AL) < f(z) < f(Anyr) and f(zeo) < f(z)), assuming that each subproblem is solved throughout the
then A, 11 = Zeo. search, then, the simplex could be constructed using such

4. I f(z,) > f(Angr) and f(ze) < f(Ans1), solutions. In this way, multiple approximate solutions he t
then A, 11 = z. Pareto optimal set are achieved while the search eventually

converges to the region in which the Pareto set is contained.
The convergence towards a better point given by the NSS
method should be achieved at mosti 1 iterations (at least
in convex functions with low dimensionality) [11]. Thus, a
considerable number of function evaluations will be used to
minimize each subproblem. Therefore, a good strategy for
approximating solutions to the Pareto optimal set needs to
be adopted. In this work, we take into account the above
observations and design an effective nonlinear simpleschea
approach for solving MOPs. This strategy is described next.

B. The Proposed Approach

Fia 2. llustration of th bl is in the simpgerf b Our proposed Nonlinear Simplex Search for Multiobjec-
ig. 2. lllustration of the possible movements in the simgerformed by .. Lo .

the NNS method. The constructed simplex corresponds to timiagtion tive O_pt|m|zat!on _(NSS'MO_)' d_ecomposes a MOP into sev-
problem with two decision variables, where; and A3 are the best and €eral single-objective scalarization subproblems. Theeefa

the worst point, respectively. well-distributed set of weighted vectoVE = {w,...,wy}
has to be previously defined. Here, we use the same method
I1l. THE NONLINEAR SIMPLEX SEARCH FOR as in [24], however, other methods can be used, see for
MULTI-OBJECTIVE OPTIMIZATION example [2].

At the beginning, a set aV solutionsS = {z1,...,2n}
is randomly initialized. Each solution; € S minimizes

As indicated before, mathematical programming techthe *» subproblem defined by the'” weighted vector
niques are known to have several drawbacks with respegt < 1. In this way, different subproblems are solved
to evolutionary algorithms. The Nelder and Mead methogly the NSS-MO algorithm and thieading set(i.e. the set
has one more: the convergence towards an optimal valgg will approximate solutions towards the Pareto optimal
can fail when the simplexes elongate indefinitely and theifet lengthwise of the search process. The search is directed
shape goes to infinity in the space of simplex shapes (agwards different non-overlapped regions (or partitiofigh
for example, in McKinnon’s functions [14]). For this family from the set of weighted vectorl’, such that, eactC;
of functions and others having similar features, a morgefines a neighborhood. That is, I6t= {C1,...,C,,} be

appropriate strategy needs to be adopted (e.g., adjustiaget of partitions fromiV, then, the claim is the following:
the control parameters, constructing in a different way the m m

simplex, improving heuristically the movements of the NSS ﬂ C; = 0 and U C,=W A3)
method, etc.). In recent years, several attempts to improve i1 i

the NNS method have been reported in the literature (s . . :
for example [22], [17]). Also, different strategies for the%%d all the weighted vectors, € C; are contiguous among

ructi f the simol lored in 111, 123 themselves.
construction ot the simpiex were explored in _[ ] [23] Thus, the NSS method is focused on minimizing a sub-
The construction of the simplex plays an important rol

in the performance of the NSS method. To employ a d roblem defined by a weighted vectog which is randomly

. . . . . chosen fromC;. The n-simplex used in the search, is
generated simplex (i.e., to use a simplex defined in a lower " plex )

. ) g . . Gefined as:
dimension than the number of decision variables) in the
minimization process, is not a good idea. That is because
the search is restricted to find an optimal solution in a lowesuch that:z; € S is a minimum ofg(x,|ws, 2*) for any

dimension, which avoids achieving this optimal solutionv, € W.z; € S represents the solutions that minimize the

A. About the Nonlinear Simplex Search

A=A{zs,x1,...,2,} (4)



Algorithm 1 wupdate(W,S,T) ¢ *xc

" e,

LT =80T, 1 SC a

#C, 4C,

2. R=10;

3: for all w; € W do

4 R:RU{x*Bpg%_g(aﬂwi,z*)};

5. T =T\{z*}; T
6: end for 0 |
7: return R,

Search Direction (w,)

subproblems defined by the nearesteighted vectors ofv,,

wherej = 1,...,n andn represents the number of decision
varlables_of the MOP. After a movement r_nade by.the NS%Q. 3. lllustration of a well-distributed set of weightedators for a MOP
method, it is common that the new solution obtaineg, with three objectives, five decision variables and 66 weidhtectors, i.e.

leaves the search space. In order to deal with this probkesn, (n = %1 = 11 partitions. Then-simplex is constructed by six solutions

in [23]) we bias deterministically the boundaries. Therefo contained in four different partitions’%, Cs, Cy and C10). The search is
th . L . focused on the direction defined by the weighted veatgr
the " bound of the new solution;,, is re-established as

The n-simplex

follows:
b af, izl <aj, 5) Step 1.3)Generate thdeading setS* = {z;...,zy}
" xl,, if a2l > a2l of N random solutions.
Step 1.4) Generate partitions: Generatem = 71%'1
where =%, and z?, are, respectively, the lower and upper  partitionsC = {C1,...,Cy} from W (wheren is the
bounds in thei*” component of the search space. number of decision variables), such that: the eq.( 3) is

The search could be relaxed at each iteration by changing Ssatisfied.
the direction vector for any other directiah, € C;. With  Step 2) The iteration

this, we get an agile search into the partitiGnand we avoid /| Generate the intensification s&t
collapsing the simplex search in the same directiqn T=10
Here, we definem = %1 partitions of the setiV, Fori=1,...,m, do //for each partitionC; € C
guaranteeing at least + 1 iterations of the NSS method 2.1) Randomly choosew; € C;
for each partition, which can be constructed using a naive 2.2) Apply Nelder and Mead’s method:

modification of the well-knownk-means algorithm [13].

Then, we say that one iteration of our NSS-MO has been 2.2.1) Build the n-simplex: Construct then-

simplex fromS?, such that: eq.( 4) is satisfied.

carried out, when the NSS method iterates- 1 times in 2.2.2) Apply the NSS methodExecute the NSS
each defined partitior”;. Therefore, at each iteration the method during:+1 iterations. At each iteration:
proposed algorithm perform317| function evaluations. All - Repair the bounds according to eq.( 5).

of the new solutions found in the search process are stored - Relax the search changing the direction seargh
in a pool calledintensification se{Z). Then, at the end of for any otherw; € Ci.

each iteration, the leading sétis updated using both the - Each new solution found by the NSS method is
stored in the intensification s&t

intensification setZ and the weighted séli’, such as it is } )

shown in Algorithm 1. With this, the NSS method minimizessu_3p 3) Up_date the Iead_lngtfletUpdate theleatdlng sets
each subproblem, generating new search trajectories amdfi’d Algorithm 1. That isS™* = update(W, S*. 1)

the solutions of the simplex, while the updating mechanismtcP 4) Stopping Criteria: If ¢ < Ni; (N is the maximum
replaces the misguided paths by selecting the best sotutidfiMPer of iterations) them = ¢ + 1 ‘1’:? go toStep 2
according to the PBI approach, simulating the Path RelglkinOtherW'se’ stop NSS-MO amabitput: 5.
method [7]. In Fig. 3, we show a possible partition of the IV. TESTPROBLEMS
weighted seti¥” for a MOP with three objective functions

and five decision variables, i.e. defining arsimplex with In order to assess the performance of the proposed ap-

proach, we compare its results with respect to those ob-

six vertices. .
L . tained by a state-of-the-art MOEA called MOEA/D [24].
foﬁ;\jvrr;'manzmg, the NSS-MO algorithm can be stated e adopted three benchmark problems (LIS, FONSECA and

DTLZ5) and an airfoil design problem as a case study. Next,
e we present the description of such problems.
Step 1) Initialization
Step 1.1)t =0 // the number of iterations A. Standard Test Problems
Step 1.2)Generate a well-distributed set of weighted The following standard test problems were used to assess
vectorsW = {wy,...,wy} of N. the performance of our proposed approach.



TABLE |
PARAMETER RANGES FOR MODIFIEDPARSECAIRFOIL
REPRESENTATION

LIS [12]:  fi(z) $/a? + 22

= 3 —0.5)2 —0.5)2
fa(@) Vi )+ (@2 ) Design Variable | Lower Bound | Upper Bound
wherex; € [—5, 10]. This MOP has a concave and connected Tleup 8-882(5) 8-8(1)28
Tlelo . B
Pareto front. Qe 7.0000 10.0000
Bte 10.0000 14.0000
FONSECA[6l: fi(x) = 1—exp(— X7, (@ — )% AZZ“; 'ggggg '8-88538
fal@) = 1-exp(=XiLy(@i+ F5)%) Xup 0.4100 0.4600
. Zu 0.1100 0.1300
wheren = 3 andz; € [—4,4]. This MOP has a concave and Zony -0.9000 -0.7000
connected Pareto front. ?Zflo %%%%% %%61%%
lo -U. -U.
Zwio 0.0500 0.2000
DTLZ5[4]: fi(z) = cos(01)cos(02)h(z)
fao(z) = cos(01)sin(02)h(x)
fs(z) = sin(01)h(z)
01 = Eml
‘22) - mi <10+52‘)92<I>I2> For the present case study, the modified PARSEC geome-
‘Z(w) = T4 try representation adopted allows us to define independentl

the leading edge radius, both for upper and lower surfaces.

wherek = 3,n = 12 andz; € [0,1]. This MOP has Thus, a total of 12 variables are used. Their allowable range
a degenerated Pareto front formed by a curve of well-

distributed solutions. are defined in Tal?le .I' . .
The PARSEC airfoil geometry representation uses a linear

B. Airfoil Shape Optimization: A case study combination of shape functions for defining the upper and

Our case study consists of the multi-objective optimizatiolower surfaces. These linear combinations are given by:
of an airfoil shape problem adapted from [21] (called here
MOPRW). This problem corresponds to the airfoil shape 6 - 6 -
optimization of a standard-class glider, aiming to obtain a Zupper = Z anx 2, Zower = Z bpx 2 (6)
optimum performance for a sailplane. In this study the trade n=1 n=1
off among two aerodynamic objectives is evaluated using our In the above equations, the coefficients, and b,, are
proposed approach, and its results are compared with tespeetermined as functions of the 12 described geometric pa-
to those obtained by MOEA/D. rameters, by solving two systems of linear equations, one
1) Problem StatementTwo conflicting objective func- for each surface. It is important to note that the geometric
tions are defined in terms of a sailplane average weight apdrametersricuy/rieio0r Xup/Xior Zup/Zior Zwzup/Zzwios

operating conditions [21]. They are defined as: Zier DAZye, aue, and f,. are the actual design variables in
i) minimize: Cp/Cy, the optimization process, and that the coefficiets b,
s.t.Cr = 0.63, Re = 2.04-10%, M = 0.12 serve as intermediate variables for interpolating theodsf
ii) minimize: Cp/C3/? coordinates, which are used by the CFD solver (we used the
s.t.Cr = 1.05, Re = 1.29 - 10%, M = 0.08 Xfoil CFD code [5]) for its discretization process.

whereCp/Cr, and C’D/Ci/2 correspond to the inverse of
the glider’s gliding ratio and sink rate, respectively. Bot
are important performance measures for this aerodynan‘ﬁ‘c
optimization problem.Cp, and C;, are the drag and lift 1) Hypervolume: The Hypervolume (Hv) metric was
coefficients. proposed by Zitzler [25]. This performance measure is

The aim is to maximize the gliding raticC¢ /Cp) for Pareto compliant [26] and quantifies the approximation of
objective (), while minimizing the sink rate in objectivé. nondominated solutions to the Pareto optimal front. The
Each of these objectives is evaluated at different presdribhypervolume corresponds to the non-overlapped volume of
flight conditions, given in terms of Mach and Reynoldsall the hypercubes formed by a reference poir(given by
numbers. The aim of solving this MOP is to find a better

V. COMPARISON OFRESULTS
Performance Measures

airfoil shape, which improves a reference design. 2 >
. . XXup
2) Geometry Parametrizationtn the present case study, Zon
the PARSEC airfoil representation [19] was adopted. Fig. 4 o AZrg
illustrates the 11 basic parameters used for this represen- e X = Zre
tation: r,. leading edge radiusX,,/X;, location of maxi- Xy ‘# >
mum thickness for upper/lower surfaces,,/Z;, maximum
thickness for upper/l f Yo x=1
pper/lower surface8y v,/ Zys1o CUrvature

XXlo

for upper/lower surfaces, at maximum thickness locations,
Zy trailing edge coordinate)\ 7, trailing edge thickness,
oy trailing edge direction, ang;. trailing edge wedge angle. Fig. 4. PARSEC airfoil parametrization.



. N TABLE I
the user) and each solutigrin the Pareto set approximation PARAMETERS FORNSS-MOAND MOEA/D

(PFg). It is mathematically defined as:

Parameter| NSS-MO | MOEA/D
Naot 100/300 100/300
_ N, 40 0
Ho=A U {zlp <2 <r} @) T = o
pEPFy, P. = 1
Prn - l/n
whereA denotes the Lebesgue measure ardR* denotes g ; -
a reference vector being dominated by all valid candidate 5 05 -
solutions inPFE},. 0 5 5

2) Spacing:The Spacing(Sp) metric proposed by Schott
[18], gquantifies the spread of solutions in the obtained TABLE Il
approximation of the Pareto front. This performance measur RESULTS OF THEHv METRIC FORNSS-MOAND MOEA/D
can be calculated as:

NSS-MO MOEAD
MOP average average
|17 (0) (0)

_ = 2 0300713 0262384

Sp = P] E :(d d;) 8 LIS (0.007686) (0.008786)

i—1 0.542006 0.374342

B FONSECA | 5.001476) (0.007427)

whered; andd are defined as: 0.429676 0.425734

i DTLZ5 (0.000917) (0.001480)
2055061607 | 2.0457196-07
1Pl g, MOPRW | (3'045320¢-08)| (2.511415¢-08)

M >
d; = min i 7 andd = &=L

TABLE IV
A value of zero for this performance measure indicates that ~ RESULTS OF THESp METRIC FORNSS-MOAND MOEA/D

all the solutions are uniformly spread (i.e., the best fmeasi

NSS-MO MOEA-D
performance)' MOP average average
- 0 o(gs)sel 0 o(fo)273
B. Experimental Setup LIS (0.000652) (6.003763)
As indicated before, we compared our proposed approach FONSECA (8-883‘2‘52;‘) (g-gggjgg)
with respect to MOEA/D [24] (which uses the PBI approach). p—— 0007064 0034509
For each MOP, 30 independent runs were performed with (0.001211) (0.031652)
. 1.5544026-05 | 2.397431e-06
each approach. The parameters for both algorithms are MOPRW | 7'1415406-06)| (2.790701e-06)

summarized in Table II, wher&/,,, represents the number
of initial solutions (100 for bi-objective problems and 300
for three-objective problems);; represents the number of
iterations (which was set td0). Therefore, we performed
4,000 (for the bi-objective problems) antl, 000 (for the In this section, we present the results obtained by the
three-objective problems) function evaluations. For NS3eroposed algorithm for each adopted test problem including
MO, a, 3 and v represent the control parameters for théhe airfoil design problem. As indicated before, the result
reflection, expansion and contraction movements of the NS#tained by our proposed approach (NSS-MO) are compared
method. For MOEA/D, the parameters, n., n,,, P. andP,,  against those produced by MOEA/D.
represent the neighborhood size, crossover index, matatio Table 11l shows the results obtained for the hypervolume
index, crossover rate and mutation rate, respectivelallyin  (Hv) performance measure. From this table, it can be seen
the parametef, represents the penalty value used in the PBhat the results obtained by our proposed approach outper-
approach for both the NSS-MO and MOEA/D. formed MOEA/D in all the adopted MOPs. This indicates
For each MOP, the algorithms were evaluated using titbat our proposed algorithm produced a better approximatio
two performance measures previously definetypervolume to the Pareto optimal front. Regarding the spacifig)(per-
and Spacing. Regarding the hypervolume, the referencéormance measure, Table IV shows that MOEA/D obtained
vectors adopted were: = (1,1)T for the LIS problem, better results than those produced by our proposed NSS-MO
andr = (1.1,...,1.1)T for the FONSECA and DTLZ5 in the FONSECA and MOPRW problems, while NSS-MO
problems, while for the airfoil design problem the referencwas better in the LIS and DTLZ5 test problems. However,
vector r = (0.007610,0.005236)”7 was employed. The in our case, convergence was considered to be a more
results obtained are summarized in Tables Ill and 1V. Eadmportant criterion than uniform distribution, and regagi
table displays both theverage and the standard deviation convergence, our proposed approach obtained better gesult
(o) of each performance measure for each MOP. For an easigrall cases.
interpretation, the best results are presentedoaiface for Fig. 5 graphically shows that NSS-MO obtained both a
each performance measure and test problem adopted. better distribution of solutions and a better approxinratio

C. Results and Discussion
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Fig. 5. Comparison of results for NSS-MO and MOE/D in the thenark problems. Figures A to C show the achieved Pareto,franite Figures D to
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Fig. 6. Comparison of results for NSS-MO and MOE/D in theailriesign problem. Figures A to D compare the achieved Bdrent for 10, 20, 30
and 40 generations, while figures E and F show the convergence plbtechypervolume at 50 and 100 generations, respectively.

to the Pareto optimal front in the LIS and FONSECA test0 iterations. In this case, NSS-MO obtained, on average,
problems. The differences in the distribution of solutiéms better hypervolume values than MOEA/D (see Table Iil),
DTLZ5 do not seem significant when comparing the twalthough the difference is not significant. In fact, Fig. 6wk
approaches, although MOEA/D was better in this case. & particular instance in which MOEA/D obtained a better
is worth noting that both approaches converged to the trdgypervolume value than our approach after 100 iterations.
Pareto front, but their approximations are shown at differe

positions in Fig. 5 to make them more readable. That is the

reason why the axes of these plots do not have any numericall he approximations to the Pareto front presented in Figs. 5
values. and 6, correspond to the set of nondominated solutions found

by each algorithm in the run with the value nearest to
Fig. 6 shows the approximation of the Pareto front gerthe mean value of th&{v metric for each multi-objective
erated by both NSS-MO and MOEA/D aftéf, 20,30 and optimization problem adopted.



VI. CONCLUSIONS ANDFUTURE WORK

(7]

We have proposed a multi-objective algorithm based on
mathematical programming techniques. The proposed ajs]

proach was, in principle, designed for dealing with uncon-

strained, and unimodal problems having low and moderate

dimensionality.

El

Our results indicate that our proposed NSS-MO algorithm
outperforms MOEA/D regarding convergence in all the test

problems adopted, including one from aeronautical enginee
ing. The number of objective function evaluations in thes
test problems was low (4,000 for the bi-objective problem

and 12,000 for the three-objective problems), which can

make it a good choice for dealing with expensive objectiv
functions. Our proposed approach has, however, some dis

fip

vantages. For example, when dealing with highly accidented

search spaces, the movements of the NSS method may not¥sé

able to reach a better point during the search. Should that be

the case, the step sizes (i.e., the control parametgfsand

~) must be fine-tuned until finding a suitable search regior!3!
In spite of the effectiveness of our proposed approach in

MOPs with moderate dimensionality, our main goal is to

hybridize it with a MOEA so that its use can be extended4]

to problems of higher dimensionality and with highly acci-

dented search spaces. The idea would be to use a MOEA]

for locating promising regions of the search space, and th
apply NSS-MO for exploiting those regions in an efficien

ol

way. We believe that this sort of multi-objective memetid17]

algorithm could be a powerful engine for solving complex

and computationally expensive MOPSs.
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