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Abstract—This paper proposes an algorithm for dealing
with nonlinear and unconstrained multi-objective optimization
problems (MOPs). The proposed algorithm adopts a nonlinear
simplex search scheme in order to obtain multiple approxima-
tions of the Pareto optimal set. The search is directed by a well-
distributed set of weighted vectors. Each weighted vector defines
a scalarization problem which is solved by deforming a simplex
according to the movements described by Nelder and Mead’s
method. The simplex is constructed with a set of solutions
which minimize different scalarization problems defined by
a set of neighbor weighted vectors. The solutions found in
the search are used to update a set of solutions considered
to be the minima for each separate problem. In this way,
the proposed algorithm collectively obtains multiple trade-offs
among the different conflicting objectives, while maintaining a
well distributed set of solutions along the Pareto front. The main
aim of this work is to show that a well-designed strategy using
just mathematical programming techniques can be competitive
with respect to a state-of-the-art multi-objective evolutionary
algorithm.

I. I NTRODUCTION

Mathematical programming techniques for solving multi-
objective optimization problems have shown to be an effec-
tive tool in many domains, at a reasonably low computational
cost. However, they have several limitations, including the
fact that many of them generate a single nondominated
solution per run, and that many others cannot properly handle
non-convex, or disconnected Pareto fronts.

On the other hand, multi-objective evolutionary algorithms
(MOEAs) have been found to offer several advantages,
including generality (they require little domain information
to work) and ease of use. However, they are normally com-
putationally expensive (in terms of the number of objective
function evaluations required to generate a reasonably good
approximation of the Pareto front), which limits their use in
some real-world applications.

The characteristics of these two types of approaches
naturally motivates the idea of hybridizing them. This idea
has been explored by a number of researchers using both
gradient-based methods and direct search methods in combi-
nation with MOEAs (see for example [8], [10]). However, the
development of multi-objective mathematical programming
approaches that take ideas from MOEAs and show a similar
or better performance than them has been rare (see for
example [9]), and is precisely the focus of this paper.
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Here, we present a novel multi-objective optimization
algorithm based on direct search methods (i.e., those that
do not require gradient information). The proposed approach
analyzes and exploits the properties of Nelder and Mead’s
method [16] (which was originally proposed for single-
objective optimization) in order to generate multiple solu-
tions along the Pareto front of a problem. The main goal of
the proposed strategy is to speed up convergence by means
of movements guided by mathematical programming tech-
niques, while maintaining a reasonably good representation
of the Pareto front. As we will see later on, our results
indicate that our proposed approach is computationally ef-
ficient (in terms of the objective function evaluations that
it performs) and produces competitive results when dealing
with multi-objective optimization problems (MOPs) of low
and moderate dimensionality. Our main aim is to raise the
interest of people working with MOEAs to hybridize their
approaches with methods such as ours, in order to combine
the main advantages of these two types of multi-objective
optimization algorithms.

The remainder of this paper is organized as follows.
In Section II, we provide the basic background required
for understanding the rest of the paper. In Section III, we
describe in detail our proposed approach. In Section IV, the
test problems adopted to validate our approach are described.
In Section V, we show the results obtained by our proposed
approach. Finally, in Section VI, we provide our conclusions
and some possible paths for future research.

II. BASIC CONCEPTS

A. Multi-Objective Optimization

A continuous and unconstrained multi-objective optimiza-
tion problem, can be stated as follows1:

min
x∈Ω

{F (x)} (1)

whereΩ define the decision space andF is defined as the
vector of the objective functions:

F : Ω → R
k, F (x) = (f1(x), . . . , fk(x))T

where fi : R
n → R is a continuous and unconstrained

function.
In multi-objective optimization, we aim to produce a

set of trade-off solutions representing the best possible
compromises among the objectives (i.e., solutions such that
no objective can be improved without worsening another).

1Without loss of generality, we assume minimization



Thus, in order to describe the concept of optimality in which
we are interested, the following definitions are introduced.

Definition 1. Let x, y ∈ Ω, we say thatx dominatesy
(denoted byx ≺ y) if and only if, fi(x) ≤ fi(y) and
F (x) 6= F (y).

Definition 2. Let x⋆ ∈ Ω, we say thatx⋆ is aPareto optimal
solution, if there is no other solutiony ∈ Ω such thaty ≺ x⋆.

Definition 3. The Pareto Optimal SetPS is defined by:

PS = {x ∈ Ω|x is Pareto optimal solution}

and its image (i.e.,PF = {F (x)|x ∈ PS}) is calledPareto
Optimal Front.

We are interested in maximizing the number of elements
of the Pareto optimal set and maintaining a well-distributed
set of solutions along the Pareto front.

B. Decomposing Multi-objective Optimization Problems

In the specialized literature, there are several approaches
for transforming a MOP into multiple single-objective opti-
mization subproblems [15]. These approaches use a weighted
vector as their search direction. In this way and under certain
assumptions (e.g. the minimum is unique, the weighting
coefficients are positive, etc.), a Pareto optimal point is
achieved by solving such subproblems. Among these meth-
ods, probably the two most widely used are theTchebycheff
and theWeighted Sumapproaches. However, as it has been
previously discussed in [3], [24], the approaches based on
boundary intersection possess certain advantages over those
based on either Tchebycheff or the Weighted Sum. In the
following, we introduce a decomposition approach based on
the boundary intersection, which is the approach adopted in
this work.

1) Penalty Boundary Intersection Approach:The Penalty
Boundary Intersection (PBI) approach2 was proposed by
Zhang and Li [24], and uses a weighted vectorw and a
penalty valueθ for minimizing both the distance to the
utopian vector (d1) and the direction error to the weighted
vector (d2) from the solutionF (x) (see Fig. 1). Mathemati-
cally, the PBI problem can be stated as follows:

Let w = (w1, . . . , wk)T be a weighted vector, i.e.,wi ≥ 0
for all i = 1, . . . , k and

∑k
i=1 wi = 1. Then, the optimization

problem is defined as:

minimize: g(x|w, z⋆) = d1 + θd2 (2)

such that:

d1 =
||(F (x) − z⋆)T w||

||w||

and d2 =
∣

∣
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∣
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wherex ∈ R
n, θ is the penalty value andz⋆ = (z⋆

1 , . . . , z⋆
k)T

is the utopian vector, i.e.,z⋆ = min{fi(x)|x ∈ Ω} for each
i = 1, . . . , k.

2PBI is based on the well-known Normal Boundary Intersection(NBI)
method [3]
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Fig. 1. Illustration of the Penalty Boundary Intersection (PBI) approach.

In this way, the PBI approach can generate a good approx-
imation along the Pareto optimal front by defining a well-
distributed set of weighted vectors.

C. The Nonlinear Simplex Search

Nelder and Mead’s method [16] also known as the
Nonlinear Simplex Search(NSS), is an algorithm based
on the simplex algorithm of Spendley et al. [20], which
was introduced for minimizing nonlinear and multi-
dimensional unconstrained functions. While Spendley et
al.’s algorithm uses regular simplexes, Nelder and Mead’s
method generalizes the procedure to change the shape and
size of the simplex. Therefore, the convergence towards
a minimum value at each iteration of the NSS method is
conducted by three main movements in a geometric shape
called simplex. The following definitions are of relevance
here:

Definition 4. A simplex or n-simplex ∆ is a convex
hull of a set of n + 1 affinely independent points∆i

(i = 1, . . . , n+1), in some Euclidean space of dimensionn.

Definition 5. A simplex is callednondegenerated, if and only
if, the vectors in the simplex denote a linearly independent
set. Otherwise, the simplex is calleddegenerated, and then,
the simplex will be defined in a lower dimension thann.

The full algorithm is defined stating three scalar pa-
rameters to control the movements performed in the sim-
plex: reflection (α), expansion (γ) and contraction (β).
At each iteration, then + 1 vertices ∆i of the simplex
represent solutions which are evaluated and sorted according
to: f(∆1) ≤ f(∆2) ≤ · · · ≤ f(∆n+1). In this way, the
movements performed in the simplex by the NSS method
are defined as:

1) Reflection: xr = (1 + α)xc − α∆n+1.
2) Expansion: xe = (1 + αγ)xc − αγ∆n+1.
3) Contraction:

a) Outside: xco = (1 + αβ)xc − αβ∆n+1.
b) Inside: xci = (1 − β)xc + β∆n+1.



wherexc = 1
n

∑n
i=1 ∆i is the centroid of then best points

(all vertices except for∆n+1), ∆1 and∆n+1 are the best and
the worst solutions identified within the simplex, respectively.
Fig. 2 shows all the possible movements made by the NSS
method. At each iteration, the initial simplex is modified
by one of the above movements, according to the following
rules:

1. If f(∆1) ≤ f(xr) ≤ f(∆n), then∆n+1 = xr.
2. If f(xe) < f(xr) < f(∆1), then∆n+1 = xe,

otherwise∆n+1 = xr.
3. If f(∆n) ≤ f(xr) < f(∆n+1) andf(xco) ≤ f(xr),

then∆n+1 = xco.
4. If f(xr) ≥ f(∆n+1) andf(xci) < f(∆n+1),

then∆n+1 = xci.

Fig. 2. Illustration of the possible movements in the simplex performed by
the NNS method. The constructed simplex corresponds to an optimization
problem with two decision variables, where∆1 and ∆3 are the best and
the worst point, respectively.

III. T HE NONLINEAR SIMPLEX SEARCH FOR

MULTI -OBJECTIVEOPTIMIZATION

A. About the Nonlinear Simplex Search

As indicated before, mathematical programming tech-
niques are known to have several drawbacks with respect
to evolutionary algorithms. The Nelder and Mead method
has one more: the convergence towards an optimal value
can fail when the simplexes elongate indefinitely and their
shape goes to infinity in the space of simplex shapes (as,
for example, in McKinnon’s functions [14]). For this family
of functions and others having similar features, a more
appropriate strategy needs to be adopted (e.g., adjusting
the control parameters, constructing in a different way the
simplex, improving heuristically the movements of the NSS
method, etc.). In recent years, several attempts to improve
the NNS method have been reported in the literature (see
for example [22], [17]). Also, different strategies for the
construction of the simplex were explored in [1], [23].

The construction of the simplex plays an important role
in the performance of the NSS method. To employ a de-
generated simplex (i.e., to use a simplex defined in a lower
dimension than the number of decision variables) in the
minimization process, is not a good idea. That is because
the search is restricted to find an optimal solution in a lower
dimension, which avoids achieving this optimal solution

if it is not allocated in the same dimensionality as the
simplex [11]. On the other hand, a degenerated simplex could
be used to obtain local optimal solutions, at least, in the
dimensionality defined by the simplex.

In most real-world MOPs, the features of the Pareto opti-
mal set are unknown. If the Pareto optimal set is contained
in a lower dimension than the number of decision variables,
then, the property that exists when using a degenerated
simplex in the search could be exploited. Since the MOP is
decomposed into several single-objective subproblems and
assuming that each subproblem is solved throughout the
search, then, the simplex could be constructed using such
solutions. In this way, multiple approximate solutions to the
Pareto optimal set are achieved while the search eventually
converges to the region in which the Pareto set is contained.

The convergence towards a better point given by the NSS
method should be achieved at most inn+1 iterations (at least
in convex functions with low dimensionality) [11]. Thus, a
considerable number of function evaluations will be used to
minimize each subproblem. Therefore, a good strategy for
approximating solutions to the Pareto optimal set needs to
be adopted. In this work, we take into account the above
observations and design an effective nonlinear simplex search
approach for solving MOPs. This strategy is described next.

B. The Proposed Approach

Our proposed Nonlinear Simplex Search for Multiobjec-
tive Optimization (NSS-MO), decomposes a MOP into sev-
eral single-objective scalarization subproblems. Therefore, a
well-distributed set of weighted vectorsW = {w1, . . . , wN}
has to be previously defined. Here, we use the same method
as in [24], however, other methods can be used, see for
example [2].

At the beginning, a set ofN solutionsS = {x1, . . . , xN}
is randomly initialized. Each solutionxi ∈ S minimizes
the ith subproblem defined by theith weighted vector
wi ∈ W . In this way, different subproblems are solved
by the NSS-MO algorithm and theleading set(i.e. the set
S) will approximate solutions towards the Pareto optimal
set lengthwise of the search process. The search is directed
towards different non-overlapped regions (or partitions)Ci’s
from the set of weighted vectorsW , such that, eachCi

defines a neighborhood. That is, letC = {C1, . . . , Cm} be
a set of partitions fromW , then, the claim is the following:

m
⋂

i=1

Ci = ∅ and
m
⋃

i=1

Ci = W (3)

and all the weighted vectorswc ∈ Ci are contiguous among
themselves.

Thus, the NSS method is focused on minimizing a sub-
problem defined by a weighted vectorws which is randomly
chosen fromCi. The n-simplex (∆) used in the search, is
defined as:

∆ = {xs, x1, . . . , xn} (4)

such that:xs ∈ S is a minimum ofg(xs|ws, z
⋆) for any

ws ∈ W . xj ∈ S represents then solutions that minimize the



Algorithm 1 update(W,S, I)

1: T = S ∪ I;
2: R = ∅;
3: for all wi ∈ W do
4: R = R∪ {x⋆| min

x⋆∈T
g(x⋆|wi, z

⋆)};

5: T = T \ {x⋆};
6: end for
7: return R;

subproblems defined by the nearestn weighted vectors ofws,
wherej = 1, . . . , n andn represents the number of decision
variables of the MOP. After a movement made by the NSS
method, it is common that the new solution obtained,xn,
leaves the search space. In order to deal with this problem, (as
in [23]) we bias deterministically the boundaries. Therefore,
the ith bound of the new solutionxn is re-established as
follows:

xi
n =

{

xi
lb, if xi

n < xi
lb

xi
ub, if xi

n > xi
ub

(5)

where xi
lb and xi

ub are, respectively, the lower and upper
bounds in theith component of the search space.

The search could be relaxed at each iteration by changing
the direction vector for any other direction̂ws ∈ Ci. With
this, we get an agile search into the partitionCi and we avoid
collapsing the simplex search in the same directionws.

Here, we definem = |W |
n+1 partitions of the setW ,

guaranteeing at leastn + 1 iterations of the NSS method
for each partition, which can be constructed using a naive
modification of the well-knownk-means algorithm [13].
Then, we say that one iteration of our NSS-MO has been
carried out, when the NSS method iteratesn + 1 times in
each defined partitionCi. Therefore, at each iteration the
proposed algorithm performs|W | function evaluations. All
of the new solutions found in the search process are stored
in a pool calledintensification set(I). Then, at the end of
each iteration, the leading setS is updated using both the
intensification setI and the weighted setW , such as it is
shown in Algorithm 1. With this, the NSS method minimizes
each subproblem, generating new search trajectories among
the solutions of the simplex, while the updating mechanism
replaces the misguided paths by selecting the best solutions
according to the PBI approach, simulating the Path Relinking
method [7]. In Fig. 3, we show a possible partition of the
weighted setW for a MOP with three objective functions
and five decision variables, i.e. defining ann-simplex with
six vertices.

Summarizing, the NSS-MO algorithm can be stated as
follows:

Step 1) Initialization

Step 1.1)t = 0 // the number of iterations
Step 1.2)Generate a well-distributed set of weighted
vectorsW = {w1, . . . , wN} of N .

The n-simplex

Search Direction ( )ws

1

1

1

0

C1

C2

C3

C4

C5

C6

C7

C8

C9

C10

C11

Fig. 3. Illustration of a well-distributed set of weighted vectors for a MOP
with three objectives, five decision variables and 66 weighted vectors, i.e.
m =

|W |
n+1

= 11 partitions. Then-simplex is constructed by six solutions
contained in four different partitions (C5, C8, C9 andC10). The search is
focused on the direction defined by the weighted vectorws.

Step 1.3)Generate theleading setSt = {x1 . . . , xN}
of N random solutions.
Step 1.4) Generate partitions:Generatem = |w|

n+1
partitionsC = {C1, . . . , Cm} from W (wheren is the
number of decision variables), such that: the eq.( 3) is
satisfied.

Step 2) The iteration
// Generate the intensification setI
I = ∅
For i = 1, . . . , m, do // for each partitionCi ∈ C

2.1) Randomly choosews ∈ Ci

2.2) Apply Nelder and Mead’s method:
2.2.1) Build the n-simplex: Construct then-
simplex fromSt, such that: eq.( 4) is satisfied.
2.2.2) Apply the NSS method:Execute the NSS
method duringn+1 iterations. At each iteration:
· Repair the bounds according to eq.( 5).
· Relax the search changing the direction searchws

for any otherŵs ∈ Ci.
· Each new solution found by the NSS method is

stored in the intensification setI.

Step 3) Update the leading set:Update theleading setS
using Algorithm 1. That is:St+1 = update(W,St, I)
Step 4) Stopping Criteria: If t < Nit (Nit is the maximum
number of iterations) thent = t + 1 and go toStep 2.
Otherwise, stop NSS-MO andoutput: St+1.

IV. T EST PROBLEMS

In order to assess the performance of the proposed ap-
proach, we compare its results with respect to those ob-
tained by a state-of-the-art MOEA called MOEA/D [24].
We adopted three benchmark problems (LIS, FONSECA and
DTLZ5) and an airfoil design problem as a case study. Next,
we present the description of such problems.

A. Standard Test Problems

The following standard test problems were used to assess
the performance of our proposed approach.



LIS [12]: f1(x) = 8
q

x2
1 + x2

2

f2(x) = 4
p

(x1 − 0.5)2 + (x2 − 0.5)2

wherexi ∈ [−5, 10]. This MOP has a concave and connected
Pareto front.

FONSECA [6]: f1(x) = 1 − exp(−
Pn

i=1(xi − 1
√

n)
)2)

f2(x) = 1 − exp(−
Pn

i=1(xi + 1
√

n)
)2)

wheren = 3 andxi ∈ [−4, 4]. This MOP has a concave and
connected Pareto front.

DTLZ5 [4]: f1(x) = cos(θ1) cos(θ2)h(x)
f2(x) = cos(θ1) sin(θ2)h(x)
f3(x) = sin(θ1)h(x)

θ1 = π
2 x1

θ2 = π
4(1+g(x))

(1 + 2g(x)x2)

g(x) =
P

n
i=k(xi − 0.5)2

h(x) = 1 + g(x)

where k = 3, n = 12 and xi ∈ [0, 1]. This MOP has
a degenerated Pareto front formed by a curve of well-
distributed solutions.

B. Airfoil Shape Optimization: A case study

Our case study consists of the multi-objective optimization
of an airfoil shape problem adapted from [21] (called here
MOPRW). This problem corresponds to the airfoil shape
optimization of a standard-class glider, aiming to obtain an
optimum performance for a sailplane. In this study the trade-
off among two aerodynamic objectives is evaluated using our
proposed approach, and its results are compared with respect
to those obtained by MOEA/D.

1) Problem Statement:Two conflicting objective func-
tions are defined in terms of a sailplane average weight and
operating conditions [21]. They are defined as:

i) minimize: CD/CL

s.t. CL = 0.63, Re = 2.04 · 106, M = 0.12
ii) minimize: CD/C

3/2
L

s.t. CL = 1.05, Re = 1.29 · 106, M = 0.08

whereCD/CL and CD/C
3/2
L correspond to the inverse of

the glider’s gliding ratio and sink rate, respectively. Both
are important performance measures for this aerodynamic
optimization problem.CD and CL are the drag and lift
coefficients.

The aim is to maximize the gliding ratio (CL/CD) for
objective (i), while minimizing the sink rate in objective (ii ).
Each of these objectives is evaluated at different prescribed
flight conditions, given in terms of Mach and Reynolds
numbers. The aim of solving this MOP is to find a better
airfoil shape, which improves a reference design.

2) Geometry Parametrization:In the present case study,
the PARSEC airfoil representation [19] was adopted. Fig. 4
illustrates the 11 basic parameters used for this represen-
tation: rle leading edge radius,Xup/Xlo location of maxi-
mum thickness for upper/lower surfaces,Zup/Zlo maximum
thickness for upper/lower surfaces,Zxxup/Zxxlo curvature
for upper/lower surfaces, at maximum thickness locations,
Zte trailing edge coordinate,∆Zte trailing edge thickness,
αte trailing edge direction, andβte trailing edge wedge angle.

TABLE I
PARAMETER RANGES FOR MODIFIEDPARSECAIRFOIL

REPRESENTATION

Design Variable Lower Bound Upper Bound
rleup 0.0085 0.0126
rlelo 0.0020 0.0040
αte 7.0000 10.0000
βte 10.0000 14.0000
Zte -0.0060 -0.0030

∆Zte 0.0025 0.0050
Xup 0.4100 0.4600
Zup 0.1100 0.1300

Zxxup -0.9000 -0.7000
Xlo 0.2000 0.2600
Zlo -0.0230 -0.0150

Zxxlo 0.0500 0.2000

For the present case study, the modified PARSEC geome-
try representation adopted allows us to define independently
the leading edge radius, both for upper and lower surfaces.
Thus, a total of 12 variables are used. Their allowable ranges
are defined in Table I.

The PARSEC airfoil geometry representation uses a linear
combination of shape functions for defining the upper and
lower surfaces. These linear combinations are given by:

Zupper =

6
∑

n=1

anx
n−1

2 , Zlower =

6
∑

n=1

bnx
n−1

2 (6)

In the above equations, the coefficientsan, and bn are
determined as functions of the 12 described geometric pa-
rameters, by solving two systems of linear equations, one
for each surface. It is important to note that the geometric
parametersrleup/rlelo, Xup/Xlo, Zup/Zlo, Zxxup/Zxxlo,
Zte, ∆Zte, αte, and βte are the actual design variables in
the optimization process, and that the coefficientsan, bn

serve as intermediate variables for interpolating the airfoil’s
coordinates, which are used by the CFD solver (we used the
Xfoil CFD code [5]) for its discretization process.

V. COMPARISON OFRESULTS

A. Performance Measures

1) Hypervolume: The Hypervolume (Hv) metric was
proposed by Zitzler [25]. This performance measure is
Pareto compliant [26] and quantifies the approximation of
nondominated solutions to the Pareto optimal front. The
hypervolume corresponds to the non-overlapped volume of
all the hypercubes formed by a reference pointr (given by

Fig. 4. PARSEC airfoil parametrization.



the user) and each solutionp in the Pareto set approximation
(PFk). It is mathematically defined as:

Hv = Λ





⋃

p∈PFk

{x|p ≺ x ≺ r}



 (7)

whereΛ denotes the Lebesgue measure andr ∈ R
k denotes

a reference vector being dominated by all valid candidate
solutions inPFk.

2) Spacing:TheSpacing(Sp) metric proposed by Schott
[18], quantifies the spread of solutions in the obtained
approximation of the Pareto front. This performance measure
can be calculated as:

Sp =

√

√

√

√

1

|P |

|P |
∑

i=1

(d − di)2 (8)

wheredi andd are defined as:

di = min
i,i6=j

M
∑

k=1

|f i
k − f j

k |, andd =

∑|P |
i=1 di

|P |

A value of zero for this performance measure indicates that
all the solutions are uniformly spread (i.e., the best possible
performance).

B. Experimental Setup

As indicated before, we compared our proposed approach
with respect to MOEA/D [24] (which uses the PBI approach).
For each MOP, 30 independent runs were performed with
each approach. The parameters for both algorithms are
summarized in Table II, whereNsol represents the number
of initial solutions (100 for bi-objective problems and 300
for three-objective problems).Nit represents the number of
iterations (which was set to40). Therefore, we performed
4, 000 (for the bi-objective problems) and12, 000 (for the
three-objective problems) function evaluations. For NSS-
MO, α, β and γ represent the control parameters for the
reflection, expansion and contraction movements of the NSS
method. For MOEA/D, the parametersTn, ηc, ηm, Pc andPm

represent the neighborhood size, crossover index, mutation
index, crossover rate and mutation rate, respectively. Finally,
the parameterθ, represents the penalty value used in the PBI
approach for both the NSS-MO and MOEA/D.

For each MOP, the algorithms were evaluated using the
two performance measures previously defined. (Hypervolume
and Spacing). Regarding the hypervolume, the reference
vectors adopted were:r = (1, 1)T for the LIS problem,
and r = (1.1, . . . , 1.1)T for the FONSECA and DTLZ5
problems, while for the airfoil design problem the reference
vector r = (0.007610, 0.005236)T was employed. The
results obtained are summarized in Tables III and IV. Each
table displays both theaverage and the standard deviation
(σ) of each performance measure for each MOP. For an easier
interpretation, the best results are presented inboldface for
each performance measure and test problem adopted.

TABLE II
PARAMETERS FORNSS-MOAND MOEA/D

Parameter NSS-MO MOEA/D
Nsol 100/300 100/300
Nit 40 40
Tn – 30
Pc – 1
Pm – 1/n
α 1 –
β 2 –
γ 0.5 –
θ 5 5

TABLE III
RESULTS OF THEHv METRIC FORNSS-MOAND MOEA/D

MOP
NSS-MO MOEA/D
average average

(σ) (σ)

LIS
0.309713 0.262384

(0.007686) (0.008786)

FONSECA
0.542006 0.374342

(0.001476) (0.007427)

DTLZ5
0.429676 0.425734

(0.000917) (0.001480)

MOPRW
2.055961e-07 2.045719e-07

(3.045320e-08) (2.511415e-08)

TABLE IV
RESULTS OF THESp METRIC FORNSS-MOAND MOEA/D

MOP
NSS-MO MOEA-D
average average

(σ) (σ)

LIS
0.005861 0.010273

(0.000812) (0.003768)

FONSECA
0.004454 0.003346

(0.000218) (0.000498)

DTLZ5
0.007064 0.034209

(0.001211) (0.031652)

MOPRW
1.554402e-05 2.397431e-06

(7.141540e-06) (2.790701e-06)

C. Results and Discussion

In this section, we present the results obtained by the
proposed algorithm for each adopted test problem including
the airfoil design problem. As indicated before, the results
obtained by our proposed approach (NSS-MO) are compared
against those produced by MOEA/D.

Table III shows the results obtained for the hypervolume
(Hv) performance measure. From this table, it can be seen
that the results obtained by our proposed approach outper-
formed MOEA/D in all the adopted MOPs. This indicates
that our proposed algorithm produced a better approximation
to the Pareto optimal front. Regarding the spacing (Sp) per-
formance measure, Table IV shows that MOEA/D obtained
better results than those produced by our proposed NSS-MO
in the FONSECA and MOPRW problems, while NSS-MO
was better in the LIS and DTLZ5 test problems. However,
in our case, convergence was considered to be a more
important criterion than uniform distribution, and regarding
convergence, our proposed approach obtained better results
in all cases.

Fig. 5 graphically shows that NSS-MO obtained both a
better distribution of solutions and a better approximation
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Fig. 5. Comparison of results for NSS-MO and MOE/D in the benchmark problems. Figures A to C show the achieved Pareto front, while Figures D to
F show the convergence plot of the hypervolume for the LIS, FONSECA and DTLZ5 problems, respectively.
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Fig. 6. Comparison of results for NSS-MO and MOE/D in the airfoil design problem. Figures A to D compare the achieved Pareto front for 10, 20, 30

and40 generations, while figures E and F show the convergence plot of the hypervolume at 50 and 100 generations, respectively.

to the Pareto optimal front in the LIS and FONSECA test
problems. The differences in the distribution of solutionsfor
DTLZ5 do not seem significant when comparing the two
approaches, although MOEA/D was better in this case. It
is worth noting that both approaches converged to the true
Pareto front, but their approximations are shown at different
positions in Fig. 5 to make them more readable. That is the
reason why the axes of these plots do not have any numerical
values.

Fig. 6 shows the approximation of the Pareto front gen-
erated by both NSS-MO and MOEA/D after10, 20, 30 and

40 iterations. In this case, NSS-MO obtained, on average,
better hypervolume values than MOEA/D (see Table III),
although the difference is not significant. In fact, Fig. 6 shows
a particular instance in which MOEA/D obtained a better
hypervolume value than our approach after 100 iterations.

The approximations to the Pareto front presented in Figs. 5
and 6, correspond to the set of nondominated solutions found
by each algorithm in the run with the value nearest to
the mean value of theHv metric for each multi-objective
optimization problem adopted.



VI. CONCLUSIONS ANDFUTURE WORK

We have proposed a multi-objective algorithm based on
mathematical programming techniques. The proposed ap-
proach was, in principle, designed for dealing with uncon-
strained, and unimodal problems having low and moderate
dimensionality.

Our results indicate that our proposed NSS-MO algorithm
outperforms MOEA/D regarding convergence in all the test
problems adopted, including one from aeronautical engineer-
ing. The number of objective function evaluations in these
test problems was low (4,000 for the bi-objective problems
and 12,000 for the three-objective problems), which can
make it a good choice for dealing with expensive objective
functions. Our proposed approach has, however, some disad-
vantages. For example, when dealing with highly accidented
search spaces, the movements of the NSS method may not be
able to reach a better point during the search. Should that be
the case, the step sizes (i.e., the control parametersα, β and
γ) must be fine-tuned until finding a suitable search region.

In spite of the effectiveness of our proposed approach in
MOPs with moderate dimensionality, our main goal is to
hybridize it with a MOEA so that its use can be extended
to problems of higher dimensionality and with highly acci-
dented search spaces. The idea would be to use a MOEA
for locating promising regions of the search space, and then
apply NSS-MO for exploiting those regions in an efficient
way. We believe that this sort of multi-objective memetic
algorithm could be a powerful engine for solving complex
and computationally expensive MOPs.
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