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Abstract—Multiobjective optimization problems have been
widely addressed using evolutionary computation techniques.
However, when dealing with more than three conflicting objec-
tives (the so-called many-objective problems), the performance
of such approaches is known to deteriorate. The problem lies in
the inability of Pareto dominance to provide an effective discrim-
ination. Alternative ranking methods have been successfully used
to cope with this issue. Nevertheless, the high selection pressure
associated with these approaches usually leads to diversity loss. In
this study, we focus on parallel genetic algorithms, where multiple
partially isolated subpopulations are evolved concurrently. As in
nature, isolation leads to speciation, the process by which new
species arise. Thus, evolving multiple subpopulations can be seen
as a potential source of diversity and it is known to improve
the search performance of genetic algorithms. Such a behavior,
integrated with an effective ranking, is expected to be suitable
for many-objective optimization.

I. INTRODUCTION

Multiobjective optimization problems arise in many scien-
tific and engineering applications, where multiple conflicting
goals are required to be simultaneously satisfied. Rather than
searching for a single optimal solution, the task in multi-
objective optimization is to find a set of trade-offs among
the competing objectives. Evolutionary algorithms (EAs) have
demonstrated to be very successful approaches to face such
problems. The population-based nature of EAs allows them to
simultaneously explore different regions of the search space
and to generate several elements of the Pareto optimal set
within a single execution.

Nevertheless, when dealing with more than three objectives,
the so-called many-objective optimization problems [1], the
performance of even the most popular multiobjective EAs
(MOEAs) is known to deteriorate [2], [3], [4]. Such a scala-
bility problem can be explained through the fact that Pareto
dominance (PD) [5] loses its discrimination potential as the
number of objective functions increases. As a consequence, no
preferences can be set among individuals (potential solutions)
for selection purposes, leading PD-based MOEAs to perform
an almost random search.

PD’s drawbacks have motivated researchers to use alterna-
tive discrimination mechanisms to enhance the performance of
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MOEAs when solving many-objective problems [6], [7], [8],
[9], [10], [11], [12]. In our previous work [10], [11], [12], we
performed a series of comparative experiments to investigate
the advantages of using several of such alternative approaches.

One of our main findings was that an effective ranking of
solutions allows to improve convergence in many-objective
optimization. An effective ranking is that providing a fine-
grained discrimination. It should be taken into account how
better solutions are from each other in each objective. Discard-
ing this information can lead to wrong discrimination decisions
and can negatively affect the convergence behavior of MOEAs.

Nevertheless, a fine-grained discrimination entails a high
selection pressure, which tends to sacrifice genetic diversity.
Diversity loss not only has a detrimental impact on the
exploratory capabilities of MOEAs, but also prevents their
convergence towards a representative approximation of the
Pareto optimal surface. Satisfying both the convergence and
diversity requirements for many-objective optimizers is known
to be, by itself, a multiobjective problem. A better diversity is
commonly associated with a poorer proximity [13]. However,
convergence is usually prioritized over diversity. In fact, a
poorly spread set of solutions which are close to the Pareto
front would be rather preferable than a well-spread set of
points which are far from it [8].

In this study, we investigate the suitability of a class
of parallel genetic algorithms (PGAs) for many-objective
optimization. In such PGAs, individuals are organized into
multiple subpopulations which evolve in isolation most of
the time. As in nature, isolated subpopulations are expected
to evolve in different directions, allowing new species to
arise. This process is known as speciation. Thus, evolving
multiple (partially isolated) subpopulations can be seen as
a potential source of diversity and it is known to improve
the way genetic algorithms explore search spaces. In our
approach, subpopulations are evolved by means of a genetic
algorithm which is driven by a fine-grained ranking to promote
a convergent behavior. In this study, the aim of using PGAs
is not to improve computational efficiency. Instead, we focus
on the impact that the subpopulations scheme could have on
the outcome of the optimization process.

The remainder of this paper is organized as follows.
Background concepts are provided in Section II. Section III
describes the implemented PGA. Our experimental results
are discussed in Section IV. Finally, Section V provides our
conclusions as well as some possible directions for future
research.



II. BACKGROUND

A. Multiobjective optimization

A multiobjective optimization problem (MOP) can be for-
mally stated as follows:1

Minimize F(X) = [f1(X), f2(X), . . . , fM (X)]T

subject to X ∈ F (1)

where X is a decision vector with n decision variables, F(X)
is the M -dimensional objective vector (M ≥ 2), fm(X)
is the m-th objective function (fm : Rn → R) and F is
the feasible region. Here, we are interested in solving many-
objective optimization problems; that is, the subset of MOPs
involving M > 3 objectives [1].

In multiobjective optimization we wish to determine, from
among all X ∈ F , the particular X∗ which yields the optimum
values for all the objective functions. However, it is unusual
that there is a single solution simultaneously optimizing all the
(conflicting) objectives. Instead, we are interested in finding a
set of trade-off solutions. The most commonly adopted notion
of optimality is the so-called Pareto optimality [5].

Let us first define the Pareto dominance (PD) relation. Given
two solutions X, Y ∈ F , we say that X Pareto-dominates Y,
denoted by X ≺ Y, if and only if:

∀m ∈ {1, 2, ...,M} : fm(X) ≤ fm(Y) ∧
∃m ∈ {1, 2, ...,M} : fm(X) < fm(Y) (2)

otherwise, we say that Y is nondominated with respect to X.
We say that a point X∗ ∈ F is Pareto optimal if there is no
X ∈ F such that X ≺ X∗. The set of all X∗ ∈ F satisfying
this condition constitutes the Pareto optimal set, whose image
in objective space is called Pareto front or trade-off surface.

B. Pareto dominance in many-objective optimization

Pareto dominance (PD) is known to become ineffective as
the number of optimization criteria raises. Figure 1 shows how
the proportion of nondominated solutions in the population
behaves with respect to the number of objectives and as the
search progresses. We adopted a well-known scalable test
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Fig. 1. Proportion of Pareto-nondominated solutions.

1In this study, we assume that all objectives are equally important and,
without loss of generality, we will refer only to minimization problems.

problem, DTLZ1 [14], and a basic MOEA (described later
in Section III-B) with a population of N = 100 individuals.
31 independent executions were performed.

From Figure 1, we can clearly see that the increment in
the number of objectives raises the proportion of nondomi-
nated individuals. Even in the case of the initial population
(at generation zero), which is randomly generated, a high
percentage of the population corresponds to nondominated
solutions. After a few generations, the population became com-
pletely nondominated in all cases. Thus, no preferences can
be set among individuals for selection purposes, leading the
algorithm to perform practically a random search. Recently,
alternative ranking approaches have been adopted to cope with
this issue [11], [11], [12], [6], [7], [8], [9].

C. Parallel genetic algorithms

There are different approaches to parallelize genetic algo-
rithms (GAs) [15], [16]. On the one hand, the evaluation of
the population’s individuals as well as the application of the
genetic operators may be explicitly distributed among multiple
processing units. This is the so-called global parallelization,
where computational efficiency can be improved while the
behavior of the algorithm remains unchanged.

On the other hand, some other parallelization strategies
introduce fundamental changes in the way GAs explore search
spaces. This is the case of coarse-grained parallel GAs, also
referred to as island model GAs, GAs based on punctuated
equilibria, or just parallel GAs (PGAs). The GA’s population
is partitioned into multiple subpopulations, or demes, which
evolve in isolation for a period known as an epoch. At the end
of each epoch, some individuals are copied from one deme to
another through a process known as migration.

Just as occurs in nature due to geographic isolation, each
independently evolving deme is expected to follow a different
search trajectory, leading to speciation. In population genetics,
speciation refers to the process through which new species
arise. This can be seen as a potential diversity promotion
mechanism. Such a behavior may allow the efficient explo-
ration of large search spaces and it has been successfully
exploited to deal with, for example, linearly separable [17],
multimodal [18] and even multiobjective optimization prob-
lems [19].

The performance of PGAs depends upon several decisions
such as the number and size of the demes and the migration
policies; i.e., which and how many individuals to migrate, how
often (epoch length) and between what demes can individuals
be exchanged (interconnection topology).

III. A PARALLEL GENETIC ALGORITHM FOR
MANY-OBJECTIVE OPTIMIZATION

We implemented a coarse-grained parallel genetic algorithm
(PGA). In PGAs (see Section II-C), the population is divided
into multiple subpopulations or demes which evolve isolated
most of the time. From time to time, individuals are allowed
to migrate from one deme to another.



Two main modules integrate the implemented PGA. On
the one hand, the high-level processing module invokes the
evolution of the subpopulations and manages the migration
process. On the other hand, the low-level module is concerned
with the local processing within each deme. These modules
are to be separately described below.

A. High-level processing: demes and migration management

The high-level processing module implements the subpopu-
lations scheme. At the beginning, the initial individuals are
generated at random and arbitrarily organized into demes.
Then, the evolution of each deme is invoked and the migration
process is performed according to the given time intervals. The
workflow of this module is shown in Figure 2.
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Fig. 2. High-level processing: subpopulations scheme.

Migration is done by replacing the worst individual of each
deme with a copy of the best individual from another. As
our interconnection topology, we adopted a unidirectional ring,
i.e., individuals from deme Di can only migrate to deme Di+1,
for 1 ≤ i ≤ d − 1, and deme D1 can only receive migrants
from deme Dd, where d denotes the number of demes.

B. Low-level processing: elitist genetic algorithm

Low-level processing refers to the isolated evolution of each
subpopulation. In our approach, such a task is based on the
elitist genetic algorithm illustrated in Figure 3.

Individuals in the concerned deme constitute the initial par-
ent population. Parents are ranked and the fittest are selected
for mating (selection-for-variation). Then, children are gener-
ated by applying the variation operators to the selected parents.
Finally, parent and children populations are combined and the
best individuals are selected to survive in order to become the
new parent population (selection-for-survival). This process is
performed during a given number of generations (an epoch).

Individuals are ranked by means of the weighted sum
method. Such a simple aggregative approach has demonstrated
to provide an effective discrimination mechanism, suitable for
many-objective optimization [10], [12]. The weighted sum for
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Fig. 3. The elitist genetic algorithm adopted for low-level processing.

a given solution X is computed as follows:

wsum(X) =
M∑

m=1

ωmfm(X) (3)

where ωm is the weighting coefficient which denotes the rel-
ative importance of the m-th objective. Since we assume that
all objectives are equally important, the weighting coefficients
in equation (3) were simply omitted for this study.

The implemented operators are: binary tournament selec-
tion. Simulated binary crossover (ηc = 15) with probability
of 1, Polynomial mutation (ηm = 20) with probability of
1/n, where n is the number of decision variables. In order to
investigate the intrinsic ability of PGAs to favor diversity, no
additional diversity promotion mechanisms were implemented.

IV. EXPERIMENTAL RESULTS

A. Experimental setup

Problems DTLZ1, DTLZ3 and DTLZ6 [14] were adopted
for our experimental study. These problems can be scaled to
any number of objectives and decision variables. The total
number of variables in these problems is n = M + k − 1,
where M denotes the number of objectives and k is a difficulty
parameter. We used k = 5 for DTLZ1 and k = 10 for
the remaining problems. Experiments were performed for
instances with M = {5, 10, 15, 20, 30, 50} objectives for the
three test problems adopted.

As a convergence measure, we computed the average dis-
tance from Pareto-nondominated solutions in the obtained
approximation set to the true Pareto front [20]. Since equations
defining the true Pareto front are known for all the test
problems adopted, this measure was analytically determined.
Additionally, we adopted the Inverted Generational Distance
(IGD), which allows to measure both convergence and diver-
sity. IGD is a variation of the Generational Distance indicator

[21] and it is defined by IGD =
(√∑|P∗|

i=1 d
2
i

)
/|P ∗|, where

P ∗ is a reference set of points in the true Pareto front and di

is the Euclidean distance between the i-th solution in P ∗ and



the nearest point in the obtained approximation set. The two
adopted performance measures are to be minimized.

For all the approaches compared, we used a total popula-
tion size of N = 100 individuals, 300 generations and we
performed 100 independent executions of each experiment.

B. Settings for the studied parallel genetic algorithm

As stated in Section II-C, the performance of PGAs is
sensitive to the number and size of the demes as well as to
migration policies. In this study, a major concern is to analyze
the impact that the adjustment of these parameters has on the
search performance of the approach.

In order to keep constant the final number of objective
functions evaluations, the total number of individuals was fixed
to N = 100. Therefore, the more the demes, the smaller their
size. The adopted settings for these parameters are as follows:
1 × 100 (i.e., 1 deme of 100 individuals) consistent with the
conventional model, 2× 50, 4× 25 and 5× 20.

Given that the maximum number of demes we adopted
is relatively low (i.e., 5), a change in the interconnection
topology is not expected to have a major impact on per-
formance.2 Thus, migration is to be performed in the way
described in Section III-A. Nevertheless, an important aspect
to be considered in this study is the frequency of migrations.
We tested with migration intervals of {10, 20, 30, 50, 75, N}
generations, where N refers to no migration.

The combination of the above described settings leads to
19 different PGA configurations. These configurations are to
be referred to by acronyms such as “4-25-N”, which denotes
4 demes of 25 individuals with no migration.

C. State-of-the-art approaches

We considered four state-of-the-art MOEAs as a reference:
• Nondominated Sorting Genetic Algorithm II (NSGA-II)

[22]. NSGA-II implements the Nondominated Sorting,
which is a ranking method based on Pareto dominance.
An explicit diversity promotion mechanism, the Crowd-
ing Distance, is used as a secondary criterion to discrim-
inate among equally ranked solutions.

• Diversity Management Operator (DMO) [23]. According
to its authors, diversity promotion can be harmful in
many-objective optimization, since it tends to prefer solu-
tions with a poor convergence and, therefore, to guide the
search away from the Pareto front. DMO is an adaptive
strategy: diversity promotion is performed only when it is
required. This approach was implemented on NSGA-II.

• Hypervolume Estimation Algorithm (HypE) [24]. HypE is
a many-objective optimizer which uses the hypervolume
metric to guide the search process. Since the calculation
of this metric becomes computationally expensive with
the increase in the number of objectives, HypE approxi-
mates it by using a Monte Carlo simulation.

2Unidirectional and bidirectional rings, as well as the fully connected topol-
ogy were explored with similar results. However, due to space restrictions,
only results for the unidirectional ring topology are reported in this paper.

• Multiple Single Objective Pareto Sampling (MSOPS)
[25]. MSOPS is a many-objective optimizer which uses
a set of weighted vectors to guide the search process in
multiple directions, simultaneously.

For a more detailed description of these approaches, the
reader is referred to their original publications.

D. Convergence metric results

Tables I, II and III present the obtained results for problems
DTLZ1, DTLZ3 and DTLZ6, respectively, with respect to the
convergence metric. These tables show the mean and standard
deviation of the 100 independent executions performed for
each experiment. The best results (lowest mean and standard
deviation) for each problem size have been highlighted.

Regarding problem DTLZ1, Table I shows that most in-
stances were better solved by using some PGA configurations
(5-20-10, 2-50-10 and 2-50-20). Only for the 20-objectives
instance the best results were obtained by the conventional ap-
proach (1-100-N). Problem DTLZ3 (Table II) imposed higher
convergence difficulties. As for DTLZ1, the 20-objectives
instance was the only case where the single population model
allowed the best performance. For all other instances, the 2-50-
10 and 2-50-20 configurations performed the best. Due to the
hardness of this problem, larger subpopulations and frequent
migration were essential to improve convergence. From Table
III, it is clear that the subpopulations scheme outperformed
the conventional model. For all instances of problem DTLZ6,
some PGA configurations reported the best convergence (5-
20-20, 5-20-10, 4-25-20, 4-25-10 and 2-50-50).

For all the three adopted problems, the worst performance
of PGA was consistently shown by the 5-20-N configuration.
However, note that the worst behavior of PGA is even better
than that of the state-of-the-art approaches in most cases
(MSOPS achieved better results than 5-20-N for the largest
instances of problems DTLZ1 and DTLZ3).

In general, it is possible to note that migration becomes
more important as the size of the subpopulations decreases.
This can be better explained by analyzing the behavior of PGA
as illustrated in Figure 4. This figure shows the average perfor-
mance of each PGA configuration for the 5-objectives instance
of DTLZ1. The convergence measure is to be minimized.
Thus, the three higher peaks exhibit the poor performance of
configurations where no migration is applied; the smaller the
subpopulations, the poorer the performance. On the other hand,
as the frequency of migrations was increased, the convergence
of the approach was gradually improved in all cases. In fact,
it is not easy to imagine a small population providing, by
itself, an acceptable convergence. However, migration breaks
isolation, allowing subpopulations to collaborate with each
other to perform a more effective search.

Regarding state-of-the-art approaches, NSGA-II provided
the worst behavior for most instances of this experiment. Even
when DMO is also based on Pareto dominance, this approach
performed better than NSGA-II, and even better than HypE
in most cases. Among the considered state-of-the-art MOEAs,
the MSOPS algorithm performed the best in most cases.



TABLE I
MEAN AND STANDARD DEVIATION OF THE CONVERGENCE METRIC. DTLZ1 PROBLEM.

5 Obj. 10 Obj. 15 Obj. 20 Obj. 30 Obj. 50 Obj.
1-100-N 0.000145 ± 0.0002 0.003313 ± 0.0221 0.000247 ± 0.0003 0.000226 ± 0.0003 0.008524 ± 0.0261 0.022512 ± 0.0411

2-50-N 0.003311 ± 0.0156 0.005667 ± 0.0175 0.031743 ± 0.0488 0.040447 ± 0.0453 0.061652 ± 0.0739 0.124940 ± 0.1036
2-50-75 0.000319 ± 0.0004 0.000193 ± 0.0002 0.001032 ± 0.0067 0.004736 ± 0.0165 0.008281 ± 0.0227 0.022515 ± 0.0336
2-50-50 0.000222 ± 0.0003 0.001716 ± 0.0157 0.000192 ± 0.0002 0.001338 ± 0.0111 0.003236 ± 0.0124 0.021468 ± 0.0327
2-50-30 0.000177 ± 0.0002 0.000176 ± 0.0002 0.000176 ± 0.0002 0.002538 ± 0.0138 0.004960 ± 0.0202 0.020931 ± 0.0489
2-50-20 0.000178 ± 0.0002 0.000174 ± 0.0003 0.000139 ± 0.0001 0.000639 ± 0.0045 0.004745 ± 0.0186 0.011906 ± 0.0263
2-50-10 0.000148 ± 0.0002 0.000133 ± 0.0002 0.000208 ± 0.0003 0.001263 ± 0.0111 0.006708 ± 0.0231 0.022585 ± 0.0432
4-25-N 0.100139 ± 0.0911 0.168522 ± 0.1159 0.214087 ± 0.1412 0.293740 ± 0.1666 0.373407 ± 0.1998 0.469142 ± 0.2121

4-25-75 0.006748 ± 0.0164 0.015775 ± 0.0242 0.028567 ± 0.0380 0.039554 ± 0.0464 0.060781 ± 0.0573 0.084687 ± 0.0629
4-25-50 0.002580 ± 0.0168 0.001742 ± 0.0057 0.008708 ± 0.0200 0.014518 ± 0.0301 0.026244 ± 0.0397 0.044886 ± 0.0472
4-25-30 0.000303 ± 0.0003 0.000668 ± 0.0039 0.001796 ± 0.0079 0.003516 ± 0.0137 0.013236 ± 0.0320 0.026595 ± 0.0436
4-25-20 0.000209 ± 0.0002 0.000157 ± 0.0002 0.001927 ± 0.0134 0.003750 ± 0.0197 0.008396 ± 0.0283 0.015368 ± 0.0292
4-25-10 0.000144 ± 0.0002 0.000144 ± 0.0002 0.000200 ± 0.0003 0.001341 ± 0.0111 0.010213 ± 0.0278 0.013562 ± 0.0289
5-20-N 0.170176 ± 0.1393 0.291416 ± 0.1863 0.373880 ± 0.2329 0.469041 ± 0.2427 0.554432 ± 0.2414 0.678818 ± 0.2887

5-20-75 0.030281 ± 0.0511 0.048407 ± 0.0473 0.066023 ± 0.0653 0.075825 ± 0.0563 0.128956 ± 0.0859 0.164711 ± 0.1109
5-20-50 0.006492 ± 0.0151 0.011727 ± 0.0228 0.022221 ± 0.0329 0.035367 ± 0.0548 0.059192 ± 0.0583 0.078205 ± 0.0655
5-20-30 0.001085 ± 0.0047 0.002173 ± 0.0093 0.006259 ± 0.0201 0.005936 ± 0.0146 0.021291 ± 0.0431 0.042569 ± 0.0493
5-20-20 0.000643 ± 0.0041 0.001039 ± 0.0064 0.002437 ± 0.0146 0.003484 ± 0.0160 0.010060 ± 0.0242 0.025029 ± 0.0386
5-20-10 0.000128 ± 0.0002 0.000149 ± 0.0002 0.000189 ± 0.0003 0.002492 ± 0.0156 0.002130 ± 0.0104 0.016853 ± 0.0308

NSGAII 60.40604 ± 10.742 121.0549 ± 6.7985 110.9575 ± 4.8384 98.27711 ± 3.7724 81.04219 ± 3.5620 62.76571 ± 2.6549
DMO 1.978099 ± 3.1316 17.63203 ± 13.963 8.515378 ± 9.3491 4.663428 ± 5.0863 4.231022 ± 4.1588 2.591832 ± 2.4951
HypE 11.11295 ± 5.5457 19.09323 ± 7.2913 17.81295 ± 7.1807 14.99726 ± 6.1881 13.35879 ± 4.5939 11.44772 ± 3.7236

MSOPS 0.915619 ± 1.1626 1.051954 ± 1.2674 0.607193 ± 1.0100 0.461847 ± 0.7541 0.247411 ± 0.3449 0.319473 ± 0.3524

TABLE II
MEAN AND STANDARD DEVIATION OF THE CONVERGENCE METRIC. DTLZ3 PROBLEM.

5 Obj. 10 Obj. 15 Obj. 20 Obj. 30 Obj. 50 Obj.
1-100-N 0.110874 ± 0.3251 0.114468 ± 0.2993 0.244882 ± 0.4922 0.303538 ± 0.5213 0.807442 ± 0.8343 1.404978 ± 1.5611

2-50-N 1.242278 ± 1.0319 1.550547 ± 1.4800 2.443372 ± 1.9784 2.697353 ± 1.8758 4.253623 ± 2.7378 7.225648 ± 4.2487
2-50-75 0.326534 ± 0.5202 0.392058 ± 0.4758 0.592496 ± 0.6838 0.732805 ± 0.7039 1.195928 ± 0.9733 2.539687 ± 1.9921
2-50-50 0.200406 ± 0.3695 0.240207 ± 0.4471 0.354875 ± 0.5079 0.525874 ± 0.8143 0.902689 ± 1.2055 2.056778 ± 1.9583
2-50-30 0.065390 ± 0.2023 0.142951 ± 0.3152 0.348322 ± 0.5882 0.386375 ± 0.7860 0.677882 ± 0.8612 1.675690 ± 1.5302
2-50-20 0.140189 ± 0.3263 0.155142 ± 0.4052 0.294635 ± 0.5262 0.386002 ± 0.6218 0.672328 ± 0.9607 1.310794 ± 1.2162
2-50-10 0.033189 ± 0.1399 0.103401 ± 0.2817 0.176882 ± 0.3739 0.352088 ± 0.6453 0.637230 ± 0.7538 1.361328 ± 1.2547
4-25-N 6.467268 ± 3.0169 7.773832 ± 3.7339 10.24902 ± 4.9429 12.40833 ± 5.0433 16.54271 ± 5.5799 22.82575 ± 7.5528

4-25-75 2.546508 ± 1.7014 2.632010 ± 1.5242 3.636015 ± 2.3712 4.041165 ± 2.0070 5.480490 ± 2.5995 7.966121 ± 3.8573
4-25-50 1.438815 ± 1.0206 1.526694 ± 1.1181 2.329290 ± 1.3138 2.464536 ± 1.4908 3.103310 ± 1.6123 4.537799 ± 2.5431
4-25-30 0.560115 ± 0.6733 0.524491 ± 0.6846 0.887705 ± 0.7548 0.949683 ± 0.8750 1.760112 ± 1.3398 2.792737 ± 1.9777
4-25-20 0.336762 ± 0.4414 0.315477 ± 0.5778 0.470433 ± 0.6365 0.641609 ± 0.6948 0.950593 ± 1.0969 1.773685 ± 1.7147
4-25-10 0.176214 ± 0.4177 0.170499 ± 0.4201 0.293718 ± 0.5005 0.484682 ± 0.6008 0.801266 ± 1.5318 1.331595 ± 1.2657
5-20-N 10.55198 ± 4.4161 12.99393 ± 5.2355 15.47916 ± 5.4506 17.12666 ± 5.6819 23.23956 ± 5.9798 28.77152 ± 7.4553

5-20-75 4.068486 ± 2.1421 5.191120 ± 2.5615 6.209245 ± 2.7835 6.864043 ± 3.0956 8.926646 ± 4.1732 11.49357 ± 4.4097
5-20-50 2.312997 ± 1.6080 2.816194 ± 1.7063 3.801178 ± 2.4154 3.939140 ± 2.1048 5.516923 ± 3.1359 6.839001 ± 3.8715
5-20-30 1.064449 ± 0.8902 1.245251 ± 0.9402 1.475467 ± 1.1115 1.593372 ± 1.0486 2.594357 ± 2.0557 3.674352 ± 2.4132
5-20-20 0.415442 ± 0.5658 0.681066 ± 0.8293 0.714349 ± 0.7016 0.795948 ± 0.9176 1.607120 ± 1.4149 2.428715 ± 1.9395
5-20-10 0.266878 ± 0.4964 0.176141 ± 0.3963 0.413167 ± 0.6988 0.346827 ± 0.5655 0.812771 ± 0.9366 1.568172 ± 1.4730

NSGAII 428.4210 ± 47.707 1397.412 ± 69.816 1640.337 ± 66.624 1720.620 ± 58.120 1767.131 ± 52.259 1791.930 ± 49.096
DMO 250.0566 ± 54.623 640.3385 ± 119.88 596.3158 ± 133.57 557.2623 ± 169.70 498.9534 ± 149.04 418.0680 ± 166.37
HypE 375.4823 ± 57.670 582.6380 ± 69.824 600.9199 ± 56.229 605.6658 ± 68.860 626.9526 ± 66.416 636.3059 ± 68.991

MSOPS 41.80983 ± 20.642 46.70703 ± 30.752 41.36390 ± 45.132 23.58651 ± 30.388 21.86103 ± 20.731 27.78660 ± 19.844

TABLE III
MEAN AND STANDARD DEVIATION OF THE CONVERGENCE METRIC. DTLZ6 PROBLEM.

5 Obj. 10 Obj. 15 Obj. 20 Obj. 30 Obj. 50 Obj.
1-100-N 0.079495 ± 0.0281 0.079909 ± 0.0318 0.086295 ± 0.0318 0.089318 ± 0.0310 0.087839 ± 0.0332 0.095208 ± 0.0329

2-50-N 0.087421 ± 0.0262 0.094208 ± 0.0263 0.095022 ± 0.0295 0.085724 ± 0.0301 0.091331 ± 0.0312 0.107071 ± 0.0342
2-50-75 0.073760 ± 0.0264 0.074113 ± 0.0261 0.079949 ± 0.0261 0.082266 ± 0.0283 0.085210 ± 0.0330 0.096093 ± 0.0322
2-50-50 0.075583 ± 0.0256 0.076201 ± 0.0289 0.079577 ± 0.0289 0.081772 ± 0.0261 0.084561 ± 0.0261 0.086108 ± 0.0323
2-50-30 0.077382 ± 0.0269 0.074343 ± 0.0297 0.079258 ± 0.0241 0.081285 ± 0.0327 0.081934 ± 0.0313 0.092608 ± 0.0294
2-50-20 0.074907 ± 0.0291 0.079655 ± 0.0290 0.078048 ± 0.0263 0.079929 ± 0.0295 0.088990 ± 0.0296 0.091934 ± 0.0316
2-50-10 0.075832 ± 0.0283 0.073103 ± 0.0281 0.085615 ± 0.0303 0.083467 ± 0.0310 0.089384 ± 0.0306 0.093351 ± 0.0278
4-25-N 0.093818 ± 0.0495 0.109898 ± 0.0435 0.155537 ± 0.0857 0.261416 ± 0.1566 0.440901 ± 0.2199 0.929475 ± 0.3000

4-25-75 0.087551 ± 0.0257 0.085145 ± 0.0243 0.093805 ± 0.0285 0.109032 ± 0.0364 0.167796 ± 0.0406 0.331447 ± 0.0603
4-25-50 0.076224 ± 0.0242 0.076422 ± 0.0292 0.084713 ± 0.0227 0.091756 ± 0.0290 0.135116 ± 0.0333 0.254987 ± 0.0509
4-25-30 0.068405 ± 0.0261 0.071149 ± 0.0251 0.075853 ± 0.0274 0.077860 ± 0.0265 0.097237 ± 0.0245 0.162564 ± 0.0364
4-25-20 0.066187 ± 0.0258 0.068359 ± 0.0255 0.070586 ± 0.0293 0.074712 ± 0.0274 0.079098 ± 0.0240 0.123273 ± 0.0288
4-25-10 0.072989 ± 0.0266 0.076893 ± 0.0277 0.071319 ± 0.0312 0.076511 ± 0.0273 0.075024 ± 0.0255 0.093491 ± 0.0352
5-20-N 0.142931 ± 0.0833 0.234765 ± 0.1502 0.352164 ± 0.1883 0.488690 ± 0.2320 0.717407 ± 0.2311 1.345676 ± 0.2995

5-20-75 0.086591 ± 0.0242 0.102812 ± 0.0319 0.132354 ± 0.0389 0.191205 ± 0.0616 0.290661 ± 0.0815 0.559770 ± 0.1433
5-20-50 0.077181 ± 0.0255 0.085892 ± 0.0285 0.104217 ± 0.0299 0.134469 ± 0.0318 0.216849 ± 0.0479 0.411344 ± 0.0674
5-20-30 0.069882 ± 0.0245 0.078661 ± 0.0257 0.080054 ± 0.0253 0.092980 ± 0.0298 0.145650 ± 0.0347 0.266969 ± 0.0494
5-20-20 0.064244 ± 0.0235 0.067385 ± 0.0264 0.073628 ± 0.0282 0.074958 ± 0.0253 0.101675 ± 0.0291 0.186484 ± 0.0327
5-20-10 0.067981 ± 0.0232 0.068530 ± 0.0260 0.076746 ± 0.0273 0.069477 ± 0.0280 0.078583 ± 0.0302 0.097286 ± 0.0298

NSGAII 6.539745 ± 0.2762 9.377000 ± 0.1322 9.585842 ± 0.0734 9.634870 ± 0.0831 9.666727 ± 0.0785 9.634973 ± 0.0966
DMO 6.629688 ± 0.4212 8.457203 ± 0.3208 8.720438 ± 0.3497 8.800647 ± 0.3195 8.819693 ± 0.3404 8.853029 ± 0.3145
HypE 7.188594 ± 0.2906 8.012234 ± 0.4234 8.365638 ± 0.3143 8.411360 ± 0.2328 8.484474 ± 0.2009 8.515142 ± 0.2176

MSOPS 7.910041 ± 0.2346 8.792252 ± 0.2246 8.577633 ± 0.2903 8.322629 ± 0.3015 8.140124 ± 0.3840 7.439052 ± 0.5382



TABLE IV
MEAN AND STANDARD DEVIATION OF THE IGD METRIC. DTLZ1 PROBLEM.

5 Obj. 10 Obj. 15 Obj. 20 Obj. 30 Obj. 50 Obj.
1-100-N 0.177062 ± 0.0213 0.159095 ± 0.0177 0.136568 ± 0.0090 0.122916 ± 0.0093 0.105603 ± 0.0106 0.092822 ± 0.0208

2-50-N 0.161717 ± 0.0196 0.150409 ± 0.0123 0.136469 ± 0.0127 0.123138 ± 0.0121 0.110818 ± 0.0240 0.105347 ± 0.0309
2-50-75 0.171271 ± 0.0194 0.152603 ± 0.0126 0.135265 ± 0.0090 0.121159 ± 0.0077 0.103182 ± 0.0100 0.086874 ± 0.0125
2-50-50 0.171014 ± 0.0190 0.155282 ± 0.0155 0.134580 ± 0.0096 0.120212 ± 0.0121 0.101939 ± 0.0070 0.090543 ± 0.0179
2-50-30 0.171814 ± 0.0232 0.154499 ± 0.0135 0.134824 ± 0.0088 0.122356 ± 0.0086 0.102709 ± 0.0077 0.090167 ± 0.0230
2-50-20 0.171616 ± 0.0232 0.155428 ± 0.0129 0.135744 ± 0.0097 0.120367 ± 0.0079 0.103809 ± 0.0109 0.086405 ± 0.0137
2-50-10 0.178185 ± 0.0228 0.153482 ± 0.0122 0.137445 ± 0.0099 0.121730 ± 0.0102 0.105750 ± 0.0145 0.092453 ± 0.0263
4-25-N 0.156838 ± 0.0180 0.158036 ± 0.0212 0.159967 ± 0.0421 0.158472 ± 0.0418 0.155411 ± 0.0571 0.177704 ± 0.0732

4-25-75 0.155603 ± 0.0208 0.145866 ± 0.0109 0.131837 ± 0.0091 0.124928 ± 0.0173 0.110485 ± 0.0169 0.098313 ± 0.0244
4-25-50 0.160452 ± 0.0185 0.148242 ± 0.0130 0.131780 ± 0.0092 0.121992 ± 0.0115 0.104291 ± 0.0121 0.089242 ± 0.0192
4-25-30 0.160773 ± 0.0175 0.149413 ± 0.0116 0.134253 ± 0.0101 0.120568 ± 0.0080 0.104868 ± 0.0106 0.090184 ± 0.0190
4-25-20 0.166443 ± 0.0215 0.153053 ± 0.0116 0.134024 ± 0.0132 0.121231 ± 0.0099 0.104382 ± 0.0097 0.085503 ± 0.0117
4-25-10 0.166155 ± 0.0213 0.150488 ± 0.0114 0.134075 ± 0.0097 0.121010 ± 0.0129 0.106047 ± 0.0140 0.085936 ± 0.0125
5-20-N 0.160733 ± 0.0254 0.169211 ± 0.0424 0.169055 ± 0.0415 0.184481 ± 0.0617 0.188111 ± 0.0810 0.216978 ± 0.1157

5-20-75 0.150242 ± 0.0211 0.146229 ± 0.0111 0.136746 ± 0.0169 0.124014 ± 0.0142 0.118320 ± 0.0355 0.115327 ± 0.0417
5-20-50 0.154721 ± 0.0211 0.145014 ± 0.0117 0.132247 ± 0.0099 0.122512 ± 0.0180 0.108869 ± 0.0174 0.095807 ± 0.0229
5-20-30 0.162504 ± 0.0214 0.144903 ± 0.0108 0.133208 ± 0.0111 0.119125 ± 0.0076 0.105505 ± 0.0148 0.093030 ± 0.0225
5-20-20 0.165147 ± 0.0210 0.148400 ± 0.0123 0.133991 ± 0.0095 0.118912 ± 0.0091 0.103052 ± 0.0093 0.088462 ± 0.0148
5-20-10 0.165863 ± 0.0194 0.151546 ± 0.0109 0.132680 ± 0.0078 0.120739 ± 0.0116 0.102036 ± 0.0069 0.087523 ± 0.0152

NSGAII 7.817745 ± 4.2551 10.45238 ± 7.7348 9.395123 ± 6.3933 6.513742 ± 5.6212 5.597018 ± 4.3728 3.484032 ± 2.3463
DMO 0.527289 ± 0.4799 2.985676 ± 2.5608 1.872922 ± 1.5953 1.366379 ± 0.9851 1.436062 ± 1.0061 1.087918 ± 0.6951
HypE 1.511872 ± 0.8715 2.378413 ± 1.2825 2.359147 ± 1.1410 2.024472 ± 1.0968 1.712675 ± 0.6897 1.633190 ± 0.7154

MSOPS 0.309218 ± 0.5437 0.323235 ± 0.2680 0.237655 ± 0.1358 0.216796 ± 0.1940 0.153786 ± 0.0927 0.127538 ± 0.0823

TABLE V
MEAN AND STANDARD DEVIATION OF THE IGD METRIC. DTLZ3 PROBLEM.

5 Obj. 10 Obj. 15 Obj. 20 Obj. 30 Obj. 50 Obj.
1-100-N 0.535310 ± 0.1050 0.426694 ± 0.0723 0.385149 ± 0.0947 0.350378 ± 0.0927 0.367180 ± 0.1289 0.366908 ± 0.2043

2-50-N 0.754033 ± 0.2305 0.612994 ± 0.2237 0.662429 ± 0.3328 0.651136 ± 0.3221 0.734840 ± 0.3802 0.861584 ± 0.4143
2-50-75 0.567423 ± 0.1551 0.447009 ± 0.0927 0.409886 ± 0.1159 0.374076 ± 0.0954 0.375383 ± 0.1324 0.435860 ± 0.2056
2-50-50 0.541014 ± 0.0953 0.439969 ± 0.0935 0.386285 ± 0.0885 0.367103 ± 0.1177 0.352352 ± 0.1637 0.406441 ± 0.2286
2-50-30 0.518845 ± 0.0623 0.428231 ± 0.0731 0.399763 ± 0.1118 0.360767 ± 0.1253 0.337443 ± 0.1214 0.380326 ± 0.1916
2-50-20 0.534376 ± 0.0908 0.432649 ± 0.0966 0.393532 ± 0.1092 0.363802 ± 0.1168 0.345086 ± 0.1568 0.345918 ± 0.1554
2-50-10 0.512164 ± 0.0446 0.422133 ± 0.0654 0.372298 ± 0.0727 0.360585 ± 0.1163 0.336987 ± 0.1102 0.355376 ± 0.1613
4-25-N 1.780826 ± 0.6945 1.633826 ± 0.6801 1.654740 ± 0.6627 1.749416 ± 0.5956 1.864992 ± 0.7003 1.991726 ± 0.8331

4-25-75 0.953994 ± 0.3768 0.801843 ± 0.3152 0.734799 ± 0.3508 0.729540 ± 0.3129 0.762963 ± 0.3187 0.810339 ± 0.4202
4-25-50 0.761169 ± 0.2697 0.610528 ± 0.2298 0.612161 ± 0.2058 0.574890 ± 0.2328 0.555049 ± 0.2348 0.589489 ± 0.2653
4-25-30 0.612391 ± 0.2114 0.480430 ± 0.1521 0.453242 ± 0.1384 0.406661 ± 0.1476 0.455159 ± 0.2054 0.458808 ± 0.2378
4-25-20 0.569627 ± 0.1236 0.456184 ± 0.1377 0.408151 ± 0.1136 0.386174 ± 0.1168 0.364848 ± 0.1669 0.388492 ± 0.2196
4-25-10 0.556294 ± 0.1360 0.432759 ± 0.1047 0.388524 ± 0.0959 0.377131 ± 0.1113 0.356376 ± 0.1993 0.336779 ± 0.1413
5-20-N 2.633198 ± 1.0425 2.203752 ± 0.8313 2.242860 ± 0.9146 2.296266 ± 0.9125 2.517761 ± 0.9335 2.522268 ± 0.8318

5-20-75 1.306867 ± 0.4996 1.133198 ± 0.4775 1.071321 ± 0.4282 1.079298 ± 0.4244 1.126382 ± 0.5158 1.101353 ± 0.4628
5-20-50 0.904009 ± 0.3379 0.820545 ± 0.3736 0.832386 ± 0.4379 0.759209 ± 0.3547 0.790013 ± 0.4045 0.769001 ± 0.4025
5-20-30 0.718198 ± 0.2555 0.573812 ± 0.1855 0.517420 ± 0.1846 0.479865 ± 0.1681 0.526394 ± 0.2956 0.520433 ± 0.2292
5-20-20 0.571273 ± 0.1632 0.494359 ± 0.1586 0.428431 ± 0.1251 0.397700 ± 0.1399 0.438716 ± 0.2094 0.434748 ± 0.2318
5-20-10 0.571717 ± 0.1353 0.428256 ± 0.0810 0.405304 ± 0.1129 0.347951 ± 0.0947 0.351156 ± 0.1414 0.369323 ± 0.1959

NSGAII 46.94408 ± 14.740 112.7081 ± 40.539 105.8747 ± 44.895 90.76743 ± 36.006 66.19926 ± 25.745 52.78022 ± 21.293
DMO 25.57924 ± 8.1735 70.16373 ± 22.775 56.50639 ± 20.880 45.01976 ± 21.032 34.75309 ± 15.018 23.43633 ± 12.002
HypE 42.75160 ± 11.813 54.17240 ± 16.208 46.47087 ± 11.327 40.90931 ± 9.9673 36.51184 ± 8.0518 29.05640 ± 7.1596

MSOPS 9.207426 ± 5.8053 9.082625 ± 5.2078 6.882234 ± 5.5470 3.789015 ± 3.8713 3.278891 ± 2.6239 3.303975 ± 2.0285

TABLE VI
MEAN AND STANDARD DEVIATION OF THE IGD METRIC. DTLZ6 PROBLEM.

5 Obj. 10 Obj. 15 Obj. 20 Obj. 30 Obj. 50 Obj.
1-100-N 0.523611 ± 0.0075 0.416510 ± 0.0067 0.354409 ± 0.0056 0.313212 ± 0.0049 0.260330 ± 0.0043 0.205367 ± 0.0034

2-50-N 0.522026 ± 0.0069 0.415783 ± 0.0058 0.352877 ± 0.0048 0.311010 ± 0.0041 0.259065 ± 0.0038 0.205598 ± 0.0029
2-50-75 0.521994 ± 0.0070 0.415231 ± 0.0055 0.353149 ± 0.0046 0.312062 ± 0.0044 0.259791 ± 0.0043 0.204960 ± 0.0032
2-50-50 0.522556 ± 0.0068 0.415724 ± 0.0060 0.353209 ± 0.0051 0.312021 ± 0.0041 0.259888 ± 0.0034 0.204289 ± 0.0034
2-50-30 0.523041 ± 0.0072 0.415338 ± 0.0062 0.353142 ± 0.0043 0.311959 ± 0.0051 0.259559 ± 0.0041 0.205083 ± 0.0030
2-50-20 0.522394 ± 0.0077 0.416448 ± 0.0061 0.352933 ± 0.0047 0.311740 ± 0.0046 0.260473 ± 0.0039 0.205030 ± 0.0032
2-50-10 0.522635 ± 0.0075 0.415074 ± 0.0059 0.354284 ± 0.0054 0.312296 ± 0.0048 0.260526 ± 0.0040 0.205170 ± 0.0029
4-25-N 0.521550 ± 0.0084 0.417464 ± 0.0108 0.358779 ± 0.0063 0.323804 ± 0.0097 0.281540 ± 0.0135 0.247818 ± 0.0177

4-25-75 0.520948 ± 0.0055 0.414376 ± 0.0043 0.352843 ± 0.0042 0.313390 ± 0.0045 0.267103 ± 0.0046 0.226218 ± 0.0058
4-25-50 0.519284 ± 0.0060 0.413177 ± 0.0048 0.351745 ± 0.0039 0.311265 ± 0.0044 0.263995 ± 0.0040 0.219269 ± 0.0049
4-25-30 0.519385 ± 0.0073 0.413640 ± 0.0054 0.351458 ± 0.0049 0.310431 ± 0.0040 0.259876 ± 0.0031 0.210968 ± 0.0038
4-25-20 0.519912 ± 0.0068 0.414010 ± 0.0053 0.351269 ± 0.0052 0.310634 ± 0.0043 0.258310 ± 0.0034 0.207083 ± 0.0030
4-25-10 0.521872 ± 0.0071 0.415865 ± 0.0058 0.351756 ± 0.0055 0.311203 ± 0.0042 0.258649 ± 0.0033 0.204970 ± 0.0037
5-20-N 0.517652 ± 0.0350 0.428996 ± 0.0151 0.374568 ± 0.0139 0.340917 ± 0.0164 0.308309 ± 0.0200 0.286125 ± 0.0292

5-20-75 0.520241 ± 0.0061 0.417140 ± 0.0058 0.358626 ± 0.0055 0.323931 ± 0.0068 0.281619 ± 0.0089 0.244184 ± 0.0100
5-20-50 0.519605 ± 0.0068 0.414235 ± 0.0049 0.354091 ± 0.0049 0.317292 ± 0.0043 0.274444 ± 0.0060 0.233085 ± 0.0062
5-20-30 0.518568 ± 0.0062 0.414074 ± 0.0055 0.351289 ± 0.0045 0.311522 ± 0.0043 0.265340 ± 0.0045 0.220696 ± 0.0051
5-20-20 0.518932 ± 0.0064 0.412683 ± 0.0051 0.350793 ± 0.0046 0.309964 ± 0.0040 0.260086 ± 0.0036 0.212830 ± 0.0033
5-20-10 0.520528 ± 0.0061 0.414114 ± 0.0054 0.352705 ± 0.0048 0.310082 ± 0.0044 0.259064 ± 0.0039 0.204938 ± 0.0030

NSGAII 2.400076 ± 0.1270 2.717792 ± 0.1028 2.368454 ± 0.0655 2.101530 ± 0.0672 1.745590 ± 0.0563 1.365944 ± 0.0576
DMO 2.591950 ± 0.2159 2.619031 ± 0.1122 2.271961 ± 0.1037 2.024427 ± 0.0827 1.685581 ± 0.0736 1.326487 ± 0.0527
HypE 2.446891 ± 0.1441 2.177596 ± 0.1688 1.945053 ± 0.1005 1.725434 ± 0.0729 1.463114 ± 0.0568 1.174448 ± 0.0492

MSOPS 2.657995 ± 0.1722 2.249516 ± 0.1854 1.545002 ± 0.2235 1.154024 ± 0.1613 0.955169 ± 0.1296 0.799487 ± 0.0756
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Fig. 4. Average performance of PGA configurations for the 5-objectives
DTLZ1 problem. The solid blue line with circle marks corresponds to results
for the convergence metric, while the dotted red line with star marks refers
to IGD.

E. IGD metric results

Tables IV, V and VI present the mean and standard devia-
tion for the IGD metric regarding problems DTLZ1, DTLZ3
and DTLZ6, respectively. The best results for each problem
size have been highlighted in these tables.

From Table IV, it is possible to note that most PGA
configurations performed better than the conventional model
in all instances of problem DTLZ1. For each instance of
this problem, a different PGA configuration achieved the best
results (5-20-75, 5-20-30, 5-20-20, 4-25-50, 4-25-20 and 2-50-
50). Regarding problem DTLZ3, the best values for the IGD
metric were obtained by configurations 2-50-10, 4-25-10 and
5-20-10. As stated in Section IV-D, problem DTLZ3 involves
higher convergence difficulties. Thus, note that a frequent
migration is common in the best performing configurations.
Finally, results for problem DTLZ6 show an interesting be-
havior (Table VI). The 5-objectives instance was better solved
by using the smallest subpopulations with no migration (5-
20-N). However, migration and larger subpopulations became
required as the problem size was raised.

The results obtained for the IGD metric suggest that isola-
tion, as well as the increase in the number of subpopulations,
lead to improve diversity. This can be observed for the smallest
instances of problems DTLZ1 and DTLZ6. However, such a
behavior does not hold as the problem becomes harder, where
larger subpopulations and frequent migration are needed. With
the aim of clarifying this point, let us analyze Figure 4
again, now focusing on the IGD measure. Figure 4 shows
the average performance of each PGA configuration regarding
the 5-objectives instance of problem DTLZ1. As we can see
from this figure, the best results (lowest IGD values) were
obtained when using little or no migration. Contrasting with
the behavior for the convergence metric, the performance of
the approach regarding the IGD measure deteriorates as the
frequency of migrations is increased.

Among the adopted state-of-the-art MOEAs, NSGA-II per-

formed worst for most instances of this experiment. MSOPS
performed best in most cases, while the ranking between DMO
and HypE is not clear.

V. CONCLUSIONS AND FUTURE WORK

In this study, the suitability of parallel genetic algorithms
(PGAs) for many-objective optimization was explored. In
PGAs, individuals are organized into multiple subpopulations
which evolve in isolation most of the time, but individuals are
occasionally exchanged (migration). Isolation favors specia-
tion, which can be exploited as a potential source of diversity.
An elitist genetic algorithm was adopted as the search engine
to evolve each subpopulation. The adopted genetic algorithm
implements a fine-grained ranking strategy, which has been
identified in our previous work as an essential requirement to
perform an effective search in many-objective optimization.

For our experimental study, 19 different configurations of
the implemented PGA were explored, varying the number
and size of the subpopulations as well as the frequency of
migrations. However, the total number of individuals was
kept constant for all cases, so that the number of objective
functions evaluations does not increase as a consequence
of using multiple subpopulations. Also, four state-of-the-art
approaches were considered as a reference. Problems DTLZ1,
DTLZ3 and DTLZ6 were adopted, ranging in objectives from
5 to 50.

Our results indicate that the implemented PGA is a con-
venient approach for many-objective optimization. For most
instances of the adopted test problems, the use of multiple
subpopulations outperformed the conventional model in terms
of convergence. In fact, a small population is not expected to
provide, by itself, an acceptable convergence. However, the
collaborative behavior among subpopulations that emerges as
a result of migration seems to improve the search capabilities
of the approach. Thus, migration becomes more important as
the size of the subpopulations decreases, which was clearly
demonstrated through Figure 4.

Regarding the IGD metric, the best results for all the
instances of the adopted test problems were obtained by using
multiple subpopulations. As expected, the obtained results
suggest that isolation favors diversity. As illustrated in Figure
4, the best IGD values were achieved when using little or no
migration, but the performance gradually declined with the
increase in the frequency of migrations.

Therefore, a frequent migration tends to improve conver-
gence, while isolation favors the diversity in the final approx-
imation set. The fact that the convergence and IGD measures
contradict each other in Figure 4 supports these claims (both
measures were computed on the same data).

With the aim of exploring the intrinsic ability of PGAs to
favor diversification, no additional diversity promotion mech-
anisms were adopted. Nevertheless, by using such additional
mechanisms the performance of the approach could be better
improved in this regard.

Although the focus of this study was not on computational
efficiency, an additional advantage of PGAs is that they can



naturally exploit parallel architectures.
Due to space limitations, we have reported in this paper

results for only three test problems. However, it is important
to extend these experiments to a larger set of test cases as
well as to adopt real-world many-objective problems in order
to generalize our results. Also, the consideration of a wider
set of performance measures is required in order to derive
more general conclusions about the behavior of the studied
approach.
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