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Abstract—In this paper, we assess the convenience of applying 3) A posteriori approaches The preference information is

a previously proposed interactive method to solve three aer incorporated after a representative sample of the Pareto
dynamic airfoil shape optimization problems with 2, 3, and set has been obtained

6 objectives, respectively. The expensive simulations raged . . . .
to evaluate the objective functions makes these problems an 1raditionally, most Multiobjective Evolutionary Algohims

excellent example in which the use of interactive methods is (MOEAS) have been designed asposteriori approachesin
very advantageous. First, the search can be focused on theother words, their task is to obtain an approximation of the
decision maker's region of interest, saving this way, valuale antire Pareto front (see e.g., [2], [3], [4]).

function evaluations. Second, the preference relation ugen the Besides providing a sample of the Pareto front to select a
interactive method helps to deal with a large number of objetives

since it is able to rank incomparable nondominated solutios. The final solution, knowing the Pareto front might be insightful
experimental evaluation reveals that in the three problemsstud-  for other reasons. For example, thet can learn about the
ied, the interactive method achieved a better final solutionhan a nature of the trade-offs among the objectives of the problem
Fraditional apostgriori mgthqd with no preferences. Neyertheless, (e.g., disconnectedness, convexity, knees) or discowemin
in the problem with 6 objectives, only 3 of them were improved  giqtancies of the model with respect to the real problem.
A possible explanation for this is that local optima become arder . . .
to overcome when the size of the region of interest is very Nonetheless_, ap_prOX|mat|ng the _Wh0|e Pa_reto front mlght
small. Additional experiments confirmed that the convergese Ot be convenient in all cases. For instance, in problems wit
is deteriorated if very small regions of interest are used. expensive function evaluations, introducing preferemfert
Index Terms—Preference incorporation, many-objective opti- mation during the search can avoid the waste of functiorueval
mization, airfoil shape optimization problems. ations in regions in which them is definitively not interested.
Additionally, many real world problems aim at improving an
existing design which can be used as a reference design point
Solving a Multiobjective Optimization ProblemMOP) in-  The incorporation of preferences can also help to deal with
volves two main tasks: search and decision making (prefultiobjective optimization problems with a high number of
erence articulation). Unlike single-objective optimipat in objectives (many-objective problems). One of the diffiesit
multiobjective optimization, instead of a single optimutrere  of these problems is that the number of points required ta-acc
is USUa”y a set of Optlmal solutions that represent diﬁererate|y represent a Pareto front increases exponentiaﬂym
degrees of trade-off among the objectives. This set of &wist number of objectives [5]. This introduces a challenge fe th
is known as thdareto optimal setThus, a possible proceduregecision maker, since the selection of one solution fromregno
to solve amoP is to obtain an approximation of the Paretq huge number of solutions is evidently a very difficult task.
optimal set, and then let a decision makem]j to select the  |n this paper, we evaluate the performance of a previously
most preferred solution from the approximation set. This igroposed interactive method [6], which is applied to a real
however, not the only way to incorporate user’s preferencggorld problem. The main component of the interactive method
There are several other methodologies for incorporatieg-pris a preference relation based on an achievement scatarizin
erences from thew into the search process. Depending ofunction [7]. Regarding the real world application, we atiop
the moment at which them is required to provide preferencethree aerodynamic airfoil shape optimization problems. As
information, three approaches to solvap [1] are defined: e will see later on, the experimental results show that,
1) A priori approaches. The preference information isin general, the interactive method achieves better results
incorporated before the search, and then, the searchthan a traditionala posteriori approach However, in our
concentrated on the region of interest defined by thlexperiments, we found out that, when using an aerodynamic
preferences. problem with 6 objectives, only 3 of them were improved.
2) Interactive approaches TheDM is iteratively asked to We hypothesize that this was due to the presence of several
proportionate his preferences during the search in ordecal Pareto fronts in that problem. In order to validate our
to progressively refine the region of interest. hypothesis, we carried out some additional experiments to

I. INTRODUCTION



analyze the effect of local Pareto fronts in the convergene?d: max.cpr,,(z) for all i = 1,..., k. Another useful

of the interactive method adopted in our work. point is one strictly better thag’, i.e., the one calledtopian
The remainder of this paper is organized as follows. Thmint defined byz!* = zf —e Vi=1,...,k, wheree > 0 is

next section presents some basic concepts and the notatissmall scalar.

adopted throughout the paper. Section Il introduces a n . . .

prefgrence relgtion to incgrp?orate preferences and iegrat %N Achievement Scalarizing Functions

tion in an interactive method. Section IV presents the exper The proposed preference relation is based on the achieve-

mental results of the interactive method to solve threeiirf Ment scalarizing function approach proposed by Wierzbi-

shape optimization problems. Finally, in Section V we pnesecki [7]. An achievement scalarizing function uses a refeeen

our conclusions and some potential paths for future rebearf0int to captureom’s preference information in the form of
desired values for each objective function.

Il. BASIC CONCEPTS ANDNOTATION Definition 6: An achievement scalarizing function (or a-
In this section, we will introduce the concepts and notatiocchievement function for short) is a parameterized function
used throughout the rest of the paper. s(z,2z"®" : R* — R, wherez™ ¢ RF is a reference point

representing the decision maker’s aspiration levels.
Thus, the multiobjective problem is transformed into
Definition 1: A mMoP is defined as: minge z s(z, z®"). A common achievement function, based on
Minimize f(x) = [f1(x), f2(x), ..., fe(x)]T the Chebyshev distance [8], [9], is the weighted achieveémen
(1) function.
Definition 7: The weighted achievement function is defined

A. Multiobjective Optimization Problems

subjectto x € X.

The vectorx € R" is formed byn decision variables by
representing the quantities for which values are to be ¢hose A
in the_ optlmlzatu_)n problem. Théeasible _set)( C _R” is SOO(LZref) — max {/\i(zi_Z;ef)}_’_pz/\i(zi_zzyef)’ (4)
implicitly determined by a set of equality and inequality i=1,...k =
constraints. The vector functidh: X — R” is composed by
k > 2 scalarobjective functiond; : X - R (i =1,...,k).In
multiobjective optimization, the sel®” andR* are known as _ ] - -~
decision variable spacandobjective function spaceespec- 21dp >0 is an augmentation coefficient sufficiently small.
tively. The image of¥ under the functiorf is a subset of the e should note that, unlike the Chebyshev distance, the

objective function space denoted 1 = £(.X') and referred achievement function does not use the absolute value in
to as thefeasible set in the objective function space the first term. This small difference allows the achievement

In R* there is no canonical order, and thus, we need weakdpction to correctly assess solutions that improve the

definitions of order to compare vectors. In multiobjectivEeference point.

optimization, thePareto dominance relatiois usually adopted In mpst reference point ”,‘etho‘?'s’ the weight veo\o.rd.oes
to compare vectors if~. not define preferences, but is mainly used for normalizirdpea

Definition 2: We say that a vectaz' dominates vectoz?, objective function [10]. Usually, the weights are set as
denoted byz' <pa 22, if and only if: 1

1. .2 1_ .2 Ai = Znad _ gk
Vie{l,...,k}:z; <z and Jie{l,....k}:z <z. i i

wherez™® is a reference point\ = [\1,..., ] is a vector
of weights such thati \; > 0 and, for at least ong \; > 0,

foralli=1,... k. (5)

_ ] . . , . ) It is important to mention that them can provide both
q Def|n|tt|on '&tA Sotlrl:t'on XI t,EX |s;aretcr)] ?E“{P?l )'f there feasible and infeasible reference points, or more pregisel
oes not exist another solution € X' such thatf(x) <par ref k ref K ko i
£(x°). z € ZHR{I orz® ¢ Z+R%, whfarr(sz+ is the l:lonnegatwe
—_ _ _ _ _ ~orthant of R*. On the one hand, & ¢ Z + RY, then the
Definition 4: The Pareto optimal sefop, is defined as:  pinimization of Eq. 4 subject ta € Z should represent the
Popt={x€ X [Py e X : f(y) <par £(%)}. 2) _maxifmization of the su_rp_lus;—z_rEf € R*. On the_ other hand,
o ) if z'®" ¢ Z 4+ R%, the minimization of Eq. 4 subject to€ Z
Definition 5: For a Pareto optimal sefy, the Pareto front, minimizes the distance between the reference point and the

PFop, is defined as: Pareto optimal set.
PFopt={z = (f1(x),..., fe(x)) | x € Popt}.  (3) [1l. GUIDING THE SEARCH USING AN ACHIEVEMENT
The goal ofa posterioriMOEAS is to find an approximation FUNCTION
set, P Fapprox Of the Pareto optimal front. In this section, we present the Chebyshev preference

In interactive optimization methods it is useful to knowelation proposed in [6]. This preference relation, basad o
the lower and upper bounds of the Pareto front. Thbe Chebyshev achievement function (see Eq. 4), provides
ideal point represents the lower bound and is defined by simple way to integrate preferences into different types
zF =min,cz(%) for all ¢ = 1,...,k. In turn, the upper of MOEAs. Further, we show an interactive procedure for
bound is defined by thenadir point which is given by multi- and many-objective optimization problems in order t



redefine a Region of Intereskdi) iteratively, and eventually have to change the usual Pareto dominance checking pracedur
select a single preferred solution. Similar approachedéo tby the function that implements the new relation.

one proposed here can be found in the specialized literaturd he threshold can be adjusted in terms of the proportion
(see e.g., [11], [12], [13]). In a previous work [6] we dissusof the current range of the achievement function (i.e., the
the differences of some of those approaches with respectdifierence between the minimum and maximum achievement

the Chebyshev preference relation. with respect to a given solution se?). If 7 € [0,1] is
that proportion, them = 7 - (s™&% — smin) where s™a% =
A. The Chebyshev Preference Relation MaX,e p Soo (2,2 and s™™ = min,e p 5o (2, 2™).

The basic idea of the Chebyshev preference relation is IS%: [6] was also proposed a variant of the Chebyshev relation

combine the Pareto dominance relation and an achievemBHit USES an approximation of the ideal point as referenice: po

function to compare solutions in objective function spacg1 E‘f'”'“‘?” 8,‘ Th'§ variant is called trceentral-gwded_Cheby-.
First, the achievement function value, (z, 2'®'), is computed shev relatiorsince it focuses the search towards the ideal point.

for each solutionz. Then, the objective space is divided int. An Interactive Method Using the Chebyshev Relation

two regions. One region defines the Region of Interest andyhen the pm does not have enough knowledge about
contains those solutions with an achievement value less problem to provide a reference point, the central-glide

i in __ s ref H | X X
equal tos™"" + 4, wheres™" = minye z s00(2,2"), andd IS chepyshev relation can be used to obtain a first set of
a threshold that determines the size offoe Fig. 1 shows the ) ions However, having a previous best known solution

RoI defined by means of the achievement function. Solutiopg 4, given problem is common in real-world problems. In
in this region are compared using the usual Pareto dominangg case, the previous solution can serve as a good reerenc
relation, while solutions outside of thel are compared using point. Then, the process can follow the usual steps of the
their achievement function value. interactive techniques. That is, at each iteration tivemust

A provide new aspiration levels in the form of a reference poin
Additionally, the bm can change the value of the threshold
7 to control the size of the set of solutions. For example,

R S ; the user can set = 0.5 in order to obtain about half of
the Pareto front around the reference point. In order to ease
] i the visualization of the solutions, a technique for trumzat

the approximation set can be used. For example, a clustering
technique can be employed, such as the one used in Strength

Pareto Evolutionary Algorithm 2sPeA? [3], or a technique
— similar to the archiving methods. Therefore, the intexaxcti
Soo 0 process requires an additional parameter indicating theben

b
»

of solutions to visualize. This interactive process camtis
until the bm is satisfied with a solution of the current set of

Fig. 1. Nondominated solutions with respect to the Chebyshkation. . ) g -
solutions. Algorithm 1 shows the whole interactive process

Formally, the Chebyshev preference relation is defined as IV. EXPERIMENTAL STUDY
follows. A. Airfoil Shape Problem with 2 Objectives

> L o
Definition 8: A solutionz" is p:;‘lerred to golgtlon with In order to illustrate the interactive method presentedén t
respect to the Chebyshev relaticat (<cheby z°), if and only  yreyi0us section we will use a multiobjective aerodynaniic a

if: foil shape optimization problem adapted from [14], and hgvi
1) seo(zt,2®) < 550(2%,2"°) A 2 objectives. The goal is to optimize the shape of a standard-
{z" ¢ R(z"™,6) v 2> ¢ R(z"™ )}, or, class glider, aiming at obtaining optimum performance for a
sailplane.
2) z' <parz? A {z!,2% € R(z™,0)}, 1) Obijective functionsTwo conflicting objective functions

are defined in terms of a sailplane average weight and oper-
where R(2™®,8) = {z| 500 (z,2"®") < s™™ + §} is the Region ating conditions [14]:

of Interest with respect to the vector of aspiration levéts 1) Min f; = Cp/Cy,

As an illustration of the preference relation, consideusol s.t.Cp = 0.63, Re = 2.04 x 105, M = 0.12.
tionsz' andz? presented in Fig. 1. Sinc& ¢ R(z'*,6) and  2) Min f, = Cp/C}/>,
S00(z',2"®) < 550(2%, 2", thenz! ~cheby Z°. s.t. Cp = 1.05, Re = 1.29 x 105, M = 0.08.

Unlike some distance metrics, the achievement functi@bijectivef; represents the inverse of the glider’s gliding ratio,
(Eq. 4) allows aMoOEA to find points in problems with whereasf; represents the sink rate. Both objectives are impor-
nonconvex Pareto fronts. In order to incorporate the Chadys tant performance measures for this aerodynamic optinoizati
relation into the two previously mentionedoeas we only problem.Cp andCy, are the drag and lift coefficients. Each



T . . . . TABLE |
objective is evaluated at different prescribed flight c@iods,  parameTER RANGES FOR THEPARSECAIRFOIL REPRESENTATION FOR

given in terms of Mach and Reynolds numbers. The aim  PROBLEMSA720 (2AND 3 0BJS) AND NLF0416 (60BJS).
of solving thismop, is to find a better airfoil shape, which

i i A720 NLF0416
improves a reference deS|gn. . Variable Lower Upper Lower Upper

2) Geometry parameterizationin the present case study,——_~ 0.0085 0.0126 0.0055 00215
a modifiedPARSEC airfoil representation [15] is used. Fig. 2 7, 0.0020 0.0040 0.0055 0.0215
illustrates the 12 basic parameters used for this represent Qe 7.0000 10.0000 -2.0000 21.0000
e, | Tie, leading edge radius for upper/lower surfaces, [re 10.0000 14.0000 1.0000 15.0000

. . . Zte -0.0060 -0.0030 -0.0200 0.0200
Xup/Xio location of maximum thickness for upper/lower AZie 0.0025 00050 0.0000 0.0000

surfaces, Zyp/Zi, maximum thickness for upper/lower Xup 04100 0.4600 0.2875 0.5345
surfaces,Z,qup/Zz210 Curvature for upper/lower surfaces, at 2z, 0.1100 0.1300 0.0880 0.1195
maximum thickness locations7. trailing edge coordinate, Zzay, — -0.9000 -0.7000 -1.0300 -0.4200
AZ trailing edge thicknesspye trailing edge direction, Xio 0.2000 0.2600 0.3060 0.5075
and (e trailing edge wedge angle. TheaRSEC geometry Zio -0.0230 -0.0150 -0.0650 -0.0500

Zeayo 0.0500 0.2000 -0.0490 0.8205

representation adopted allows us to define independerdly th
leading edge radius, both for upper and lower surfaces (the
original representation uses the same value both for UPR&Her surfaces. These linear combinations are given by:
and lower surfaces). Thus, 12 variables are used in total.

Their allowable ranges are defined in Table I. 6 6
Zupper: Z anx(nil)/Qa Ziower = Z bnx(nil)/Q (6)

n=1 n=1

The coefficientsa,,, and b,, are determined as function of
the 12 geometric parameters by solving two systems of lin-
ear equations, one for each surface. It is important to note
that the geometric parametemup/rlem, Xup/ X0, Zup/Zio,
Zyww/ Zaemor Zrer DZre, e, and Bie are the actual design
variables in the optimization process. In turn, coefficdent
an, b, serve as intermediate variables for interpolating the
airfoil's coordinates, which are used by the Computational
Fig. 2. PARSECairfoil parametrization. Fluid Dynamics €FD) solver (we used the XfoicFD code
[16]) for its discretization process.

The PARSEC airfoil geometry representation uses a linear Next, we will show a simulation of the interactive process

- . i ing Nondominated Sorting Genetic Algorithm NSGA-II)
combination of shape functions for defining the upper arﬁth the Chebyshev relation based on a reference point. We

adopted the following parameters foISGA-Il; a crossover
Algorithm 1 Interactive technique using the Chebyshev preP—rObabIIIty of 09 a m_utatlon probab|llty O.f/n. (n S _the
erence relation. number of decision variables), and the distribution inglifer
Step T Ask the DM to specify the threshold r. crossover and mutation were se.t.as 15 and 20, respectively. A
If the DM has some knowledge about the problem, Population composed of 60 individuals was employed.
he/she can provide a reference point. Otherwise, the In all the experiments included in the paper we used
central-guided preference relation can be used to p = 10~° for Eq. 4. In the first step of the process, we used
Step 2 ?:fonverfge towards tthe ideal p‘.’éntdh 7=0.8 in order to get a global perspective of the entire
P a reterence point was providefhen Pareto front. As a reference point we employed the vector

Execute theMOEA using the Chebyshev relation ref ] .
with the reference point provided by the decision 2z'° = [0.007610,0.005236]. This reference point corresponds

elsgmker. to the evaluation of a reference airfoil shagwo [14] in both
Execute theMOEA using the central-guided Cheby- object_lves. Them_JSGA_-u was e_xecuted fo_r 15 generations. The
shev relation. resulting approximation set is shown in Fig. 3 (denoted by

Step 3 Ask the DM to define how many solutions triangles). As can be seen, the reference point was dondinate
of the current approximation should be shown. by almost all solutions in the approximation set. This Hlus
gﬂg‘;“’tﬂzg’;\ﬂfrgg tbhee ill:j]?grn?fe(;hgf Ctﬁgtrgh'r?gﬁesjggl' trates how the relation is able to correctly compare sahstio

better than the reference point provided. On the other hand,

point in order to decide the new aspiration levels. o
Step 4 If theDM is satisfied with some solution of the current  du€ the nature of the objective space of the problem, only 25

set, then solutions, from the total of 60, are nondominated. Theesfor
I STOP. in this case, the clustering technique to reduce the sizheof t
else

approximation set was not needed.

Go toStep 1 Since the initial reference point was improved, we decided
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task is to approximate the entire Pareto front, some functio
evaluations are used to approximate regions outside therreg
of interest. These are clearly different tasks, and theeefa
fair performance comparison is not possible. Nonethelgss,

sl [ o Lmeton? want to emphasize the computational savings of using an inte
. | v n: . .. .
ol | v o Reference points active approach over am posterioriapproach, specially when
- 1, . . . . .
\‘ VY e the function evaluations are expensive in termspf time.
5F .
. 2
assl /'} ) .\ Ty B. Airfoil Shape Problem with 3 Objectives
2 %Ry - . .y . . . .
aof 2™ eV ¥vy Here, we will evaluate the interactive method using two

4.85

airfoil shape optimization problems with 3 and 6 objectjves

f x10°

respectively. This time, we will simulate them using the
Chebyshev achievement function. Specifically, at eachdnte
tion point, the new reference point will be the solution ie th
currentP Fapprox With the best achievement value (which is to
be minimized). For the simulation of the 3-objective prable
we used 4 interaction points with thev during the search,
and for the 6-objective problem we used 3 interaction points
The parameters at each interaction point are shown in Table |
The initial threshold for both problems was setrte= 0.8.

Simulation of the interactive method.

Fig. 3.

0.12

01

0.08

0.06

0.04r TABLE I

PARAMETER VALUES AT EACH INTERACTION POINT.
0.02 1
Problem Int. 1 Int.2 Int. 3 Int. 4
0 3-0bj Gen 15 35 55 80
0.5 0.2 0.1 0.025

~0.02 : _ _ : 6-0bj Gen 15 35 55 -
x T 0.43 0.18 0.025 -

Fig. 4. Airfoil of the most preferred solution from the simtibn of the

interactive method. In order to evaluate the performance of the interactive

method, for each run, the best achievement value of the final
P Fapproxwas measured. As a reference, we also computed the
to choose one solution of the approximation set as the néast achievement value obtained R$GA-II with no prefer-
reference point, namely, the nearest solution to the ideiitp ences. The 3-objective problem is a variant of the problem
(diamond). For the next execution, the region of interest wa720 in which the first and third objectives are objectivgs
reduced tar = 0.2. Similar to the previousm interaction, the and f, of the 2-objective problem of the previous section. The
next reference point was the nearest solutiof?&f,proxto the  second objective is defined as
ideal point. In order to obtain a final approximation to selec « Min f, = Cp/Cy,
the most preferred solution, the region of interest waseedu s.t. Cr, = 0.86, Re = 1.63 x 10%, M = 0.1.
to a small region using” = 0.05. This time NSGAl was  The bounds for the variables are the same described
executed for 40 generations. At this stage only 8 soluticB®W i, Table |. For this problem, we used the vector
obtained and the most preferred solution for the was the [9.007610,0.005895,0.005236] as our initial reference

one with objective valuef).006754,0.004957]. Fig. 4 shows noint, The results for the 3-objective problem are shown in
the airfoils corresponding to the initial reference pointldo Tapje |11. As can be seen, both approaches yield achievement
the most preferred solution. In this example, an improvemepyjyes results less than zero, which means that the referenc
of approximately 11.24% and of 5.32% was attained for theint was improved in all cases. In addition, as expectesl, th
first and second objective, respectively. From a practioatp jnteractive approach obtained better results than theoagpr
of view, these improvements are quite significant in indre®s \ith no preferences articulated. The solution with the best
the aerodynamic efficiency of the sailplane. achievement value was[0.006772,0.005244,0.004960)].

Fig. 3 also shows thé’ Fpprox achieved bNSGA-Il with N0 Objectives were improved by 11.01%, 11.04% and 5.27%,

preferences during the same number of generations than iajpectively. The airfoil of this solution is presented ig.F,
used in the interactive method. As one can expect, the firabng with that of the reference point.

approximation set obtained articulating preferences dsen o ) o

to the ideal point than the one generated with no preferences Airfoil Shape Problem with 6 Objectives

This can be explained by the fact that the incorporation The 6-objective problem was taken from [17]. The goal of
of preferences concentrates all the function evaluatians this problem is to optimize the airfoil shape of a low-speed
improve the region of interest. On the other hand, when tlmanned aerial vehicle to cover a range of different flight



TABLE Il
STATISTICS OF THE ACHIEVEMENT FUNCTION VALUES OBTAINED WITH
PREFERENCES AND WITHOUT THEM IN THE3-OBJECTIVE PROBLEM

TABLE V
STATISTICS OF THE ACHIEVEMENT FUNCTION VALUES OBTAINED WITH
PREFERENCES AND WITHOUT THEM IN THES-OBJECTIVE PROBLEM

Best Median  Worst Std. dev. Best Median Worst  Std. dev.
Preferences -0.2196 -0.2111 -0.1982  0.0047 Preferences  0.0047 0.0473 0.0914 0.0183
No prefs. -0.2183 -0.2020 -0.1816 0.0101 No prefs. 0.0157 0.2506 0.4787 0.1480

0.12

0.1

0.081

Best achievement airfoil
— — = NLF0416 airfoil

Best achievement airfoil
= = — Reference airfoil

Fig. 5. Airfoil with the best achievement value and the refiee airfoil for Fig- 6. Airfoil with the best achievement value and the refizee airfoil for
the problem with 3 objectives. the problem with 6 objectives.

take-off and cruise). The 6 objectives & &Cenarios, one with several local Pareto fronts, and anothe
pyith only the global Pareto front. The natural hypothesis is
that the convergence of moOEA will be improved as theol
fecomes smaller since the resources are always concentrate

in a smaller region. Nonetheless, in problems with many
[0.00523,0.00595, 0.01048, 0.33373, 0.90135, 2.93083]. local Pareto fronts the improvement in convergence is not so

The results presented in Table V show that for this probleﬁYiO:entl‘ Thedreasoningoils that a sez;lrch ina c_o?]st{)ainedrregi
the reference point was not improved by any of the twig &S0 €SS |verske: an ,asfahreTu t, I““EA m'% t be more
approaches. However, the interactive approach found rbet?éonﬁ_ to gelt stuck in ontla 0 é i oca bli’areto rondts. To carry
airfoils than the those of the approach without preferencé%ljtt IS analysis we employe the pro enTiz2 andpTLzs.

The solution corresponding with the best achieveme-rqpe difference between these two problems is that the latter
y )

value found by the interactive approach is the foIIowingP.f"15 (3"~ 1) local P_areto fronts, Wheré is the number of

[0.004962, 0.007022, 0.007275, 0.346273, 0.920056, 2.929393]. distance-related variabfesn these experiments the size of the

This solution improves objectiveg, f5 and fs by an amount ROI was varied according to = 1.0, 0.4, 0.2, 0.025. It is worth

of 5.12%, 30.58% and 0.04%, respectively. The airfoll o:%thinOting that the originaliSGA-l is obtaine_d w_herr = 1.0. For
solution is presented in Fig. 6. Since this problem has Ioc%l"fmh problem, we used 3, 6 and 9 objectives. For buihs
= 10. In order to assess convergence, we adopted

Pareto fronts, we believe that this feature avoids impr(g)viP(Ve usede

the reference point. For this reason, in the next section W generational distance:f). For bothotLz problems we
ed the exaat'D, namelyGD = =

Vi N2 _
analyze the relation of the convergence and the size of t#h m 2acPF ijl(zg) L,
ROI in the presence of several local Pareto fronts. wheremn = |PF|. The results presented are the average over
50 runs of eacNsGA-II configuration.
Regarding the problemTLz2 we can clearly see in Fig. 7

In this section we investigate the effect of the size of thté1at the generational distance is greatly improved when the

. region of interest is small. Furthermore, as we expect, st b
ROI on the convergence of MOEA. We study two different : . . :
GD value is obtained whem = 0.025. Another interesting

result is the deterioration a§sGA-II's search ability when the
number of objectives is increased. As pointed out elsewhere
the reason of that deterioration is the generation of donuea

condition (e.g.,
minimized are described in Table IV, and the bounds for t
variables are presented in Table I.

As a reference point we employed a representative p
file of the NLF series, namely thevLrFo41e [18], z'®' =

D. Impact of Local Pareto Fronts on Convergence

TABLE IV
OBJECTIVES OF THE AIRFOIL DESIGN PROBLEM WITH6 OBJECTIVES

Objective Comments resistant solutions coupled with some mechanismiggA-II.
fi=Cy C; =0.5,Re=4 x 105,Ma = 0.3 For instance, since dominance resistant solution arelulisd

fo= Cd/Cf/2 Re=4 x 10%,Ma = 0.3 along large areas of the objective function space, theyivece
f3=Chy, Re=4x 10°,Ma=0.3 much better crowding values than nondominated solutions
fa=1/C2u Re=4 x 10, Ma = 0.3

fs = 1/012 a=5%Re=2x10°Ma=0.15 IDistance-related variables control the progress towardsPareto optimal

f6 = 1/50157-

o =>5°Re=2x 10%, Ma=0.15

front.



near the Pareto front. Thus, dominance resistant soluéoms in convergence (in terms of generational distance). Inresht
ranked in the first nondominated layer. in the problem with several local Pareto fronts, the conver-
The results ofzD at the last generation (see Fig. 8) reveajence does not always improve when t@ is reduced. As
that NSGA-Il with 7 < 1 was able to converge very closethe ROI gets smaller, at some point, the convergence does not
to the Pareto front even with 9 objectives. This means thiatprove anymore. In fact, in some cases, a marginally better
the incorporation of preferences also helps to overcome tb@nvergence was observed usingaof moderate size instead
difficulties posed by many-objective problems. of a very small one. As future work we want to apply the
With respect tobTLz3, we can observe in Fig. 9 thatinteractive method in a10EA that uses different evolutionary
NSGA-Il with 7 < 1 still maintains a tendency to convergeoperators, for example, those of differential evolution.
However, the local Pareto fronts causes that none of the thre
configurations withr < 1 show a clear advantage over the ACKNOWLEDGMENTS
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