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Abstract—In this paper, we assess the convenience of applying
a previously proposed interactive method to solve three aero-
dynamic airfoil shape optimization problems with 2, 3, and
6 objectives, respectively. The expensive simulations required
to evaluate the objective functions makes these problems an
excellent example in which the use of interactive methods is
very advantageous. First, the search can be focused on the
decision maker’s region of interest, saving this way, valuable
function evaluations. Second, the preference relation used in the
interactive method helps to deal with a large number of objectives
since it is able to rank incomparable nondominated solutions. The
experimental evaluation reveals that in the three problemsstud-
ied, the interactive method achieved a better final solutionthan a
traditional a posteriori method with no preferences. Nevertheless,
in the problem with 6 objectives, only 3 of them were improved.
A possible explanation for this is that local optima become harder
to overcome when the size of the region of interest is very
small. Additional experiments confirmed that the convergence
is deteriorated if very small regions of interest are used.

Index Terms—Preference incorporation, many-objective opti-
mization, airfoil shape optimization problems.

I. I NTRODUCTION

Solving a Multiobjective Optimization Problem (MOP) in-
volves two main tasks: search and decision making (pref-
erence articulation). Unlike single-objective optimization, in
multiobjective optimization, instead of a single optimum,there
is usually a set of optimal solutions that represent different
degrees of trade-off among the objectives. This set of solutions
is known as thePareto optimal set. Thus, a possible procedure
to solve aMOP is to obtain an approximation of the Pareto
optimal set, and then let a decision maker (DM) to select the
most preferred solution from the approximation set. This is,
however, not the only way to incorporate user’s preferences.
There are several other methodologies for incorporating pref-
erences from theDM into the search process. Depending on
the moment at which theDM is required to provide preference
information, three approaches to solve aMOP [1] are defined:

1) A priori approaches. The preference information is
incorporated before the search, and then, the search is
concentrated on the region of interest defined by the
preferences.

2) Interactive approaches. The DM is iteratively asked to
proportionate his preferences during the search in order
to progressively refine the region of interest.

3) A posteriori approaches. The preference information is
incorporated after a representative sample of the Pareto
set has been obtained.

Traditionally, most Multiobjective Evolutionary Algorithms
(MOEAs) have been designed asa posteriori approaches. In
other words, their task is to obtain an approximation of the
entire Pareto front (see e.g., [2], [3], [4]).

Besides providing a sample of the Pareto front to select a
final solution, knowing the Pareto front might be insightful
for other reasons. For example, theDM can learn about the
nature of the trade-offs among the objectives of the problem
(e.g., disconnectedness, convexity, knees) or discover incon-
sistencies of the model with respect to the real problem.

Nonetheless, approximating the whole Pareto front might
not be convenient in all cases. For instance, in problems with
expensive function evaluations, introducing preference infor-
mation during the search can avoid the waste of function evalu-
ations in regions in which theDM is definitively not interested.
Additionally, many real world problems aim at improving an
existing design which can be used as a reference design point.
The incorporation of preferences can also help to deal with
multiobjective optimization problems with a high number of
objectives (many-objective problems). One of the difficulties
of these problems is that the number of points required to accu-
rately represent a Pareto front increases exponentially with the
number of objectives [5]. This introduces a challenge for the
decision maker, since the selection of one solution from among
a huge number of solutions is evidently a very difficult task.

In this paper, we evaluate the performance of a previously
proposed interactive method [6], which is applied to a real
world problem. The main component of the interactive method
is a preference relation based on an achievement scalarizing
function [7]. Regarding the real world application, we adopt
three aerodynamic airfoil shape optimization problems. As
we will see later on, the experimental results show that,
in general, the interactive method achieves better results
than a traditionala posteriori approach. However, in our
experiments, we found out that, when using an aerodynamic
problem with 6 objectives, only 3 of them were improved.
We hypothesize that this was due to the presence of several
local Pareto fronts in that problem. In order to validate our
hypothesis, we carried out some additional experiments to



analyze the effect of local Pareto fronts in the convergence
of the interactive method adopted in our work.

The remainder of this paper is organized as follows. The
next section presents some basic concepts and the notation
adopted throughout the paper. Section III introduces a new
preference relation to incorporate preferences and its integra-
tion in an interactive method. Section IV presents the experi-
mental results of the interactive method to solve three airfoil
shape optimization problems. Finally, in Section V we present
our conclusions and some potential paths for future research.

II. BASIC CONCEPTS ANDNOTATION

In this section, we will introduce the concepts and notation
used throughout the rest of the paper.

A. Multiobjective Optimization Problems

Definition 1: A MOP is defined as:

Minimize f(x) = [f1(x), f2(x), . . . , fk(x)]T

subject to x ∈ X .
(1)

The vectorx ∈ Rn is formed by n decision variables
representing the quantities for which values are to be chosen
in the optimization problem. Thefeasible setX ⊆ Rn is
implicitly determined by a set of equality and inequality
constraints. The vector functionf : X → Rk is composed by
k ≥ 2 scalarobjective functionsfi : X → R (i = 1, . . . , k). In
multiobjective optimization, the setsRn andRk are known as
decision variable spaceandobjective function space, respec-
tively. The image ofX under the functionf is a subset of the
objective function space denoted byZ = f(X ) and referred
to as thefeasible set in the objective function space.

In Rk there is no canonical order, and thus, we need weaker
definitions of order to compare vectors. In multiobjective
optimization, thePareto dominance relationis usually adopted
to compare vectors inRk.

Definition 2: We say that a vectorz1 dominates vectorz2,
denoted byz1 ≺par z

2, if and only if:

∀i ∈ {1, . . . , k} : z1
i ≤ z2

i and ∃i ∈ {1, . . . , k} : z1
i < z2

i .

Definition 3: A solution x∗ ∈ X is Pareto optimal if there
does not exist another solutionx ∈ X such thatf(x) ≺par

f(x∗).
Definition 4: The Pareto optimal set,Popt, is defined as:

Popt = {x ∈ X | ∄y ∈ X : f(y) ≺par f(x)}. (2)

Definition 5: For a Pareto optimal set,Popt, the Pareto front,
PFopt, is defined as:

PFopt = {z = (f1(x), . . . , fk(x)) | x ∈ Popt}. (3)

The goal ofa posterioriMOEAs is to find an approximation
set,PFapprox, of the Pareto optimal front.

In interactive optimization methods it is useful to know
the lower and upper bounds of the Pareto front. The
ideal point represents the lower bound and is defined by
z⋆

i = minz∈Z(zi) for all i = 1, . . . , k. In turn, the upper
bound is defined by thenadir point, which is given by

znad
i = maxz∈PFopt(zi) for all i = 1, . . . , k. Another useful

point is one strictly better thanz⋆
i , i.e., the one calledutopian

point, defined byz⋆⋆
i = z⋆

i − ǫ ∀i = 1, . . . , k, whereǫ > 0 is
a small scalar.

B. Achievement Scalarizing Functions

The proposed preference relation is based on the achieve-
ment scalarizing function approach proposed by Wierzbi-
cki [7]. An achievement scalarizing function uses a reference
point to captureDM’s preference information in the form of
desired values for each objective function.

Definition 6: An achievement scalarizing function (or a-
chievement function for short) is a parameterized function
s(z, zref) : Rk → R, wherezref ∈ Rk is a reference point
representing the decision maker’s aspiration levels.

Thus, the multiobjective problem is transformed into
minz∈Z s(z, zref). A common achievement function, based on
the Chebyshev distance [8], [9], is the weighted achievement
function.

Definition 7: The weighted achievement function is defined
by

s∞(z, zref) = max
i=1,...,k

{λi(zi −zref
i )}+ρ

k∑

i=1

λi(zi −zref
i ), (4)

wherezref is a reference point,λ = [λ1, . . . , λk] is a vector
of weights such that∀i λi ≥ 0 and, for at least onei, λi > 0,
andρ > 0 is an augmentation coefficient sufficiently small.
We should note that, unlike the Chebyshev distance, the
achievement function does not use the absolute value in
the first term. This small difference allows the achievement
function to correctly assess solutions that improve the
reference point.

In most reference point methods, the weight vector,λ, does
not define preferences, but is mainly used for normalizing each
objective function [10]. Usually, the weights are set as

λi =
1

znad
i − z⋆⋆

i

, for all i = 1, . . . , k. (5)

It is important to mention that theDM can provide both
feasible and infeasible reference points, or more precisely,
zref ∈ Z+Rk

+ or zref /∈ Z+Rk
+, whereRk

+ is the nonnegative
orthant ofRk. On the one hand, ifzref ∈ Z + Rk

+, then the
minimization of Eq. 4 subject toz ∈ Z should represent the
maximization of the surplusz−zref ∈ Rk. On the other hand,
if zref /∈ Z + Rk

+, the minimization of Eq. 4 subject toz ∈ Z
minimizes the distance between the reference point and the
Pareto optimal set.

III. G UIDING THE SEARCH USING AN ACHIEVEMENT

FUNCTION

In this section, we present the Chebyshev preference
relation proposed in [6]. This preference relation, based on
the Chebyshev achievement function (see Eq. 4), provides
a simple way to integrate preferences into different types
of MOEAs. Further, we show an interactive procedure for
multi- and many-objective optimization problems in order to



redefine a Region of Interest (ROI) iteratively, and eventually
select a single preferred solution. Similar approaches to the
one proposed here can be found in the specialized literature
(see e.g., [11], [12], [13]). In a previous work [6] we discuss
the differences of some of those approaches with respect to
the Chebyshev preference relation.

A. The Chebyshev Preference Relation

The basic idea of the Chebyshev preference relation is to
combine the Pareto dominance relation and an achievement
function to compare solutions in objective function space.
First, the achievement function value,s∞(z, zref), is computed
for each solutionz. Then, the objective space is divided into
two regions. One region defines the Region of Interest and
contains those solutions with an achievement value less or
equal tosmin + δ, wheresmin = minz∈Z s∞(z, zref), andδ is
a threshold that determines the size of theROI. Fig. 1 shows the
ROI defined by means of the achievement function. Solutions
in this region are compared using the usual Pareto dominance
relation, while solutions outside of theROI are compared using
their achievement function value.

Fig. 1. Nondominated solutions with respect to the Chebyshev relation.

Formally, the Chebyshev preference relation is defined as
follows.

Definition 8: A solutionz1 is preferred to solutionz2 with
respect to the Chebyshev relation (z1 ≺cheby z2), if and only
if:

1) s∞(z1, zref) < s∞(z2, zref) ∧
{z1 /∈ R(zref, δ) ∨ z2 /∈ R(zref, δ)}, or,

2) z1 �par z
2 ∧ {z1, z2 ∈ R(zref, δ)},

whereR(zref, δ) = {z | s∞(z, zref) ≤ smin + δ} is the Region
of Interest with respect to the vector of aspiration levelszref.

As an illustration of the preference relation, consider solu-
tions z1 andz2 presented in Fig. 1. Sincez2 /∈ R(zref, δ) and
s∞(z1, zref) < s∞(z2, zref), thenz1 ≺chebyz

2.
Unlike some distance metrics, the achievement function

(Eq. 4) allows a MOEA to find points in problems with
nonconvex Pareto fronts. In order to incorporate the Chebyshev
relation into the two previously mentionedMOEAs we only

have to change the usual Pareto dominance checking procedure
by the function that implements the new relation.

The thresholdδ can be adjusted in terms of the proportion
of the current range of the achievement function (i.e., the
difference between the minimum and maximum achievement
with respect to a given solution setP ). If τ ∈ [0, 1] is
that proportion, thenδ = τ · (smax − smin), wheresmax =
maxz∈P s∞(z, zref) andsmin = minz∈P s∞(z, zref).

In [6] was also proposed a variant of the Chebyshev relation
that uses an approximation of the ideal point as reference point
in definition 8. This variant is called thecentral-guided Cheby-
shev relationsince it focuses the search towards the ideal point.

B. An Interactive Method Using the Chebyshev Relation

When the DM does not have enough knowledge about
the problem to provide a reference point, the central-guided
Chebyshev relation can be used to obtain a first set of
solutions. However, having a previous best known solution
of the given problem is common in real-world problems. In
that case, the previous solution can serve as a good reference
point. Then, the process can follow the usual steps of the
interactive techniques. That is, at each iteration theDM must
provide new aspiration levels in the form of a reference point.
Additionally, the DM can change the value of the threshold
τ to control the size of the set of solutions. For example,
the user can setτ = 0.5 in order to obtain about half of
the Pareto front around the reference point. In order to ease
the visualization of the solutions, a technique for truncating
the approximation set can be used. For example, a clustering
technique can be employed, such as the one used in Strength
Pareto Evolutionary Algorithm 2 (SPEA2) [3], or a technique
similar to the archiving methods. Therefore, the interactive
process requires an additional parameter indicating the number
of solutions to visualize. This interactive process continues
until the DM is satisfied with a solution of the current set of
solutions. Algorithm 1 shows the whole interactive process.

IV. EXPERIMENTAL STUDY

A. Airfoil Shape Problem with 2 Objectives

In order to illustrate the interactive method presented in the
previous section we will use a multiobjective aerodynamic air-
foil shape optimization problem adapted from [14], and having
2 objectives. The goal is to optimize the shape of a standard-
class glider, aiming at obtaining optimum performance for a
sailplane.

1) Objective functions:Two conflicting objective functions
are defined in terms of a sailplane average weight and oper-
ating conditions [14]:

1) Min f1 = CD/CL,
s.t. CL = 0.63, Re = 2.04 × 106, M = 0.12.

2) Min f2 = CD/C
3/2
L ,

s.t. CL = 1.05, Re = 1.29 × 106, M = 0.08.
Objectivef1 represents the inverse of the glider’s gliding ratio,
whereasf2 represents the sink rate. Both objectives are impor-
tant performance measures for this aerodynamic optimization
problem.CD andCL are the drag and lift coefficients. Each



objective is evaluated at different prescribed flight conditions,
given in terms of Mach and Reynolds numbers. The aim
of solving this MOP, is to find a better airfoil shape, which
improves a reference design.

2) Geometry parameterization:In the present case study,
a modifiedPARSEC airfoil representation [15] is used. Fig. 2
illustrates the 12 basic parameters used for this representation:
rleup / rlelo leading edge radius for upper/lower surfaces,
Xup/Xlo location of maximum thickness for upper/lower
surfaces, Zup/Zlo maximum thickness for upper/lower
surfaces,Zxxup/Zxxlo curvature for upper/lower surfaces, at
maximum thickness locations,Zte trailing edge coordinate,
∆Zte trailing edge thickness,αte trailing edge direction,
and βte trailing edge wedge angle. ThePARSEC geometry
representation adopted allows us to define independently the
leading edge radius, both for upper and lower surfaces (the
original representation uses the same value both for upper
and lower surfaces). Thus, 12 variables are used in total.
Their allowable ranges are defined in Table I.

Fig. 2. PARSECairfoil parametrization.

The PARSEC airfoil geometry representation uses a linear
combination of shape functions for defining the upper and

Algorithm 1 Interactive technique using the Chebyshev pref-
erence relation.

Step 1: Ask the DM to specify the threshold τ .
If the DM has some knowledge about the problem,
he/she can provide a reference point. Otherwise, the
central-guided preference relation can be used to
converge towards the ideal point.

Step 2: If a reference point was provided,then
Execute theMOEA using the Chebyshev relation
with the reference point provided by the decision
maker.

else
Execute theMOEA using the central-guided Cheby-
shev relation.

Step 3: Ask the DM to define how many solutions
of the current approximation should be shown.
Additionally, from the use of the central-guided re-
lation the DM can be informed of the current ideal
point in order to decide the new aspiration levels.

Step 4: If theDM is satisfied with some solution of the current
set, then

STOP.
else

Go to Step 1.

TABLE I
PARAMETER RANGES FOR THEPARSECAIRFOIL REPRESENTATION FOR

PROBLEMSA720 (2AND 3 OBJS.) AND NLF0416 (6OBJS.).

A720 NLF0416
Variable Lower Upper Lower Upper

rleup 0.0085 0.0126 0.0055 0.0215
rlelo 0.0020 0.0040 0.0055 0.0215
αte 7.0000 10.0000 -2.0000 21.0000
βte 10.0000 14.0000 1.0000 15.0000
Zte -0.0060 -0.0030 -0.0200 0.0200
∆Zte 0.0025 0.0050 0.0000 0.0000
Xup 0.4100 0.4600 0.2875 0.5345
Zup 0.1100 0.1300 0.0880 0.1195
Zxxup -0.9000 -0.7000 -1.0300 -0.4200
Xlo 0.2000 0.2600 0.3060 0.5075
Zlo -0.0230 -0.0150 -0.0650 -0.0500
Zxxlo 0.0500 0.2000 -0.0490 0.8205

lower surfaces. These linear combinations are given by:

Zupper=

6∑

n=1

anx(n−1)/2, Zlower =

6∑

n=1

bnx(n−1)/2 (6)

The coefficientsan, and bn are determined as function of
the 12 geometric parameters by solving two systems of lin-
ear equations, one for each surface. It is important to note
that the geometric parametersrleup/rlelo , Xup/Xlo, Zup/Zlo,
Zxxup/Zxxlo, Zte, ∆Zte, αte, and βte are the actual design
variables in the optimization process. In turn, coefficients
an, bn serve as intermediate variables for interpolating the
airfoil’s coordinates, which are used by the Computational
Fluid Dynamics (CFD) solver (we used the XfoilCFD code
[16]) for its discretization process.

Next, we will show a simulation of the interactive process
using Nondominated Sorting Genetic Algorithm II (NSGA-II)
with the Chebyshev relation based on a reference point. We
adopted the following parameters forNSGA-II: a crossover
probability of 0.9, a mutation probability of1/n (n is the
number of decision variables), and the distribution indices for
crossover and mutation were set as 15 and 20, respectively. A
population composed of 60 individuals was employed.

In all the experiments included in the paper we used
ρ = 10−5 for Eq. 4. In the first step of the process, we used
τ = 0.8 in order to get a global perspective of the entire
Pareto front. As a reference point we employed the vector
zref = [0.007610, 0.005236]. This reference point corresponds
to the evaluation of a reference airfoil shapeA720 [14] in both
objectives. Then,NSGA-II was executed for 15 generations. The
resulting approximation set is shown in Fig. 3 (denoted by
triangles). As can be seen, the reference point was dominated
by almost all solutions in the approximation set. This illus-
trates how the relation is able to correctly compare solutions
better than the reference point provided. On the other hand,
due the nature of the objective space of the problem, only 25
solutions, from the total of 60, are nondominated. Therefore,
in this case, the clustering technique to reduce the size of the
approximation set was not needed.

Since the initial reference point was improved, we decided



Fig. 3. Simulation of the interactive method.

Fig. 4. Airfoil of the most preferred solution from the simulation of the
interactive method.

to choose one solution of the approximation set as the next
reference point, namely, the nearest solution to the ideal point
(diamond). For the next execution, the region of interest was
reduced toτ = 0.2. Similar to the previousDM interaction, the
next reference point was the nearest solution ofPFapprox to the
ideal point. In order to obtain a final approximation to select
the most preferred solution, the region of interest was reduced
to a small region usingτ = 0.05. This time NSGA-II was
executed for 40 generations. At this stage only 8 solutions were
obtained and the most preferred solution for theDM was the
one with objective values[0.006754, 0.004957]. Fig. 4 shows
the airfoils corresponding to the initial reference point and to
the most preferred solution. In this example, an improvement
of approximately 11.24% and of 5.32% was attained for the
first and second objective, respectively. From a practical point
of view, these improvements are quite significant in increasing
the aerodynamic efficiency of the sailplane.

Fig. 3 also shows thePFapprox achieved byNSGA-II with no
preferences during the same number of generations than that
used in the interactive method. As one can expect, the final
approximation set obtained articulating preferences is closer
to the ideal point than the one generated with no preferences.
This can be explained by the fact that the incorporation
of preferences concentrates all the function evaluations to
improve the region of interest. On the other hand, when the

task is to approximate the entire Pareto front, some function
evaluations are used to approximate regions outside the region
of interest. These are clearly different tasks, and therefore, a
fair performance comparison is not possible. Nonetheless,we
want to emphasize the computational savings of using an inter-
active approach over ana posterioriapproach, specially when
the function evaluations are expensive in terms ofCPU time.

B. Airfoil Shape Problem with 3 Objectives

Here, we will evaluate the interactive method using two
airfoil shape optimization problems with 3 and 6 objectives,
respectively. This time, we will simulate theDM using the
Chebyshev achievement function. Specifically, at each interac-
tion point, the new reference point will be the solution in the
currentPFapprox with the best achievement value (which is to
be minimized). For the simulation of the 3-objective problem
we used 4 interaction points with theDM during the search,
and for the 6-objective problem we used 3 interaction points.
The parameters at each interaction point are shown in Table II.
The initial threshold for both problems was set toτ = 0.8.

TABLE II
PARAMETER VALUES AT EACH INTERACTION POINT.

Problem Int. 1 Int. 2 Int. 3 Int. 4

3-obj
Gen 15 35 55 80
τ 0.5 0.2 0.1 0.025

6-obj Gen 15 35 55 –
τ 0.43 0.18 0.025 –

In order to evaluate the performance of the interactive
method, for each run, the best achievement value of the final
PFapprox was measured. As a reference, we also computed the
best achievement value obtained byNSGA-II with no prefer-
ences. The 3-objective problem is a variant of the problem
A720 in which the first and third objectives are objectivesf1

andf2 of the 2-objective problem of the previous section. The
second objective is defined as

• Min f2 = CD/CL,
s.t. CL = 0.86, Re = 1.63 × 106, M = 0.1.

The bounds for the variables are the same described
in Table I. For this problem, we used the vector
[0.007610, 0.005895, 0.005236] as our initial reference
point. The results for the 3-objective problem are shown in
Table III. As can be seen, both approaches yield achievement
values results less than zero, which means that the reference
point was improved in all cases. In addition, as expected, the
interactive approach obtained better results than the approach
with no preferences articulated. The solution with the best
achievement value was [0.006772, 0.005244, 0.004960].
Objectives were improved by 11.01%, 11.04% and 5.27%,
respectively. The airfoil of this solution is presented in Fig. 5,
along with that of the reference point.

C. Airfoil Shape Problem with 6 Objectives

The 6-objective problem was taken from [17]. The goal of
this problem is to optimize the airfoil shape of a low-speed
unmanned aerial vehicle to cover a range of different flight



TABLE III
STATISTICS OF THE ACHIEVEMENT FUNCTION VALUES OBTAINED WITH

PREFERENCES AND WITHOUT THEM IN THE3-OBJECTIVE PROBLEM.

Best Median Worst Std. dev.
Preferences -0.2196 -0.2111 -0.1982 0.0047
No prefs. -0.2183 -0.2020 -0.1816 0.0101

Fig. 5. Airfoil with the best achievement value and the reference airfoil for
the problem with 3 objectives.

condition (e.g., take-off and cruise). The 6 objectives to be
minimized are described in Table IV, and the bounds for the
variables are presented in Table I.

As a reference point we employed a representative pro-
file of the NLF series, namely theNLF0416 [18], zref =
[0.00523, 0.00595, 0.01048, 0.33373, 0.90135, 2.93083].

The results presented in Table V show that for this problem
the reference point was not improved by any of the two
approaches. However, the interactive approach found better
airfoils than the those of the approach without preferences.
The solution corresponding with the best achievement
value found by the interactive approach is the following:
[0.004962, 0.007022, 0.007275, 0.346273, 0.920056, 2.929393].
This solution improves objectivesf1, f3 andf6 by an amount
of 5.12%, 30.58% and 0.04%, respectively. The airfoil of this
solution is presented in Fig. 6. Since this problem has local
Pareto fronts, we believe that this feature avoids improving
the reference point. For this reason, in the next section we
analyze the relation of the convergence and the size of the
ROI in the presence of several local Pareto fronts.

D. Impact of Local Pareto Fronts on Convergence

In this section we investigate the effect of the size of the
ROI on the convergence of aMOEA. We study two different

TABLE IV
OBJECTIVES OF THE AIRFOIL DESIGN PROBLEM WITH6 OBJECTIVES.

Objective Comments
f1 = Cd Cl = 0.5, Re= 4× 106, Ma = 0.3

f2 = Cd/C
3/2

l
Re= 4× 106, Ma = 0.3

f3 = C2
m0

Re= 4× 10
6, Ma = 0.3

f4 = 1/C2
max Re= 4× 106, Ma = 0.3

f5 = 1/C2

l
α = 5◦, Re= 2× 106, Ma = 0.15

f6 = 1/xtr α = 5◦, Re= 2× 106, Ma = 0.15

TABLE V
STATISTICS OF THE ACHIEVEMENT FUNCTION VALUES OBTAINED WITH

PREFERENCES AND WITHOUT THEM IN THE6-OBJECTIVE PROBLEM.

Best Median Worst Std. dev.
Preferences 0.0047 0.0473 0.0914 0.0183
No prefs. 0.0157 0.2506 0.4787 0.1480

Fig. 6. Airfoil with the best achievement value and the reference airfoil for
the problem with 6 objectives.

scenarios, one with several local Pareto fronts, and another
with only the global Pareto front. The natural hypothesis is
that the convergence of aMOEA will be improved as theROI

becomes smaller since the resources are always concentrated
in a smaller region. Nonetheless, in problems with many
local Pareto fronts the improvement in convergence is not so
evident. The reasoning is that a search in a constrained region
is also less diverse, and, as a result, theMOEA might be more
prone to get stuck in one of the local Pareto fronts. To carry
out this analysis we employed the problemsDTLZ2 andDTLZ3.
The difference between these two problems is that the latter
has (3ℓ − 1) local Pareto fronts, whereℓ is the number of
distance-related variables1. In these experiments the size of the
ROI was varied according toτ = 1.0, 0.4, 0.2, 0.025. It is worth
noting that the originalNSGA-II is obtained whenτ = 1.0. For
each problem, we used 3, 6 and 9 objectives. For bothMOPs
we usedℓ = 10. In order to assess convergence, we adopted
the generational distance (GD). For bothDTLZ problems we
used the exactGD, namelyGD = 1

m

∑
z∈PF

∑M
j=1(zj)

2 −1,
wherem = |PF |. The results presented are the average over
50 runs of eachNSGA-II configuration.

Regarding the problemDTLZ2 we can clearly see in Fig. 7
that the generational distance is greatly improved when the
region of interest is small. Furthermore, as we expect, the best
GD value is obtained whenτ = 0.025. Another interesting
result is the deterioration ofNSGA-II’s search ability when the
number of objectives is increased. As pointed out elsewhere,
the reason of that deterioration is the generation of dominance
resistant solutions coupled with some mechanism ofNSGA-II.
For instance, since dominance resistant solution are distributed
along large areas of the objective function space, they receive
much better crowding values than nondominated solutions

1Distance-related variables control the progress towards the Pareto optimal
front.



near the Pareto front. Thus, dominance resistant solutionsare
ranked in the first nondominated layer.

The results ofGD at the last generation (see Fig. 8) reveal
that NSGA-II with τ < 1 was able to converge very close
to the Pareto front even with 9 objectives. This means that
the incorporation of preferences also helps to overcome the
difficulties posed by many-objective problems.

With respect toDTLZ3, we can observe in Fig. 9 that
NSGA-II with τ < 1 still maintains a tendency to converge.
However, the local Pareto fronts causes that none of the three
configurations withτ < 1 show a clear advantage over the
others during the first half of the search. A possible explanation
is that for τ < 1, NSGA-II gets trapped in a local optimum
regardless of the size of the region of interest. In fact, for3
and 6 objectives (see Fig. 9) the configuration withτ = 0.2
converges faster than the one withτ = 0.025. In contrast,
after the first half of the search, the three configurations show
a convergence similar to that ofDTLZ2. That behavior can
be explained by the fact that once the local Pareto fronts
have been surpassed,NSGA-II can approach the global Pareto
front as inDTLZ2. The last local Pareto front ofDTLZ3 is an
sphere of radius 2, i.e., whenGD= 1, which perfectly matches
the point at which the convergence behavior changes (see the
dashed line in Fig. 9). The presence of outliers in the boxplots
(denoted by crosses above the boxplots) shown in Fig. 10, and
the height of the boxes reveal a wide variation ofGD. This is
due to the fact that in some runs, theNSGA-II was not able to
overcome the local Pareto fronts before the last generation, or
it did it, but until reaching the end of the search.

V. CONCLUSIONS ANDFUTURE WORK

In this paper, we applied an interactive optimization tech-
nique to solve three aerodynamic airfoil shape optimization
problems in order to assess its performance in real world
problems. The interactive technique is based on a preference
relation that incorporates the preferences of theDM by means
of a reference point. In order to evaluate the performance
of the interactive optimization technique we adoptedNSGA-II

as our search engine and compared its outcome using the
interactive technique (with preferences) against those using
the originala posterioriapproach (i.e., no preferences). First,
in the three airfoil shape optimization problems considered
in this study, the most preferred solution chosen by theDM

using the interactive method yields a better achievement value
than in the analogous case using thea posteriori approach.
Additionally, the reference points used in the problems with
2 and 3 objectives were dominated by the most preferred
solution attained. However, in the problem with 6 objectives
only three objectives of the reference solution were improved
by the solution selected by theDM. Since we suspected that this
result was due to the presence of local optima in the problem,
we carried out an analysis using two benchmark problems,
namely, one with several local Pareto fronts, and another one
with the Pareto optimal front only. The experimental results
reveal that in the problem with only one local Pareto front, a
decrease in the size of theROI always implies an improvement

in convergence (in terms of generational distance). In contrast,
in the problem with several local Pareto fronts, the conver-
gence does not always improve when theROI is reduced. As
the ROI gets smaller, at some point, the convergence does not
improve anymore. In fact, in some cases, a marginally better
convergence was observed using aROI of moderate size instead
of a very small one. As future work we want to apply the
interactive method in aMOEA that uses different evolutionary
operators, for example, those of differential evolution.
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Fig. 10. Effect of the size of the region of interest on convergence. Note thatτ = 1 is equivalent to the usualNSGA-II.
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