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1. Introduction

The Economic Dispath (ED) problem is widely used and constitutes a very important
optimization task that must be undertaken on a daily basis in the operation of power
systems. The schedules that solve ED represent the generating outputs for each on-line
unit. When a certain time horizon is considered, dynamic constraints for the generators
are taken into account and the problem is called dynamic ED. Otherwise, when the
allocation of the outputs for each committed unit is based on the static behavior of
the generators, the problem is called static ED. Thus, the dynamic ED problem is an
extension of the static one, but this paper, will focus only on the latter (i.e., the static
ED problem).

The main goal when dealing with Economic Dispatch tasks is to find the optimal sched-
ule that produces the desired power outputs for all the generating units, and minimizes
the total fuel cost ($), while satisfying some constraints. But another goal associated to
the previous one, is to obtain the desired schedule as fast as possible.

A variety of traditional optimization approaches have been proposed to solve the ED
problem, such as piecewise quadratic cost functions (Lin and Viviani 1984), the lambda
iteration method (Bakirtzis et al. 1994), quadratic programming (Fan and Zhang 1998)
and gradient methods (Naka et al. 2001). Other traditional methods such as dynamic pro-
gramming (Wood and Wollenberg 1984), Lagrangian relaxation (Hindi and Ghani 1991)
and linear programming (Song and Yu 1997), have been adopted, too. In recent years,
the use of stochastic search techniques has become popular in this area. Researchers
have proposed the use of neural networks (Park et al. 1993), genetic algorithms (Li et al.
1997), evolutionary programming (Park et al. 1998), simulated annealing (Ongsakul and
Ruangpayoongsak 2001), tabu search (Lin et al. 2002) and particle swarm optimiza-
tion (Victoire and Jeyakumar 2005), among other soft computing techniques.

Although particle swarm optimization (PSO) has been adopted before to solve the ED
problem, this paper presents a novel approach which is not only effective, but also faster
than other previously proposed soft computing techniques.

The remainder of the paper is organized as follows. Section 2 describes the ED prob-
lem. A revision of the most representative previous related work is presented in Section 3.
Section 4 describes the proposed PSO for solving ED problems. The experimental setup
and the comparison of results with respect to other approaches are presented in Sec-
tion 5. Finally, the conclusions and some possible paths for future works are presented
in Section 6.

2. Problem Statement

In power system operation, the problem of scheduling generating units to meet electricity
demands, while considering operational constraints, is called the Unit Commitment (UC)
problem (Wood and Wollenberg 1984).

A subproblem of the Unit Commitment problem is the Economic Dispatch (ED) prob-
lem, in which the optimum scheduling for the generating units during a certain period of
time, has to be determined. That schedule has to minimize the total cost of production
and involves the satisfaction of equality constraints (power balance) and inequality con-
straints (operating limits). The mathematical model of the Economic Dispatch problem
is defined as follows (Wood and Wollenberg 1984):



minimize TC =
N

∑

i=1

Fi(Pi) (1)

subject to:

N
∑

i=1

Pi = PD (Power Balance Constraint) (2)

and

Pmini ≤ Pi ≤ Pmaxi (Operating Limit Constraints) (3)

where TC is the total cost of production, Fi is the fuel cost of the i − th generator, Pi

the power output of the i− th generator, N is the number of generators, PD is the power
demand required, Pmini and Pmaxi are the minimum and maximum power output of
the i − th generator, respectively.
In (Swarup and Yamashiro 2002) more constraints are added to the classical ED problem:
the ramp rate limits (equation (6)) and the prohibited operating zones (equation (7)). The
ramp rates constraints restrict the operating range of all on-line units. The prohibited
zones constraints restrict the operation of the units due to steam valve operating or
vibrations in shaft bearing. Also, the total system generation includes the transmission
network loss (PL). Then, in (Swarup and Yamashiro 2002) equation (2) is replaced with
equation (4).

N
∑

i=1

Pi = PD + PL (Power Balance with Transmission Loss) (4)

The PL value is calculated with a function (equation (5)) of unit power outputs that uses
a loss coefficients matrix B, a vector B0 and a value B00 (Gaing 2003).

PL =
N

∑

i=1

N
∑

j=1

PiBijPj +
N

∑

i=1

B0iPi + B00 (5)

max(Pminj, P
0

j − DRj) ≤ Pj ≤ min(Pmaxj , P
0

j + URj) (Ramp Rate Limits) (6)

where P 0

j is the previous output power of unit j (in MW) and, URj and DRj are the
up-ramp and down-ramp limits of the unit j (in MW/h), respectively.
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(Prohibited Operating Zones) (7)

where P l
j,k and P u

j,k are the lower and upper bound of the prohibited zone k correspond-
ing to the unit j, and nj is the number of prohibited zones of the jth unit.

Depending on the characteristics of the function that defines the fuel cost F , it can be
categorized as smooth or non-smooth. Each of them defines a different type of problem,
as is explained next:

a. ED problem with a smooth cost function

It is the most simplified cost function for the ED problem. It can be represented
as a single quadratic function (Wood and Wollenberg 1984):

Fi(Pi) = aiP
2

i + biPi + ci (8)

with ai, bi and ci, being the fuel consumption cost coefficients of the i − th

generator.

b. ED problem with a non-smooth cost function

Some valve-points effects are commonly observed in this problem and, therefore,
the objective function includes multiple non differentiable points. This feature
makes the problem more difficult to solve, and the task of reaching the global
minimum with guaranteed convergence still remains unsolved (Sinha et al. 2003).

Compared with the smooth cost function, this one has very different input-
output curves, and sinusoidal functions are added (Walters and Sheble 1993):

Fi(Pi) = aiP
2

i + biPi + ci + |eisin(fi(Pmini − Pi))| (9)

with ei and fi being the fuel cost coefficients of the i − th unit with valve-point
effects.

Figure 1 illustrates examples of a smooth function and a non-smooth function with
valve-points loading.

In this paper, both types of functions will be considered: smooth with 3, 6 and 15 gen-
erating units (cases A, D and E, respectively), and non-smooth with 3 and 40 generating
units (cases B and C, respectively).
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Figure 1. Examples of smooth and non-smooth functions.

3. Previous Related Work

Park et al. (1993) presented a method based on the Hopfield Neural Network to solve the
economic power dispatch problem. The Hopfield model has been successfully applied to
the solution of several difficult optimization problems, but it frequently requires a large
number of neurons to represent a large numerical value. The authors proposed a variant
of this method, which uses a single neuron to represent a large value, named, for short,
MHNN. The algorithm was tested in three cases, from which only one of them is consid-
ered for the purposes of this paper: case A. For that test case, the algorithm obtained a
total cost slightly better than the best known solution for the problem under study, but
the total power demanded did not reach the 850 MW required by the specifications of
the problem. The conclusion was that MHNN was simpler than other methods and that
the results achieved were very close to those obtained using numerical methods.

Walters and Sheble (1993) proposed a Genetic Algorithm (GA) for the ED problem.
The proposed method incorporates payoff information of candidate solutions in the eval-
uation process. That allows the use of any type of unit cost curve (i.e., any sort of data
characteristics (smooth or not)) to be optimized. The authors performed four indepen-
dent runs to obtain the final results of the test case B adopted here. The solutions found
were very close to the optimum, but an additional initial effort was required for fine-
tuning the parameters of the algorithm, particularly the scaling parameter selection, and
this could evidently become a major obstacle when solving more difficult problems.

Yang et al. (1996) proposed the use of Evolutionary Programming (EP) in the nonlinear
and discontinuous economic dispatch problem. They justified the use of EP over other
methods such as Lagrange multipliers, dynamic programming, simulated annealing and
genetic algorithms. They used the test case B adopted here, obtaining good results in a
reasonably short computational time.

Gaing (2003) proposed a classical Particle Swarm Optimization algorithm to solve the
ED problem. The author defined an evaluation function combining the ED cost function
with the power balance constraint. The algorithm (named here as PSO-Gaing) penalized
with a large positive constant all infeasible individuals. PSO-Gaing was tested with case D
and E adopted here. The results obtained were compared with respect to those generated



by a Genetic Algorithm and, for both cases, PSO-Gaing outperformed such approach.
Sinha et al. (2003) studied several methods to solve the ED problem, based on Evolu-

tionary Programming (EP) techniques. Several modifications to the original EP method
were proposed in order to improve its robustness and speed. In order to achieve that,
they relied on two main features: a scaled cost and an empirical learning rate. The
EP variants that resulted from this study were: Classical Evolutionary Programming
with Gaussian mutation (CEP), Fast Evolutionary Programming with Cauchy mutation
(FEP), Improved Fast Evolutionary Programming with the best between Gaussian and
Cauchy mutations (IFEP) and, Fast Evolutionary Programming with a weighted mean
of the Gaussian and Cauchy mutations (MFEP). The performance of the approaches was
tested with cases B and C presented here. They concluded that FEP worked better than
the other algorithms when using small problems (for instance, case B). For case C, which
is a more difficult problem, IFEP offered the best performance.

Liu and Cai (2005) introduced a reduced complexity Taguchi Method (TM) based on
orthogonal arrays. The cost function was minimized recursively satisfying the constraints
of the problem. In the TM, a limited amount of computation is required to optimize the
objective function. The authors tested the algorithm with cases B and C, presented here.
The results found were satisfactory and they concluded that TM was less sensitive to its
initial parameter values, and that the results were better than those obtained with other
algorithms.

Park et al. (2005) proposed a Modified Particle Swarm Optimization (MPSO) al-
gorithm to solve the economic dispatch problem with non-smooth cost functions. The
modification was a particular treatment of the constraints of the ED problem when each
individual has moved to another place in the search space. The authors adopt a dynamic
search-space reduction strategy to speed up convergence. This strategy is adopted when
no improvement is detected after a certain number of iterations. Such strategy is based
on the distance between the best position of the swarm and the boundaries defined by the
inequality constraints. The MPSO algorithm was tested with cases B and C presented
here. MPSO reached the optimum in case B and values close to the optimum for case C
(these values were better than those produced by other heuristics).

Sriyanyong et al. (2007) hybridized a Particle Swarm Optimization (PSO) algorithm
with a modified heuristic search approach (the approach was called IPSO), to solve the
ED problem. The PSO algorithm was adopted to find global solutions and the modified
heuristic was used to handle the constraints (both equalities and inequalities) of the
problem. The heuristic search method adopted by the authors was originally introduced
in (Park et al. 2005) but they introduced some changes to enhance its performance. A
simulation was made with three of the cases reported here: cases A, B and C. The results
indicated that the proposed approach could reach the global optimum with a reasonably
low computational time, for the first two cases. For case C, the result was good, but not
optimal. However, such result was achieved at a reduced computational time. This led
the authors to conclude that the proposed approach was more powerful than the other
techniques with respect to which it was compared.

Subramani et al. (2008) modified a PSO (modPSO) algorithm to solve the ED problem
with non-smooth cost functions. They enhanced the search process by using randomly
chosen particles from the population to update the velocity of the particles with a de-
creasing probability. The algorithm was validated using two examples from which only
one is considered here: Case A. ModPSO found a total generation cost almost as good
as that obtained by the other approaches with respect to which it was compared. The
authors concluded that their ModPSO is a promising alternative for solving the ED



problem with valve-points and multi-fuel effects.
Khamsawang et al. (2009) proposed a differential evolution (DE) algorithm for the

ED problem. A regenerating population mechanism was introduced to the standard DE
algorithm, in order to improve its ability to escape from local optima. The authors
adopted the Case B considered in this paper. The authors concluded that the changes
introduced allowed DE to improve its performance in the ED problem solved.

Sun et al. (2009) modified a quantum-behaved particle swarm optimization algorithm
by adding to it a differential mutation operator to enhance its global search ability. The
proposed algorithm (QPSO-DM) was validated using cases D and E adopted here, and
the results were compared with respect to those generated by a genetic algorithm, a dif-
ferential evolution approach and a PSO method. The authors concluded that QPSO-DM
produced high quality solutions, and that its behavior was robust while also exhibiting
good convergence properties with respect to those of the algorithms adopted in the study.

4. A Fast PSO Algorithm for the ED Problem

Here, a fast Particle Swarm Optimization Algorithm to solve ED problems (fast-CPSO,
for short) is proposed, which inherits some features from the classical PSO model (Eber-
hart and Kennedy 1995). The proposed approach also incorporates new features which
aim to improve its performance, namely, a bi-population and a shake mechanism.

4.1. The standard PSO algorithm

The PSO algorithm operates on a population (called swarm) of individuals (called par-
ticles) which encode the possible solutions to the problem to be solved. Such particles
consist of vectors of real numbers that represent velocities and positions. The size of each
vector determines the dimension of each particle. The algorithm iterates searching for
better solutions and stores the best position found so far either by the entire population
(for the “global best” or gbest model) or within a certain neighborhood defined by an
interconnection topology (for the “local best” or lbest model). The best value reached by
each particle (called “personal best” or pbest) is also stored. The particles evolve using
two update formulas, one for the particle’s velocity and another for its position, in the
following way:

vid = X (vid + c1r1(pid − parid) + c2r2(pgd − parid)) (10)

parid = parid + vid (11)

where vid is the velocity of the particle i at the dimension d, X is the constriction
factor (Clerc and Kennedy 2002) which aims to balance the global exploration and the
local exploitation of the swarm, c1 is the personal learning factor, and c2 the social
learning factor. r1 and r2 are two random numbers within the range [0, 1], which are
used to introduce a stochastic value to determine how much of each factor is added. pid

is the best position reached by the particle i and pgd is the best position reached by
any particle in the entire swarm (gbest model). parid is the value of the particle i at
dimension d.



4.2. The fast-CPSO approach

Next, the modifications introduced in the proposed approach to the standard PSO model
are described.

4.2.1. Updating velocity and particle vectors

The equation for updating the particles was modified. Instead of using equation (11)
in all the iterations, it is selected with a probability of 0.925 (this value was empirically
derived). The rest of the time the equation (12) is selected, which is based on Kennedy’s
proposal (Kennedy 2003). In this case, the position of each particle is randomly chosen
from a Gaussian distribution with the mean selected as the average between the best
position recorded for the particle and the best in the swarm. The standard deviation is
the difference between these two values.

pari = N

(

pi + pg

2
, |pi − pg|

)

(12)

where pari is the particle to be updated, N is the Gaussian random generator, pi and pg

are the best position reached by the ith particle and the best position reached by any
particle in the swarm, respectively. The probability of selection adopted was empirically
found to be the best, after performing a series of experiments on the test functions
adopted.

4.2.2. Handling Constraints

From the wide variety of constraint-handling techniques currently available for evo-
lutionary algorithms (Coello Coello 2002), a very simple scheme is adopted here. The
constraint-handling method follows the rule: “a feasible particle is preferred over an in-
feasible one”. Particles are compared in pairs. When one of them is feasible and the other
one is infeasible, then the feasible particle is chosen. When the two particles compared
are infeasible, the one closer to the feasible region is chosen. In order to do that, the algo-
rithm stores the largest violation obtained for each constraint at each generation. When
an individual is found to be infeasible, the sum of its constraints violations (this value
is normalized with respect to the largest violation stored so far) is the one considered
as its distance to the feasible region. This constraint-handling scheme is used when the
pbest and gbest particles are chosen.

4.2.3. A bi-population into the swarm

In the proposed approach, a bi-population scheme is introduced. The idea of adopting
several swarms rather than only one as the population of a PSO algorithm is not new,
since several authors have used similar schemes (Liang and Suganthan 2005, Blackwell
and Branke 2006, Daneshyari 2006, Zhao et al. 2008, Trojanowski 2008). In most of
the previous works, the authors adopted several small and dynamic swarms which are
frequently regrouped at different stages during the search. Also, in all of these previous
cases, the swarms exchange information. Here, this concept of using more than one swarm
is adopted in a different way.

In the proposed fast-CPSO algorithm, the idea is maintain more than one group of
particles exploring the search space at the same time. The aim of this is to reduce the
possibility of getting trapped in local optima. In the algorithm the entire population
is split into only two static subpopulations, each of which is independently evolved.



Unlike the works previously indicated, in the proposed approach, no information is shared
between the two swarms. Also, the size of the swarms throughout the search does not
change.

A question that naturally arises is why not to adopt more than two subpopulations.
The reason is purely pragmatic: since the number of particles used in the population of
the algorithm is small, it would be inappropriate to adopt more than two populations.
All the features stated before for the entire population remain applicable, but in this
case, they are applied not to a single population, but to each subpopulation. When the
iterative process finishes, the best particle from both subpopulations is reported as the
final output.

4.2.4. Shake Mechanism

A shake mechanism is introduced, which is adopted to overcome potential stagnation
problems that can arise when exploring the vicinity of the global optimum (Cagnina
et al. 2006). In order to implement such a shake mechanism, some particles are moved to
a different place in the search space. Although this can be done by guiding a particle to a
random direction, it is undesirable that the particles move away too much (we just want
to shake them a little). So, a particle with a good solution is selected as a reference: a
randomly chosen pbest particle (pbSELd). Thus, equation (13) is used to move a particle
i:

vid = Xvid + c1r1(pbSELd) (13)

where vid is the dth-position of the velocity vector, X is the constriction factor, c1 is the
personal learning factor multiplied by r1, which is a random number within the range [0,
1]. pbSELd is the dth-position of a (randomly chosen) selected pbest vector.

This mechanism is executed when the percentage of infeasible individuals is higher than
10% (this value was empirically derived), with a 50% probability over all the individuals
in the swarm, at each iteration. It is worth noticing that it is not convenient to keep
populations in which all the solutions are feasible, since infeasible solutions play an
important role when trying to solve problems with active constraints, since they allow us
to explore the boundary between the feasible and infeasible regions. Figure 2 illustrates
this mechanism.

4.3. Pseudocode of the proposed fast-CPSO

Figure 3 shows the pseudocode of the proposed algorithm. At the beginning of the search,
the vectors of position and velocity of each particle in both subpopulations are randomly
initialized (lines 2 to 5). After evaluating the particles (line 6) and obtaining the best
values: pbest and gbest (line 7), the subpopulations begin to evolve. During the evolu-
tionary process, new values of pbest and gbest are chosen and both, the velocity and the
position of each particle, are updated (lines 8 to 20). At line 21, a bounding mechanism
is applied, to control that all the dimensions in all particles are within the allowable
bounds. Then, the percentage of infeasible individuals in both subpopulations is calcu-
lated and the shake mechanism is applied if the required conditions are fulfilled (lines 22
to 25). After that, the particles are evaluated and new “best” values are recorded (lines
26 and 27). All the process is repeated until the stop condition is reached. Finally, the
best value reached by any subpopulation is taken and compared. The best of them is
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Figure 2. (a) The pbest particle close to the optimum and a particle with a stagnation problem.
(b) The same particle, after applying the Shake mechanism, is now close to pbest.

returned (lines 29 and 30).

5. Experimental Study

For validating the proposed approach, its performance is assessed using five different
problems. The first, called case A, is a traditional Economic Dispatch problem (Wood
and Wollenberg 1984) with a 3-unit system, a smooth function and, two constraints:
power balance (equation (2)) and operating limits (equation (3)). Case B, is a non-
smooth standard 3-unit system, considering a valve point loading function (Walters and
Sheble 1993) with power balance (equation (2)) and operating limits (equation (3)) con-
straints. Case C, consists of 40 generating units adapted from (Chen and Chang 1995),
with some modifications to incorporate a valve point loading function (Sinha et al. 2003),
and constrained by power balance (equation (2)) and operating limits (equation (3)).
Case D is a system with 6 thermal units, 26 buses, 46 transmission lines (Yoshida et al.
2000), a smooth cost function and, constraints defined by equations (4), (6) and (7).
Case E is a system with 15 thermal units (Lee and Breipohl 1993), a smooth cost func-
tion and constraints defined by equations (4), (6) and (7). The complete data for the five
systems is shown in the Appendix.

The experiments were executed in a personal computer having an AMD Athlon pro-
cessor running at 1.24GHz with 512MB of RAM. This data is relevant because the
computational time required to reach each of the results reported next, is almost as
important as the total cost itself. The underlying assumption is that the response time
is crucial in these problems, particularly when they are as difficult as those depicted in
cases C and E.

Next, a short explanation of the parameters settings adopted by the fast-CPSO is
presented, as well as each of the case studies under consideration. The results obtained by
the fast-CPSO and their comparison with respect to those obtained by other algorithms,



0. fast-CPSO:

1. Swarm Initialization

2. Initialize subpop1

3. Initialize velocity for subpop1

4. Initialize subpop2

5. Initialize velocity for subpop2

6. Evaluate fitness for each subpop

7. Record pbest and gbest for each subpop

8. DO

9. FOR each subpop DO

10. FOR i=1 TO numberOfparticles DO

11. FOR j=1 TO numberOfdimensions DO

12. Update velij
13. IF probability>(0.075)
14. Update partij with eq.(11)

15. ELSE

16. Gaussian update with eq.(12)

17. END

18. END

19. END

20. END

21. Bounding particles

22. Calculating % infeasible

23. IF % infeasible > 10%

24. shake-mechanism

25. END

26. Evaluate fitness(parti)

27. Record pbest and gbest

28. WHILE(current cycle < max cycle)

29. result=BEST(best subpop1,best subpop2)
30. RETURN(result)

Figure 3. Pseudocode of the proposed fast-CPSO.

is also shown.

5.1. Parameters Settings

In order to avoid premature convergence, the constriction factor X was adopted to reg-
ulate the velocity and to maintain a proper behavior of the PSO algorithm during the
search (Clerc and Kennedy 2002). For that sake, the relationship between the constric-
tion factor X and the learning factors c1 and c2 was studied. After performing such a
study, only one of the learning factors was set and the same value was assigned to the
other one, because the aim was to express an equal preference for both learning factors
(c1 and c2). Based on the recommendations from (Kennedy and Eberhart 2001), the
values of these learning factors were set within the range [1.4, 1.9]. Thus, c1 = c2 = 1.8



were adopted. The constriction factor was set to X = c1 − 1.0 in all cases, so that it
could vary within the range [0.4, 0.9] as suggested in (Clerc and Kennedy 2002). Since
c1 = 1.8, then X = 0.8.

In order to select the probability distribution to be adopted for updating the particles,
a parameter which defines the probability of selecting one distribution over the other was
used. In this case, an empirical study to analyze the impact of the probability distribution
on the performance of the proposed approach was performed. It was found that the use
of a Normal distribution was beneficial in most cases. As a consequence of this study,
the probability of selecting a Normal distribution was set in 92.5%. Consequently, the
probability of adopting a Gaussian distribution is 7.5%.

5.2. Test Case A: 3-generator system with a smooth function

The population size and the number of cycles were set according to the total number
of evaluations spent by (Sriyanyong et al. 2007) (i.e., 3,000), in order to allow a fair
comparison of results. The size of the swarm was set to 10 particles and the maximum
number of iterations was set to 300. Only 4 independent runs were performed to obtain
the best value to be compared with that reported in (Sriyanyong et al. 2007). This is
the same number of runs performed by (Sriyanyong et al. 2007). However, 10 indepen-
dent runs were also done because performing less runs does not provide information of
statistical significance to reach conclusions about the performance of a stochastic algo-
rithm. In both cases (when using 4 and 10 independent runs) the proposed algorithm
reached the global optimum with a standard deviation of zero. The demand of power
is 850 MW and the global solution for this system (Wood and Wollenberg 1984) has
a total cost of $8,194.35612. In Table 1, a comparison of results with respect to differ-
ent methods is presented: a Numerical Method (Wood and Wollenberg 1984) (NM), a
Modified Hopfield Neural Network (Park et al. 1993) (MHNN), Improved Evolutionary
Programming (Park et al. 1998) (IEP), three Particle Swarm Optimization algorithms:
Modified Particle Swarm Optimization (MPSO) (Park et al. 2005), another PSO vari-
ant called ModPSO (Subramani and Rajeswari 2008), and an Integrated Particle Swarm
Optimization (IPSO) algorithm (Sriyanyong et al. 2007). Column 1 names the methods
evaluated. Column 2 shows the values for the three generating units obtained by each
method. Column 3 shows the average time spent by each approach in finishing a com-
plete run (expressed in seconds), and column 4 indicates the total power generated and,
at the end, the total cost (in $) of the solution obtained by each algorithm. Note that
“N/A” stands for “Not Available”.

All the methods compared (except for MHNN and ModPSO) were able to reach the
total power demanded with the minimum cost, although there is another factor that can
be considered to be as important as the cost: the computational time required to reach
a good solution, which can be critical in real-world applications. As can be observed in
Table 1, only IPSO and the fast-PSO can be compared in a fair manner, since they were
both run in computers with similar characteristics. The proposed approach turned out
to be several times faster than IPSO in test case A.

In Figure 4, the evolution curve for test case A is presented. The vertical axis shows the
distance between the best values reached (the average) and the global optimum (or best
known value) over the 10 runs, and the horizontal axis shows the number of iterations
performed. As can be observed in Figure 4, the average error is extremely low at the
beginning of the search process and decays to zero at approximately generation 150,
which is when the algorithm has reached the optimum value.



Table 1. Comparison of the best values obtained by the proposed fast-CPSO and other approaches for test case A.

Method U1 | U2 | U3 Exec. Time Power(MW) Total Cost($)

NM (Wood and Wollenberg 1984) 393.170 | 334.604 | 122.226 N/A 850 8,194.3561
MHNN (Park et al. 1993) 393.800 | 333.100 | 122.300 60a 849.2 8,187.0000

IEP (Park et al. 1998) 393.170 | 334.603 | 122.227 N/A 850 8,194.3561
MPSO (Park et al. 2005) 393.170 | 334.604 | 122.226 N/A 850 8,194.3561

IPSO (Sriyanyong et al. 2007) 393.170 | 334.604 | 122.226 0.42b 850 8,194.3561
ModPSO (Subramani and Rajeswari 2008) 392.361 | 334.985 | 122.654 N/A 850 8,194.4000

fast-CPSO 393.170 | 334.604 | 122.226 0.01c 850 8,194.3561

a Simulation time using an IBM PC-386.

b Simulation time using a Pentium IV processor running at 3GHz and with 512MB of RAM.
c Simulation time using an AMD Athlon processor running at 1.24GHz with 512MB of RAM.

Figure 4. Evolution curve of fast-CPSO for test case A.

5.3. Test Case B: 3-generator system with a valve-point loading

function

As in the previous case, the population size and the number of cycles was set according
to the total number of evaluations reported by (Sriyanyong et al. 2007) (6,000 in this
case). The size of the swarm was set to 20 particles and a maximum number of iterations
of 300 was adopted. Again, for case B, 4 independent runs were performed to obtain the
best value to be compared with respect to the one reported in (Sriyanyong et al. 2007).
However, as before, fast-CPSO also performed 10 independent runs in order to have re-
sults with a better statistical significance. For both cases, the proposed approach reached



Table 2. Comparison of the best values obtained by the proposed fast-CPSO and other approaches for test case B.

Method U1 | U2 | U3 Exec. Time Power(MW) Total Cost($)

GA (Walters and Sheble 1993) 300.00 | 400.00 | 150.00 16a 850 8,237.60
EP (Yang et al. 1996) 300.26 | 400.00 | 149.74 0.09b 850 8,234.07
IEP (Park et al. 1998) 300.23 | 400.00 | 149.77 N/A 850 8,234.09
TM (Liu and Cai 2005) 300.27 | 400.00 | 149.73 N/A 850 8,234.07

MPSO (Park et al. 2005) 300.27 | 400.00 | 149.73 N/A 850 8,234.07
IPSO (Sriyanyong et al. 2007) 300.27 | 400.00 | 149.73 0.5c 850 8,234.07

DE (Khamsawang and Jiriwibhakorn 2009) 300.27 | 400.00 | 149.73 0.30d 850 8,234.07
fast-CPSO 300.27 | 400.00 | 149.73 0.02e 850 8,234.07

a Simulation time using an IBM Model.

b Simulation time using a PC-486.
c Simulation time using a Pentium IV processor running at 3GHz with 512MB of RAM.

d Simulation time using an Intel Core 2 Duo 3.0GHz with 4GB of RAM.
e Simulation time using an AMD Athlon processor running at 1.24GHz with 512MB of RAM.

the global optimum of $8,234.07 (Yang et al. 1996). The demand of power is 850 MW. In
Table 2, it can be observed a comparison with different methods, that is, a Genetic Al-
gorithm (Walters and Sheble 1993) (GA), basic Evolutionary Programming (EP) (Yang
et al. 1996), Improved Evolutionary Programming (IEP) (Park et al. 1998), the Taguchi
Method (TM) (Liu and Cai 2005), Modified Particle Swarm Optimization (MPSO) (Park
et al. 2005), an Integrated Particle Swarm Optimization (IPSO) (Sriyanyong et al. 2007)
and a Differential Evolution (DE) approach (Khamsawang and Jiriwibhakorn 2009). The
meanings of the columns are the same as in case A.

In this case, all the methods evaluated (except for the GA) reached the total power
demanded with the minimum cost (or a value very close to it). As in the previous example,
by observing Table 2, it should be clear that only IPSO and the fast-CPSO can be
compared in terms of their computational time, because they were both run in similar
computers. The fast-CPSO was again faster than IPSO, but it is worth noting that
in (Yang et al. 1996), a very good execution time (0.09 seconds) was also reported.
This value is better than the one reported in (Sriyanyong et al. 2007), considering the
characteristics of the computers used in both cases.

In Figure 5, the evolution curve for test case B is presented. As can be observed, the
average error is low at the beginning of the search process and decays to zero at the last
iterations of the algorithm.

5.4. Test Case C: 40-generator system with a valve-point loading

function

This is a more difficult problem and, therefore, more evaluations are required for the
optimization process. Again, the number of evaluations adopted here is the reported
in (Sriyanyong et al. 2007) for this problem (i.e., 90,000). The size of the swarm was
set to 60 particles and the maximum number of generations was set to 1,500. In this
case, a total of 20 independent runs were performed. The best known solution for this
problem is $122,190.63, and was reported by (Sriyanyong et al. 2007). However, because
of the non-smoothness of the function, a better solution could exist. The power demand



Figure 5. Evolution curve of fast-CPSO for test case B.

is 10,500 MW. In Table 3, it can be observed a comparison of results among the proposed
approach and several other methods: Classical Evolutionary Programming (CEP) (Sinha
et al. 2003), Fast Evolutionary Programming (FEP) (Sinha et al. 2003), Modified Fast
Evolutionary Programming (MFEP) (Sinha et al. 2003), Improved FEP (IFEP) (Sinha
et al. 2003), the Taguchi Method (TM) (Liu and Cai 2005), Modified Particle Swarm
Optimization (MPSO) (Park et al. 2005) and Integrated Particle Swarm Optimization
(IPSO) (Sriyanyong et al. 2007). The column 1 of Table 3 shows the methods evaluated.
Column 2 shows the mean cost which is the average over the 20 runs executed. Column
3 presents the average time for a single run (in seconds) and the last column indicates
the minimum cost achieved ($).

All the algorithms compared were able to reach the total power demanded. The mini-
mum total costs vary a little, but the best value was obtained by the fast-CPSO. Regard-
ing the computational cost, it is fair to compare the proposed approach only with respect
to the algorithm reported in (Sriyanyong et al. 2007), since that is the only one that was
run in a similar computer. As before, the proposed algorithm had a lower computational
time than IPSO, while also obtaining the lowest cost among all the approaches under
comparison.

In Table 4, the values obtained for each unit together with their corresponding costs,
are shown.

The evolution curve for test case C is shown in Figure 6. In that figure, it can be
observed that the average error is high at the beginning of the search process and decays
as the search progresses. Towards the end of the execution, the error is of approximately
900.



Table 3. Comparison of the best values obtained by the proposed fast-CPSO and
other approaches for test case C.

Method Mean Cost($) Exec. Time Min. Total Cost($)

CEP (Sinha et al. 2003) 124,793.48 1, 956.96a 123,488.29
FEP (Sinha et al. 2003) 124,119.37 1, 039.16a 122,679.71

MFEP (Sinha et al. 2003) 123,489.74 2, 196.19a 122,647.57
IFEP (Sinha et al. 2003) 123,382.00 1, 167.35a 122,624.35
TM (Liu and Cai 2005) 123,078.21 94.28b 122,477.78

MPSO (Park et al. 2005) N/A N/A 122,252.26
IPSO (Sriyanyong et al. 2007) 122,304.70 14.56c 122,190.63

fast-CPSO 122,937.22 3.36d 122,102.00

a Simulation time using a Pentium II processor running at 350MHz with 128MB
RAM.
b No information is available about the hardware platform adopted.
c Simulation time using a Pentium IV processor running at 3GHz with 512MB of
RAM.
d Simulation time using an AMD Athlon processor running at 1.24GHz with 512MB
of RAM.

Figure 6. Evolution curve of fast-CPSO for test case C.

5.5. Test Case D: 6-generator system with a smooth function

The population size and the number of cycles were set in this case according to the total
number of evaluations spent by (Sun et al. 2009) (i.e., 20,000), in order to allow a fair
comparison of results. The size of the swarm was set to 100 particles and the maximum
number of iterations was set to 200. 100 independent runs were performed to obtain



Table 4. Best results obtained by the fast-CPSO
for test case C.

Unit Power(MW) Cost($)

1 111.350975 934.278441
2 113.000646 961.688227
3 101.183869 1,263.79287
4 179.653785 2,143.382531
5 88.748757 722.245746
6 139.838162 1,595.964151
7 259.070572 2,612.100278
8 283.384682 2,778.150071
9 284.45058 2,798.012528
10 203.433921 3,608.966312
11 169.630792 2,978.605141
12 96.759801 1,969.618297
13 305.480028 5,134.852133
14 303.767971 5,147.507701
15 392.294478 6,428.195382
16 306.205148 5,211.597378
17 491.469276 5,343.858246
18 489.208354 5,288.728751
19 512.657763 5,570.800164
20 509.974661 5,540.03484
21 524.266162 5,091.271833
22 525.414979 5,114.52581
23 532.626636 5,243.911085
24 525.047777 5,092.822089
25 522.866776 5,275.295573
26 528.35423 5,378.909508
27 10.247098 1,146.237657
28 11.710313 1,181.331381
29 11.875318 1,185.419513
30 88.762214 722.468979
31 189.635109 1,642.52283
32 161.965586 1,327.358785
33 189.49853 1,641.953942
34 166.970272 1,623.248355
35 198.070091 2,024.866572
36 168.632795 1,605.096452
37 92.831048 1,020.540419
38 89.770777 970.193241
39 106.543766 1,195.934737
40 513.346297 5,585.715229

MW & $: 10,500 122,102.003178

the best value to be compared with respect to that reported in (Sun et al. 2009). The
demand of power is 1,263 MW and the global solution for this system is the one reported
by (Sun et al. 2009) with a total cost of $15,442.3758. In Table 5, a comparison of results
with respect to two PSO methods is presented: PSO-Gaing (Gaing 2003) and QPSO-
DM (Sun et al. 2009). Column 1 names the methods evaluated. Column 2 shows the
minimum cost (in $) obtained. Column 3 shows the average cost over the total number
of runs performed (100 for QPSO-DM and fast-CPSO, and 50 for PSO-Gaing). Column
4 indicates the maximum cost (in $) obtained by the methods, and, at the end, the time
spent by the algorithms in a single run (in seconds). All the algorithms reached the total
power demanded (1,263 MW) with feasible solutions (all the constraints are satisfied).
Note that “N/A” stands for “Not Available”.



Table 5. Comparison of the best values obtained by the proposed fast-CPSO and other ap-
proaches for test case D.

Method Min. Cost($) Average Cost($) Max. Cost($) Exec. Time

PSO-Gaing (Gaing 2003) 15,450.00 15,454.00 15,492.00 14.89a

QPSO-DM (Sun et al. 2009) 15,442.37 15,445.59 15,450.42 N/A
fast-CPSO 15,432.40 15,467.46 15,474.05 0.17b

a Simulation time using a Pentium III processor running at 550MHz with 256MB RAM.

b Simulation time using an AMD Athlon processor running at 1.24GHz with 512MB of RAM.

Figure 7. Evolution curve of fast-CPSO for test case D.

As can be observed in Table 5, the minimum cost is reached by fast-CPSO and, al-
though the computational times required to obtain the best solutions are not comparable
(between PSO-Gaing and fast-CPSO), the proposed approach is fast (it requires an av-
erage of 0.17 seconds per run).
Figure 7 shows the evolution curve for case D. In this case, the average error is relatively
high until iteration 100, and then decays progressively during the last iterations.

In Table 6, the power generated by each unit can be observed, as well as the total
power output (in MW), the power lost (in MW) and the generation cost (in $) for case
D.



Table 6. Best results obtained by the
fast-CPSO for test case D.

Unit Power(MW)

1 453.173875
2 181.657861
3 251.289981
4 129.456347
5 167.002450
6 91.947002

Power output (MW): 1,274.52
Power lost (MW): 11.52

Generation cost ($): 15,432.40

Table 7. Comparison of the best values obtained by the proposed fast-CPSO and other ap-
proaches for test case E.

Method Min. Cost($) Average Cost($) Max. Cost($) Exec. Time

PSO-Gaing (Gaing 2003) 32,858.00 33,039.00 33,331.00 26.59a

QPSO-DM (Sun et al. 2009) 32,652.57 32,695.95 32,767.58 N/A
fast-CPSO 33,076 33,102.63 33,140.59 1.52b

a Simulation time using a Pentium III processor running at 550MHz with 256MB RAM.

b Simulation time using an AMD Athlon processor running at 1.24GHz with 512MB of RAM.

5.6. Test Case E: 15-generator system with a smooth function

The population size and the number of cycles were set in this case according to the
total number of evaluations spent by (Sun et al. 2009) (i.e., 20,000), in order to allow
a fair comparison of results. The size of the swarm was set to 100 particles and the
maximum number of iterations was set to 200. 100 independent runs were performed to
obtain the best value to be compared with respect to that reported in (Sun et al. 2009).
The demand of power is 2,630 MW and the global solution for this system is the one
reported by (Sun et al. 2009) with a total cost of $32,652.57. Table 7 shows a comparison
of results with respect to two PSO approaches: PSO-Gaing (Gaing 2003) and QPSO-
DM (Sun et al. 2009). Column 1 names the methods evaluated. Column 2 shows the
minimum cost (in $) obtained. Column 3 shows the average cost over the total number
of runs performed (100 for QPSO-DM and fast-CPSO, and 50 for PSO-Gaing). Column
4 indicates the maximum cost (in $) obtained by the methods, and, at the end, the time
spent by the algorithms in a single run (in seconds). All the algorithms reached the total
power demanded (2,630 MW). QPSO-DM and fast-CPSO obtained feasible solutions (all
the constraints are satisfied) but the solution reached by PSO-Gaing reported in (Gaing
2003) does not satisfy the ramp rate limits constraint (in units 2 and 5). Note that “N/A”
stands for “Not Available”.

As can be observed in Table 7, the minimum cost is reached by QPSO-DM. The solution
obtained by fast-CPSO is better than the one obtained by PSO-Gaing, but the latter
performed only 50 runs. The computational times required to obtain the best solutions
are not comparable (between PSO-Gaing and fast-CPSO), but the proposed approach is
fast (it required an average of only 1.52 seconds per run).



Figure 8. Evolution curve of fast-CPSO for test case E.

Figure 8 shows the evolution curve for case E. In this case, the average error decays
quickly until iteration 100, then it decays more slowly lower until iteration 150 and then
it quickly reaches zero.

In Table 8 the power generated by each unit can be observed, as well as the total power
output (in MW), the power lost (in MW) and the generation cost (in $) for case E.

6. Conclusions and Future Work

A PSO-based approach for solving Economic Dispatch problems, with smooth and non-
smooth cost functions, was presented. The approach introduces relatively simple changes
to a traditional PSO algorithm, aiming to provide better diversity maintenance and a
better exploration in constrained search spaces. The proposed approach was validated
using five cases of the ED problem having 3, 6, 15 and 40 generating units. The perfor-
mance of the proposed PSO was compared with respect to the one reported by other
approaches that have solved the same problems, including a variety of evolutionary algo-
rithms as well as mathematical programming techniques. The results were found to be
very encouraging, and the execution time spent by the approach was found to be very
low when compared to another approach that was implemented in a similar hardware
platform.

As part of the future work to be developed, it could be interesting to design mechanisms
that can improve the robustness of the proposed approach (i.e., to reduce its variability of
results over several independent runs), particularly when dealing with difficult problems.
In addition, it would be interesting to test the approach with a dynamic version of the
ED problem.



Table 8. Best results obtained by the
fast-CPSO for test case E.

Unit Power(MW)

1 427.514201
2 345.130698
3 106.351539
4 108.941275
5 151.266812
6 455.590142
7 420.770185
8 148.432523
9 110.197987
10 142.444791
11 64.636988
12 70.180234
13 53.298569
14 25.820784
15 36.560917

Power output (MW): 2,667.13
Power lost (MW): 37.13

Generation cost ($): 33,076.12

Acknowledgments

The first and second authors gracefully acknowledge the continuous support from AN-
PCyT and the Universidad Nacional de San Luis. The third author acknowledges support
from CONACYT project No. 103570.

References

Bakirtzis, A., Petridis, V., and Kazarlis, S., 1994. Genetic algorithm solution to the
economic Dispatch problem. Proc. Inst. Elect. Eng., Gener. Transm., Distrib., 141
(4), 377–382.

Blackwell, T. and Branke, J., 2006. Multiswarms, exclusion, and anti-convergence in
dynamic environments. IEEE Transactions on Evolutionary Computation, 10 (4),
459–472.

Cagnina, L.C., Esquivel, S.C., and Coello Coello, C.A., 2006. A Particle Swarm Op-
timizer for Constrained Numerical Optimization. In: T.P. Runarsson, H.G. Beyer,
E. Burke, J.J. Merelo-Guervós, L.D. Whitley and X. Yao, eds. Parallel Problem
Solving from Nature (PPSN IX). 9th International Conference, September. Lecture
Notes in Computer Science Vol. 4193 Reykjavik, Iceland: Springer, 910–919.

Chen, P.H. and Chang, H.C., 1995. Large-scale economic dispatch by genetic algorithm.
IEEE Trans. Power Syst., 10, 1919–1926.

Clerc, M. and Kennedy, J., 2002. The Particle Swarm-Explosion, Stability, and Conver-
gence in a Multidimensional Complex Space. IEEE Transactions on Evolutionary
Computation, 6 (1), 58–73.

Coello Coello, C.A., 2002. Theoretical and Numerical Constraint Handling Techniques
used with Evolutionary Algorithms: A Survey of the State of the Art. Computer
Methods in Applied Mechanics and Engineering, 191 (11-12), 1245–1287.



Daneshyari, G.G.Y.M., 2006. Diversity-based Information Exchange among Multiple
Swarms in Particle Swarm Optimization. In: 2006 IEEE Congress on Evolution-
ary Computation (CEC’2006), July. Vancouver, BC, Canada: IEEE, 1686–1693.

Eberhart, R. and Kennedy, J., 1995. A new optimizer using particle swarm theory. In:
Proceedings of the Sixth International Symposium on Micro Machine and Human
Science, MHS’95, October. Nagoya, Japan: IEEE Press, 39–43.

Fan, J.Y. and Zhang, L., 1998. Real-time economic Dispatch with line flow and emission
constraints using quadratic programming. IEEE Trans. Power Syst., 13 (2), 320–
325.

Gaing, Z., 2003. Particle Swarm Optimization to Solving the Economic Dispatch Con-
sidering the Generator Constraints. IEEE Transactions on Power Systems, 18 (3),
1187–1195.

Hindi, K.S. and Ghani, M.R.A., 1991. Dynamic economic dispatch for large scale power
systems: a Lagrangian relaxation approach. Journal of Electrical Power & Energy
Systems, 13, 51–56.

Kennedy, J. and Eberhart, R., 2001. Swarm Intelligence. Morgan Kaufmann Publishers.
Kennedy, J., 2003. Bare Bones Particle Swarms. In: Proceedings of the IEEE 2003 Swarm

Intelligence Symposium (SIS 2003), April. Indianapolis, Indiana, USA: IEEE Press,
80–87.

Khamsawang, S. and Jiriwibhakorn, S., 2009. Solving the Economic Dispatch Problem by
Using Differential Evolution. International Journal of Electrical Power and Energy
Systems Engineering, 2 (2), 121–125.

Lee, F.N. and Breipohl, A.M., 1993. Reserve constrained economic dispatch with pro-
hibited operating zones. IEEE Transactions on Power Systems, 8, 246–254.

Li, F., Morgan, R., and Williams, D., 1997. Hybrid genetic approaches to ramping rate
constrained Dynamic economic dispatch. Electric Power Systems Research, 43, 97–
103.

Liang, J.J. and Suganthan, P.N., 2005. Dynamic multi-swarm particle swarm optimizer.
In: Proceedings of the IEEE 2005 Swarm Intelligence Symposium (SIS 2005), June.
IEEE Press, 124–129.

Lin, C.E. and Viviani, G.L., 1984. Hierarchical economic Dispatch for piecewise quadratic
cost functions. IEEE Trans. Power App. Syst., PAS-103 (6), 1170–1175.

Lin, W.M., Cheng, F.S., and Tsay, M.T., 2002. An improved Tabu search for economic
Dispatch with multiple minima. IEEE Trans. Power Syst., 17, 108–112.

Liu, D. and Cai, Y., 2005. Taguchi method for solving the Economic dispatch problem
with nonsmooth cost functions. IEEE Trans. Power Syst., 20, 2006–2014.

Naka, S., et al., 2001. Practical distribution state estimation using hybrid particle swarm
optimization. Proc. IEEE Power Engineering Society Winter Meeting, 2, 815–820.

Ongsakul, W. and Ruangpayoongsak, N., 2001. Constrained dynamic economic dispatch
by simulated annealing/genetic algorithms. In: IEEE Power Engineering Interna-
tional Conference on Power Industry Computer Applications (PICA 2001), May.
IEEE Press, 207–212.

Park, J.B., et al., 2005. A particle swarm optimization for Economic dispatch with non-
smooth cost functions. IEEE Trans. Power Syst., 20, 34–42.

Park, J.H., et al., 1993. Economic load dispatch for piecewise quadratic cost function
using Hopfield neural network. IEEE Trans. Power Syst., 8, 1030–1038.

Park, Y.M., Won, J.R., and Park, J.B., 1998. A new approach to economic load dispatch
based on improved evolutionar programming. Eng. Intell. Syst. Elect. Eng. Commu.,
6, 103–110.



Sinha, N., Chakrabarti, R., and Chattopadhyay, P.K., 2003. Evolutionary Programming
Techniques for Economic Load Dispatch. IEEE Transactions on Evolutionary Com-
putation, 7 (1), 83–94.

Song, Y.H. and Yu, I.K., 1997. Dynamic load dispatch with voltage security and envi-
ronmental constraints. Electric Power Systems Research, 43, 53–60.

Sriyanyong, P., Song, Y.H., and Turner, P.J., 2007. Vol. 49 of Studies in Computational
Intelligence, Particle Swarm Optimisation for Operational Planning: Unit Commit-
ment and Economic Dispatch. In: Evolutionary Scheduling. Springer.

Subramani, S.S. and Rajeswari, P.R., 2008. A Modified Particle Swarm Optimization
for Economic Dispatch Problems with Non-Smooth Cost Functions. International
Journal of Soft Computing, 3 (4), 326–332 ISSN: 1816-9503.

Sun, J., et al., 2009. Solving the economic dispatch problem with a modified quantum-
behaved particle swarm optimization method. Energy Conversion and Management,
50, 2967–2975.

Swarup, K.S. and Yamashiro, S., 2002. Unit Commitment Solution Methodology Using
Genetic Algorithm. IEEE Transactions on Power Systems, 17 (1), 87–91.

Trojanowski, K., 2008. Multi-Swarm That Learns. In: Intelligent Information Systems
2008, July. Vancouver, BC, Canada: IEEE, 121–130.

Victoire, T.A.A. and Jeyakumar, A.E., 2005. Reserve Constrained Dynamic Dispatch of
Units with valve-point effects. IEEE Trans. Power Syst., 20, 1273–1282.

Walters, D.C. and Sheble, G.B., 1993. Genetic algorithm solution of economic dispatch
with valve point loading. IEEE Trans. Power Syst., 8, 1325–1332.

Wood, A.J. and Wollenberg, B.F., 1984. Power Generation, Operation and Control. 2
Ed. New York: John Wiley.

Yang, H.T., Yang, P.C., and Huang, C.L., 1996. Evolutionary Programming based Eco-
nomic dispatch for units with non-smooth fuel cost functions. IEEE Trans. Power
Syst., 11, 112–118.

Yoshida, H., et al., 2000. A particle swarm optimization for reactive power and volt-
age control considering voltage security assessment. IEEE Transactions on Power
Systems, 15, 1232–1239.

Zhao, S.Z., et al., 2008. Dynamic multi-swarm particle swarm optimizer with local search
for Large Scale Global Optimization. In: 2008 IEEE Congress on Evolutionary Com-
putation (CEC’2008), June. Hong Kong: IEEE Press, 3845–3852.

Appendix A. Data for Economic Dispatch Problem

In Table A1 the value for 3 units, minimum and maximum power, and coefficients of
cost (a, b and c values), correspond to test case A (smooth cost function). The data in
Table A2 and Table A3 are the same values that in the previous case, but other values
for the coefficients of the non-smooth function are added (e and f), and correspond to
test cases B and C, respectively.

Tables A4 and A5 show the value for the units, minimum and maximum power, co-
efficients of cost (a, b and c values), the previous output power for each unit (P 0

i ), the
up-ramp and down-ramp limits (URi and DRi), and the prohibited zones corresponding
to test cases D and E. The B loss coefficients matrix, B0 vector and B00 value for cases
D and E are provided in Tables A6, A7, A8 and A9.



Table A1. Data for test case A - 3 generating units with
smooth function (Wood and Wollenberg 1984).

Unit Pmin(MW) Pmax(MW) a b c

1 150 600 0.001562 7.92 561
2 100 400 0.001940 7.85 310
3 50 200 0.004820 7.97 78

Table A2. Data for test case B - 3 generating units with non-smooth func-
tion (Walters and Sheble 1993).

Unit Pmin(MW) Pmax(MW) a b c e f

1 100 600 0.001562 7.92 561 300 0.0315
2 100 400 0.001940 7.85 310 200 0.042
3 50 200 0.004820 7.97 78 150 0.063



Table A3. Data for test case C - 40 generating units with non-smooth func-
tion (Sinha et al. 2003).

Unit Pmin(MW) Pmax(MW) a b c e f

1 36 114 0.00690 6.73 94.705 100 0.084
2 36 114 0.00690 6.73 94.705 100 0.084
3 60 120 0.02028 7.07 309.54 100 0.084
4 80 190 0.00942 8.18 369.03 150 0.063
5 47 97 0.0114 5.35 148.89 120 0.077
6 68 140 0.01142 8.05 222.33 100 0.084
7 110 300 0.00357 8.03 287.71 200 0.042
8 135 300 0.00492 6.99 391.98 200 0.042
9 135 300 0.00573 6.60 455.76 200 0.042
10 130 300 0.00605 12.9 722.82 200 0.042
11 94 375 0.00515 12.9 635.20 200 0.042
12 94 375 0.00569 12.8 654.69 200 0.042
13 125 500 0.00421 12.5 913.40 300 0.035
14 125 500 0.00752 8.84 1760.40 300 0.035
15 125 500 0.00708 9.15 1728.30 300 0.035
16 125 500 0.00708 9.15 1728.30 300 0.035
17 220 500 0.00313 7.97 647.85 300 0.035
18 220 500 0.00313 7.95 649.69 300 0.035
19 242 550 0.00313 7.97 647.83 300 0.035
20 242 550 0.00313 7.97 647.81 300 0.035
21 254 550 0.00298 6.63 785.96 300 0.035
22 254 550 0.00298 6.63 785.96 300 0.035
23 254 550 0.00284 6.66 794.53 300 0.035
24 254 550 0.00284 6.66 794.53 300 0.035
25 254 550 0.00277 7.10 801.32 300 0.035
26 254 550 0.00277 7.10 801.32 300 0.035
27 10 150 0.52124 3.33 1055.10 120 0.077
28 10 150 0.52124 3.33 1055.10 120 0.077
29 10 150 0.52124 3.33 1055.10 120 0.077
30 47 97 0.01140 5.35 148.89 120 0.077
31 60 190 0.00160 6.43 222.92 150 0.063
32 60 190 0.00160 6.43 222.92 150 0.063
33 60 190 0.00160 6.43 222.92 150 0.063
34 90 200 0.0001 8.95 107.87 200 0.042
35 90 200 0.0001 8.62 116.58 200 0.042
36 90 200 0.0001 8.62 116.58 200 0.042
37 25 110 0.0161 5.88 307.45 80 0.098
38 25 110 0.0161 5.88 307.45 80 0.098
39 25 110 0.0161 5.88 307.45 80 0.098
40 242 550 0.00313 7.97 647.83 300 0.035

Table A4. Data for test case D - 6 thermal units with 26 buses and 46 transmission lines (Yoshida
et al. 2000).

Unit Pmin(MW) Pmax(MW) a b c P 0

i URi DRi Prohibited Zones

1 100 500 0.0070 7.0 240 440 80 120 [210,240][350,380]
2 50 200 0.0095 10.0 200 170 50 90 [90,110][140,160]
3 80 300 0.0090 8.5 220 200 65 100 [150,170][210,240]
4 50 150 0.0090 11.0 200 150 50 90 [80,90][110,120]
5 50 200 0.0080 10.5 220 190 50 90 [90,110][140,150]
6 50 120 0.0075 12.0 190 110 50 90 [75,85][100,105]



Table A5. Data for test case E - 15 thermal units system (Lee and Breipohl 1993).

Unit Pmin Pmax a b c P 0

i URi DRi Prohibited zones

1 150 455 0.000299 10.1 671 400 80 120 -
2 150 455 0.000183 10.2 574 300 80 120 [185,225][305,335][420,450]
3 20 130 0.001126 8.8 374 105 130 130 -
4 20 130 0.001126 8.8 374 100 130 130 -
5 150 470 0.000205 10.4 461 90 80 120 [180,200][305,335][390,420]
6 135 460 0.000301 10.1 630 400 80 120 [230,255][365,395][430,455]
7 135 465 0.000364 9.8 548 350 80 120 -
8 60 300 0.000338 11.2 227 95 65 100 -
9 25 162 0.000807 11.2 173 105 60 100 -
10 25 160 0.001203 10.7 175 110 60 100 -
11 20 80 0.003586 10.2 186 60 80 80 -
12 20 80 0.005513 9.9 230 40 80 80 [30,40][55,65]
13 25 85 0.000371 13.1 225 30 80 80 -
14 15 55 0.001929 12.1 309 20 55 55 -
15 15 55 0.004447 12.4 323 20 55 55 -

Table A6. The B loss coefficients matrix (Gaing 2003) for
test case D.

0.0017 0.0012 0.0007 -0.0001 -0.0005 -0.0002
0.0012 0.0014 0.0009 0.0001 -0.0006 -0.0001
0.0007 0.0009 0.0031 0 -0.0010 -0.0006
-0.0001 0.0001 0 0.0024 -0.0006 -0.0008
-0.0005 -0.0006 -0.0010 -0.0006 0.0129 -0.0002
-0.0002 -0.0001 -0.0006 -0.0008 -0.0002 0.0150

Table A7. The B0 loss coefficients vector and B00 value (Gaing 2003) for test case
D.

B0: -0.0003908 -0.0001297 0.0007047 0.0000591 0.0002161 -0.0006635
B00: 0.0056



Table A8. The B loss coefficients matrix (Gaing 2003) for test case E.

0.0014 0.0012 0.0007 -0.0001 -0.0003 -0.0001 -0.0001 -0.0001 -0.0003 -0.0005 -0.0003 -0.0002 0.0004 0.0003 -0.0001
0.0012 0.0015 0.0013 0 -0.0005 -0.0002 0 0.0001 -0.0002 -0.0004 -0.0004 0 0.0004 0.0010 -0.0002
0.0007 0.0013 0.0076 -0.0001 -0.0013 -0.0009 -0.0001 0 -0.0008 -0.0012 -0.0017 0 -0.0026 0.0111 -0.0028
-0.0001 0 -0.0001 0.0034 -0.0007 -0.0004 0.0011 0.0050 0.0029 0.0032 -0.0011 0 0.0001 0.0001 -0.0026
-0.0003 -0.0005 -0.0013 -0.0007 0.0090 0.0014 -0.0003 -0.0012 -0.0010 -0.0013 0.0007 -0.0002 -0.0002 -0.0024 -0.0003
-0.0001 -0.0002 -0.0009 -0.0004 0.0014 0.0016 0 -0.0006 -0.0005 -0.0008 0.0011 -0.0001 -0.0002 -0.0017 0.0003
-0.0001 0 -0.0001 0.0011 -0.0003 0 0.0015 0.0017 0.0015 0.0009 -0.0005 0.0007 0 -0.0002 -0.0008
-0.0001 0.0001 0 0.0050 -0.0012 -0.0006 0.0017 0.0168 0.0082 0.0079 -0.0023 -0.0036 0.0001 0.0005 -0.0078
-0.0003 -0.0002 -0.0008 0.0029 -0.0010 -0.0005 0.0015 0.0082 0.0129 0.0116 -0.0021 -0.0025 0.0007 -0.0012 -0.0072
-0.0005 -0.0004 -0.0012 0.0032 -0.0013 -0.0008 0.0009 0.0079 0.0116 0.0200 -0.0027 -0.0034 0.0009 -0.0011 -0.0088
-0.0003 -0.0004 -0.0017 -0.0011 0.0007 0.0011 -0.0005 -0.0023 -0.0021 -0.0027 0.0140 0.0001 0.0004 -0.0038 0.0168
-0.0002 0 0 0 -0.0002 -0.0001 0.0007 -0.0036 -0.0025 -0.0034 0.0001 0.0054 -0.0001 -0.0004 0.0028
0.0004 0.0004 -0.0026 0.0001 -0.0002 -0.0002 0 0.0001 0.0007 0.0009 0.0004 -0.0001 0.0103 -0.0101 0.0028
0.0003 0.0010 0.0111 0.0001 -0.0024 -0.0017 -0.0002 0.0005 -0.0012 -0.0011 -0.0038 -0.0004 -0.0101 0.0578 -0.0094
-0.0001 -0.0002 -0.0028 -0.0026 -0.0003 0.0003 -0.0008 -0.0078 -0.0072 -0.0088 0.0168 0.0028 0.0028 -0.0094 0.1283



Table A9. The B0 loss coefficients vector and B00 value (Gaing 2003) for test case E.

B0: -0.0001 -0.0002 0.0028 -0.0001 0.0001 -0.0003 -0.0002 -0.0002 0.0006 0.0039 -0.0017 0 -0.0032 0.0067 -0.0064
B00: 0.0055


