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Abstract: Most current approaches in the evolutipmaultiobjective optimization literature
concentrate on adapting an evolutionary algoritlongénerate an approximation of the
Pareto frontier. However, finding this set does switve the problem. The decision-maker
still has to choose the best compromise solutidnobthat set. Here, we introduce a new
characterization of the best compromise solutioa ofultiobjective optimization problem.
By using a relational system of preferences based multicriteria decision aid way of
thinking, and an outranked-based dominance gematin, we derive some necessary and
sufficient conditions which describe satisfactoppeximations to the best compromise.
Such conditions define a lexicographic minimum dbiabjective optimization problem,
which is a map of the original one. TRNEOSGA-IImethod is &NSGA-Ilinspired efficient
way of solving the resulting mapped problem.
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1. Introduction

In real-world optimization problems, the decisioakar DM) is usually concerned with
several criteria which determine the quality ofusimns. Therefore, many optimization
problems need to be represented from a multipleablve perspective.

As a consequence of the conflicting nature of titerga, it is not possible to obtain a single
optimum, and, consequently, the ideal solution afwdtiobjective problemNIOP) cannot
be reached. Unlike single-objective optimizatidme best solution of 8OP is not well-
defined (i.e., it is not defined from a purely matiatical point of view). To solve MOP
means to find the best compromise solution accgrtiintheDM’s particular system of
preferences (value system). Since all the compmnsslutions are mathematically
equivalent, theDM should provide some additional information for chimg the most
preferred one (cf.15]). Such information can be provided before or atiter optimization
method generates compromise solutions, or the gsocan be interactive, performing a
progressive articulation of tHeM’s preferencefl5).

Multi-Objective Evolutionary Algorithms MIOEAs) are particularly attractive to solve
MOPs because they deal simultaneously with a set sfiple solutions (théMOEAs
population) which allows them to obtain an appraadion of the Pareto frontier in a single
algorithm’s run. Thus, by usingiOEAs theDM and/or the decision analyst does not need
to perform a set of separate single-objective agations (as normally required when
using operations research methods) in order to rgemecompromise solutions.
Additionally, MOEAs are more robust regarding the shape or contioditiye Pareto front,
whereas these two issues are a real concern foatapes research optimization methods
(cf. [3]). Several types of MOEAs currently exist, rangfrgm those that adopt different
variations of Pareto-based selection (see for el@nip9,30]) to the use of scalar
subproblems which are simultaneously optimized (®@eexample [31]), with several



intermediate proposals that introduce clever modiions to well-known MOEAs that are
aimed to improve their performance (see for examfd2,33,34,35,36]). However,
according td5, 7, 1Q, one aspect that is often disregarded inMI@EAS’ literature is the
fact that the solution of a problem involves notyothe search, but also the decision
making process. Most current approaches in theugweakry multiobjective optimization
literature concentrate on adapting an evolutiorsgprithm to generate an approximation
of the Pareto optimal set (f]). Nevertheless, finding this set does not completelve
the problem. ThéM still has to choose the best compromise solutianobthat set [5,
29] . This is not a difficult task when dealing witmoplems having 2 or 3 objectives.
However, as the number of criteria increases, timgertant difficulties arise:

a) The algorithm’s capacity to find this Pareto frentquickly degrades (e.f28));

b) It becomes harder, or even impossible for Eié to establish valid judgments in
order to compare solutions with several conflictongeria;

c) The cardinal of a representative portion of thevkmdPareto frontier may be too
large; the approaches from the field of multicrdaedecision analysis do not perform
well on such large decision problems, making difiito obtain a unique solution.

To overcome the above criticisms, [(t0] we proposed the use afpriori articulation of
preferences by creating a fuzzy outranking relatiohowed by a generating process of a
subset of the Pareto frontier. Using such a fuzayramking relation, a strict (crisp)
preference relation is established on any populatio theNOSGAmethod (cf[10Q]), that
preference relation is used instead of dominancenwderforming the evolutionary search.
In some 0-1 knapsack examples with 4-9 objectiwespbtained a privileged zone of the
Pareto frontier, composed of relatively few, coricated, and satisfactory solutions (cf.
10]). However, a typicaDM is only able to process from five to nine piecékrmwledge

at a time (cf[18]), being thus unable to identify the best comprensisiution when he/she
needs to compare what still seems a relatively Issuddset of compromise solutions in
problems having more than 5-9 objectives. In swases, the progressive (interactive) and
the a posteriori articulation of DM’s preferences can be very hard to use due to these
human cognitive limitations. Improving the priortiaulation of preferences becomes
necessary in order to approach the best comproamsmng the objectives. THAOEAS
selective pressure towards the best compromiséi@olshould be increased. But this is not
possible without a good mathematical model of thiecept of aMOP's best compromise.
Some recent proposals have been performed in tod@icorporateDM’s preferences in
multiobjective optimization (cf[10, 26). In this work, our previous proposdll(]) is
enhanced. The model &M’'s preferences is better than before, and a goedrétical
characterization of the best compromise solutioacdlsieved. Using this characterization,
we improve convergence to a privileged zone onPtieto frontier. This makes easier the
solution of problems with many objectives.

The remainder of this paper is structured as fadtowAn appropriate concept of “best
compromise solution” for a vector optimization plerh is discussed in Section® model

of a relational system of preferences based onyfazaranking relations is presented in
Section 3. Section 4 contains a bi-objective charaation of best compromise solutions.
Supported by this background, our algorithmic psgd@NOSGA-1) is presented in Section



5, and it is illustrated by an example in SectiorFthally, we present some concluding
remarks.

2. The best compromise solution: What does it mean, agtly?
Let us consider MOP of the form

Maximize F= (fi(2), f2(2),... fn (2) 1) (

ZURe
in which z denotes a vector of decision variables &tdis determined by a set of
constraints.
The action of maximizing in (1) is ill-defined. Froa normative point of view, assuming
the existence of a value functi@h(fi(2), f2(2),... f, (2)) which agrees with thBM’s system
of preferences, the “best” solution of (1) shoutldbtained by maximizing on Re (cf.
[20, 2G). Unfortunately, the practical value of this stant is strongly limited for several
reasons. The existence of such value functionstigmaranteed for re@lMs (seq23, 24)
for a discussion of the practical limitations ofcd#on actors). Moreover, even if tiEv
approached an ideal normative behavior, it woulexteemely difficult, if not impossible,
to specify his/her value function.
Other authors elude a formal definition. AccordingOzyczka [22]), solving (1) is to find
a feasible solution which gives the values of la# bbjective functions acceptable to the
DM. Thus, the best compromise solution is seen uadeacceptability criterion, although
an idea based on some kind of optimality shouldnloee appropriate. Ifil6] Hwang and
Masud define the best solution as a good compemiisch is accepted by th#M as the
final solution. According to this definition, th@rcept of best compromise is relative to the
set of solutions which is generated by the algoritnd depends on the effort dedicated by
the DM to compare compromise solutions. Coello et [dl]) (state the need of selecting a
compromise solution satisfying the objectives best” possible. Hakanan et dl1%])
identify the best compromise as the compromisetisolwhich is the most preferred one.
Such statements are acceptable from an intuitiviet pof view, but a mathematical
formalization is needed in order to make them Ud®fian evolutionary search.

In the following, we attempt to give a formal chaexization of a best compromise
solution to (1).

Let us denote b® the image oRr in the objective space mapped by the vector fundtio
An elementx [0 O is a vectorX, ... X, ), wherex; is thei-th objective function value.

First of all, we define the concept of compromistuson: Letw be a Pareto solution for
Problem (1); we say that is a compromise solution ¥ reaches a minimum acceptable
value fori=1,...n. Below, we introduce an operational approach st bempromise.

Let us suppose that tHeM is comparing a representative set of compromisetisns
suggested by some method for solving Problem (&)slalso assume that is a good
compromise solution being considered by bl. If the DM cannot identify other
compromise solution which he/she judges to bee@st) slightly more satisfactory thah,
then this may be chosen as the final solution fobRem (1).



Definition 1: A compromise solutior* is a best compromise solution@1/ O iff there is
no y/7 C such that th®M considers that Y is at least as good &$” and simultaneously
he/she rejects (or doubts about) the statemghts$ at least as good g5

The above characterization matches with the nowmatlefinition based on a value
function. If U is a value function for th®M andU(x*) = max (U (x)), there is noy such
thatU(y) > U(x*) .

Let the predicat&,y) be “theDM considers that optiox is at least as good gsdefined
on Ox0O. The logic negation dix,y) (denoted by not §x,y)) corresponds to the statement
“the DM disagrees (or partially disagrees) withs at least as good &5 . A conjunction
Sx,y) O. not y,X) is related to certain asymmetric preference fiagooptionx overy.
Besides, not §x,y) (0. not §y,X) corresponds to a descriptive situation in whigka DM
or decision actor cannot (or does not want to) makdecision when he/she is comparing
(x,y).These hesitations may come from any of the falhgweasons:
- the DM is a vaguely defined entity, or even a well-definentity with poorly
defined preference rules (§24));
- the existence in thBM’s mind (if theDM is a real person) of certain “zones” of
uncertainty, imprecise beliefs, conflicts and cotimqgeaspirations[@4]);
- the existence of imprecise attribute values.

In [23] Roy described situations concerning this non-idestiavior from real decision
actors by using a relational system of preferecoesposed of several binary relations. The
definitions from[23] are given below:

1. Indifference: It corresponds to the existence of clear andtpesreasons that
justifies equivalence between the two actions. Nataxly.

2. Strict preference: It corresponds to the existence of clear andtpesteasons that
justify significant preference in favor of one (idiied) of the two actions. The
statemenk is strictly preferred ty is denoted byPy. P is asymmetric and non
reflexive.

3. Weak preference It corresponds to the existence of clear andtpesieasons in
favor of x overy, but that are not sufficient to justify strict peeence.
Indifference and strict preference cannot be distished appropriately. This is
denoted by Qy. Q is asymmetric and non reflexive.

4. Incomparability : None of the preceding situations predominatesit T$) absence
of clear and positive reasons that justify anyhsd above relations. Notation:
XRy. Ris symmetric.

5. OQutranking: It corresponds to the existence of clear andtpesireasons that
justify the statementx‘is at least as good &35 but with no significant division
being established among the situations of striefiepence, weak preference and
indifference. NotationxSy.

6. K-preference It corresponds to the existence of clear andtpesreasons that
justify strict preference in favor of one (iderwifiy of the two objects or
incomparability between the two objects, but with significant division



established between the situations of strict pesfee and incomparability.
Notation:xKy. K is asymmetric.

7. Nonpreference It corresponds to situations in which indifferencand
incomparability are both possible, without beindeato differentiate between
them. This is denoted bgfy. [1is symmetric.

Let us introduce an asymmetric preference relafips P /7 Q /7 K. CombiningAs with
Definition 1 we can suggest another characterinatiothe final solution for Problem (1).

Definition 2: (second characterization of a best compromise):d.de a subset oD.
Suppose that for each,y) [1 CxC one and only one of the following statementsustr

i) XApy
1)) YARX
i) Xy
iv)  XRy
V) X[y

X* is a best compromise solution@iff there is noy CJC such thaty/Ap x*.

Note that several best compromises may exiS€CoBesides, a best compromise may not
exist onC. That possibility arises when each paiy) JCxC belongs to some cycle dfp.
When the seC is the whole objective spa€® the above characterization may be used to
approach a suitable most satisfactory solutionFiablem (1). This should be one of the
best compromise solutions @. In practical situations, thBM always expresses his/her
preferences on a proper subse©ofSo, in fact it is not possible to guarantee thatfinal
solution obtained of is the real best solution. A best compromise olethionC [J O is an
approximation to the best solution of (1). Nevelgks, whenC is representative of the
satisfactory zone of the Pareto frontier, a bestmomise defined o€ may be sufficiently
close to the best solution of (1).

3. A model of the relational system of preferences bad on fuzzy outranking
relations.

The model ofDM’s preferences may be enhanced by considefifxgy) as a fuzzy
predicate. Fuzzy binary preference relations argoad compromise between value
functions and crisp preference relations; fuzzyatrehs are numerical, such as value
functions, but their power of expressivity is highgince they can easily model
incomparability and non-transitivity (df13)).

In the following, we consider that there is a methfor assigning a degree of trudkix,y)

in [0, 1] to the predicat&(x,y). Outranking methods such as ELECTRE-III (&4, 29)
and PROMETHEE (cf[2]) may be used. Ona#Xx,y) has been calculated, it can be useful
for modelling the crisp preference relations defime Section 2. Let us considdr 0.5 a
threshold of acceptable credibility for tis&epredicate. Let's consider also an asymmetry
parametel? and a symmetry parameter(0<e<f<A). A strict preference relatioxP(A,H)y
can be justified if at least one of the followingnditions is held:

I. X dominatesy



. ax,y)>A00o(yx)<0.5
jii. o(x,y)>A0(0.5< g(yx)<A) O(axy) - ay,x))>8

An indifference relatiorxI(A,£)y can be justified if 11 and 12 are both satisfied:
11. a(x,y) > A O o(y,x) 24
12. | o(x,y) - alyx)| < €

A weak preference relatiorQ(A,5,€)y is a consequence of the conjunction of three
propositions:

A. alxy)zAUOaxy) > ayx)
B. Xx.not RAB)y
C. x.notl(Ag)y

A K- preference relationK(A,HQ)y is modeled by the conjunction of the followingdar
propositions:

Al. 0.5 0(xy) <A
Bl. o(y,x) <0.5
Cl. (alx\y) - aly:x)) >[32

where Condition C1 has been included in order flececertain asymmetry which justifies
a sort of preference favoring This agrees with Point 6 of Section 2.

The incomparability relatiorRy is defined byo(x,y) <0.5 0 o(y,x) <0.5.

Definition 3: Let &’ denote a specific settlement of paramefes £ (1>0.5 >8 >¢ >0). We
say that?is preferentially consistent ifP(1,9), 1(1,£), Q(A,5,9), K(A,H) agree satisfactorily
with P, 1 Q, Kin the sense of Points 1, 2, 3, 6 of the prevaadion.

In the following, we suppose thatis preferentially consistent (Assumption 1). Based

this, we shall reduce Problem 1 to a biobjectivanoigation problem, regardless of how
many objectives compose the original formulatioiilin

4. A biobjective characterization of a best compromisesolution
The next three definitions have been adapted {ih

Definition 4: Let C be a subset dD. If there does not exist] C such thatyP(A,0)x, we
say thai is a#’—non strictly outranked solution @.

Definition 5: P(A,[) is said to be free of inconsistencies iff there ao cycles of that
relation inO.

Definition 6: P(A,0) is said to be minimally free of inconsistenciesiif there does exist
at least ong”non-strictly outranked solution iD.



Definition 7: Let C be a subset dD. For eachx in C, let us define the set af-strictly
outranking solution$:)x = {y UJC such thatP(1,8)x}. card (&) is its cardinal, an integer
function depending ow. Obviously, if x is ag-non-strictly outranked solution i® then
card (9)x=0.

The following result has been adapted frid@]:

Proposition 1: The set of~non strictly outranked solutions @ is a subset of the Pareto
frontier.

The proof is very simple. If the set gfnon-outranked solutions i® is empty, it is a
proper subset of the Pareto frontier. Otherwiseskauld prove that
a is ag-non strictly outranked solution i@ = a is a Pareto solution.

Suppose thad is dominated byl O. By definition ofP(A,5) we havebP(A,/)a. Henceb
F-strictly outranksa in contradiction with the hypothesis.

The reciprocal of the above proposition is falseay be a Pareto solution while beirs6
strictly outranked by, simultaneously. It suffices to finadsuch thabP(A,f)a by satisfying
Pointii oriii in the above definition ofP(1,5) (Section 3). In such cases the setfafion
strictly outranked solutions is a proper subsahefPareto frontier.

Definition 8: The sefNs={x [JO such thatard (%)x = Gtwill be called thez-non strictly
outranked frontier of Problem 1.

Note that according to Def. 6,Ff(A,5) is minimally free of inconsistencies the Bktis not
empty. This is empty only if every pak,y) [1 OxO is in some cycle dP(A,0).
The following proposition is trivial:

Proposition 2: Under Assumption 1, a best compromise solutiorPi@blem 1 is some*
[/Ns.

Proof:
Suppose that*is a best compromise ant //Ns. Then there iy O O such thayP(A,5)x*.
SinceZ’is preferentially consisteny,is strictly preferred ta*. This is a contradiction with

our characterization of a best compromise give®éfmition 2.

Definition 9: Let C be a subset dD. For eachx in C, let us define the set gf-weakly

outranking solutiongWe)x = {y OC such thatyQ(A,5,£)x or yK(A,0x }. card (W) is its
cardinal, an integer function dependingxon

Definition 10: Let C be a subset dD. x [I C is a7-non weakly outranked solution @ iff
card (§)x =card (We)x = 0.



Definition 11: Let Ap(A,5,€) be equal toP(A,H5) L7 QA,B,6 LT K(A,P). As(A,5,€) is said to be
minimally free of inconsistencies on a $2tJO iff there does exist at least og&non
weakly outranked solution iG.

Proposition 3: Under Assumption Ix*is a best compromise solution for Problem Ixiff
is an ideal (0,0)-solution of the problem

Minimize (card(S)x, card (Wb)x ) (2)
X770

Proof:
Since x*is a best compromise solution for Problem 1, thisreno y/O such that
YAR(A,B,€)x*. Hencecard(S)x = card (Wo)y- =0.

On the other hand

card(S)x+ =0 = there is ny/JO such thayP(A,[)x*.
card(Wb)x+ =0 = there is ny/ 0 such thayQ(A,5,&)x*.
card(\b)x» =0 = there is ngy/ZO such thayK(A,B)x*.

Under Assumption 1 and according to Definitionx2is a best compromise solution for
Problem 1.

Remarks I:

1. Although its proof was trivial, Proposition 3 is amteresting result. Accepting
Assumption 1, Problem 1 is transformed into a l@otiye problem, regardless of
the dimension of the original objective space. Best compromise solution exists
(in the sense of Definition 2) it should be thealdeolution for Problem 2. Besides,
each pointx* /7 O with card(S)« = card (Wb)x» =0 might be chosen as the final
solution for Problem 1.

2. Under Assumption 1, there is a best compromisePimblem 1 iff Ap(A,5,€) is
minimally free of inconsistencies @

3. Suppose that (0,0) is not a solution for ProblemTRBis implies an incorrect
assessment obp(A,5,£). The DM has two choices: i) To select the “best” non-
dominated solution for Problem 2 as the final solufor his/her original problem,
or ii) To modify the parameter settlement®e{A,5,¢).

4. Any multiobjective evolutionary algorithm may beedsto solve Problem 2.

Def. 10 may be used for distinguishing a best camgse inNs. Let us fix our attention on
this set. Let us define the set#hon weakly outranked solutions Mg, that isNw= {y O
Ns such thatard (Ws)y = 0}.

Proposition 4: Under Assumption 1, a best compromise solutiofipfs somex* //Ny.

Proof:
Suppose that*is a best compromise: Henlle andNy are not empty (Remark 2).



x*[J Ns from Proposition 2 and suppose also ttfat] Ny . Then, there ig O Ns such that
YAR(A,B,€x*. This is a contradiction with the characterizatadra best compromise given
by Def. 2.

Proposition 5: Under Assumption 1, ik*is a best compromise solution for Problemx*,
is an ideal (0,0)-solution for the problem:

Minimize (card(Sp)x, card (Ws)x) (3)
X770

Proof:
Sincex*is a best compromise solution for Problem 1, fraimpBsition 3card($)x+ = card

(Wo)x+ =0. Obviously, ifC/7Othen card (W) < card (Wb)x. Hencecard (W g)x+=0.

As a consequence from Proposition 5, a best conmipeogolution can be found through a
lexicographic search, with preemptive priority fawg card(S)«. It is consistent with the
fact thatP(A,/ models the asymmetric preference information bdttan Q(A,5,€) or
K(A,0). This becomes more important when Assumption iniguestion. In practical
situations théM may not be confident with the fuzzy outranking mlogiven bya(x,y) or
with a specific settlement of the model’s parangtarcluding(4,5,£). Changes in these
parameters may modify thBeM’s belief about the adequacy of Assumption 1. OB th
background, it is convenient to introduce the fwilag definition:

Definition 12: x* is a #*-best compromise solution @/7 O iff there is noy/C such that
YAR(A. B E)X*.

Remarks II:
1. Propositions 2-5 remain valid when the notiorf/afest compromise is used instead
of the previous concept given by Definition 2.
2. (0,0)-ideal solutions for Problems 2-3 ag&best compromise ones. They may

approximate best compromise solutions for Probless inuch a#e(A,5,¢) is close
to the actual asymmetri2M’s preference.

3. In practical situations the decision maker supmblig a potential decision analyst
should assess the set of model’s parameters inclode(A,5,6) ando. This is not
an easy task, since decision-makers usually havkcutlies in specifying
outranking parameters and require an intense supyor decision analyst. To
facilitate this process, the palDM-decision analyst can use the preference
disaggregation-analysisPDA) paradigm (cf. [17]), which has received an
increasing interest from the multicriteria decissupport communityPDA infers
the model's parameters from holistic judgments med by the DM. Those
judgments may be obtained from different sourcest(pecisions, decisions made
for a limited set of fictitious objects (actionsy, decisions taken for a subset of the
objects under consideration for which b can easily make a judgment ((8]).



In the framework of outranking methoB®A has been recently approached[8y
11].

4. The non-existence of #best compromise when usidg(A,3.€) does not imply the
non existence of a best compromise solution acegrdd Definition 2. A best
compromise may exist under other asymmetric preteerelations. Hence, the
algorithmic search should be able to generate isoliteven ifAq(A,5,£€) is not
minimally free of inconsistencies.

Proposition 6: Suppose that the set @tbest compromise solutions for Problem 1 is not

empty. Under Assumption &* should be chosen as the best solution for Protlemly if
it is a7*~best compromise solution.

This proposition can be justified as followsxif is not a7-best compromise solution, then

there is ay such thatyAex*. Under Assumption 1, thBM should feel certain preference
favoringy, thus questioning* as the best solution

Remarks Ill :

1. In practical situations, the value of the informaticontained inAp(A,5,€) is a
central issue. ThBM should be confident with respectRgl,f). This means that a
strictly outranked solution should not be the fisalution for Problem 1. Such
remark allows “filtering” theMOP's Pareto frontier, thus obtaining a privileged
portion of the nondominated set. However, a noweatise ofQ(A,5,&)andK(A,p) is
more questionable due to i) the cognitive limitai®f real decision-makers, and ii)
some model imprecisions. Hence, Xf(I Ns, then yAs(A,5,£Xx may not be a
sufficiently strong argument to discard. More information could be needed to
perform a reliable comparison.

2. Ap(A,B,¢) is created by comparing pairs of actions with eespo the set of criterion
functions. Thereforeg(x,y) only contains information about the vectéié«) and
F(y). If card (Ny) > 1, then there is no reason based\eil,5,£) which allows us to
distinguish the best final solution. T confidence on thé*best compromises
may be enhanced by using additional informationaoed in the fuzzy outranking
relation, namely some quality measure obtained francomparison of each
particular solution with the remaining ones which potential candidates to be the
final solution

3. Whencard (Nw)= 0 beingcard (Ns)#0, there is not @*best compromise solution
for Problem 1. The information containedKkinlQ is not consistent. THeM should
use the above discussed additional informationrdeoto select the final solution
from Ns.

Here, we suggest to use the outranking net flowescbhis is a very popular measure to
rank a set of alternatives on which a fuzzy prefeeerelation is defined (cf13]). If a(x,y)

is a fuzzy preference relation on a Agthe net flow score associatedaiGA is defined as
Fn(@) = 2 caga [O(a,C) - 0(c,a)/. Note thatFy(a) > Fn(b)is an asymmetric and transitive
binary relation ornC, also indicating some kind of preference on tleis So, the net flow
score may be used to select the most satisfactduyian when theDM is not sufficiently



confident onAp(4,5,€). Guimaraes, Massebeuf et al. and Fernandez ¢f1al. 14, 19)
have used the net flow score in the context of imhjkctive evolutionary algorithms.

Definition 13: Let C be a subset d and F.(a), the net flow score associateda6C . For
eachx in C, let us define the set of net flow outranking sauos (Fc)x = {y JC such that
Fa(y) >Fn(X)}. card (Fo)x is its cardinal, an integer function dependingon

Taking into account the net flow score informatiare propose to select the best solution
for Problem 1 from the nondominated set obtainethfr

Minimize (card(S)x, card (Wis)x, card(Fus)x) 4)
x/[70

Note that the preemptive priority favoriegrd(S) is kept by Problem 4.

Generally,Nsis not emptyP(A,p) is not minimally free of inconsistencies @n(usually a
very large set) only if each pair @O is on a cycle of that strict preference relatiohisT
condition is very hard with high values dfand 5. Nevertheless, wheNs is empty, the
decision maker can set higher values for thosenpetexs in order to break some cycles of
P(A,0), thus making this relation minimally free of inc@tsncies.

As a generalization of (4), this approach worksneWwehe asymmetric preference relations
do not hold the minima consistency property. Wegssgto solve the problem:

Minimize (card(S)x, card (Ws)x, card(Fs)x) (5)
x[70

with preemptive priority favoringcard(S). B is the set{y/O such thaty = arg min
card(Q)x}. Sincecard(S)x is boundedB is always not emptyB=Ns when P(A,0) is
minimally free of inconsistencies. Whe@(A,5,¢) O K(A,0) is also minimally free of
inconsistencies oNs, a#-best compromise solution may be obtained by Bgl{d) giving
preemptive priority tacard (W\)x.

5. Adapting the NSGA-II to solve Problem 5the extendedNOSGAmethod

For solving (4-5) we propose a method inspired l@aNSGA-I1I (cf. [6]), but a) making
selective pressure toward thBnon-strictly outranked frontier, and b) looking for
nondominated solutions obtained from minimizirgargd (Ws)x, card(Rs)y). In fact, the
antecedent of this method was caldM@SGAby [10], acronym fromNon-Outranked-Sorting
Genetic Algorithm.Its main idea is similar ttNSGA-I| but working with #=non strictly
outranked individuals instead of nondominated onég. “filtering” process is similar, but
extractingZ=non strictly outranked individuals which form cdas with the same value of
card (S). Such process guarantees the lexicographic priafitthe first objective in
Problems 4-5. As in thESGA-I| when in binary tournamentsird (S)x < card (Sp)y the
first individual is chosen. Unlike typicdIOEAs, we are not interested in obtaining a



uniform distribution of solutions representing thareto frontier. Therefore, instead of the
NSGA-lIs crowding distance (or another density estimatéw) eachx in the current
population, we propose to use a merit measure ek, = card (Won)x + card(Front)x
(frontis the set composed byand the individuals with the samard (S)x . That is, when
two individual with equakard(S) are compared (in binary tournaments or deciding wh
will be included into the new generation), the tegswill be preferred. The goal is to
increase the selective pressure towards most @etigf solutions looking fo~non
strictly outranked solutions with good valuescafd (W) and card(Fs). The pseudocode
of this extendedNOSGAmMethod is shown below:

PROCEDURE NOSGA-II (L, Number_of_Generations)
Initialize Population P
Generate random population with size L
Evaluate objective values
Evaluatecon PxP
For eachx O P, calculate card ¢}
Generate fronts of equal values of card (S
Assign to these fronts a rank (level) based on (&l
FOR each rank; DO
for eacl C;, calculate card (\3/)x, card(k:i)x, N
End FOR
Generate Child Population Q with size L
Perform Binary Tournament Selection
Perform Recombination and mutation
FOR | =1 to Number_of Generations DO
Assign P’=PR1 Q
Evaluateron PxP’
FOR each parent and child in P’ DO
Calculate card b
Assign rank (level) based on carg) (S
Calculatg
Loop (inside) by adding solutiongte
next generation until L individudlave been found
End FOR
Replace P by the L individuals found
Generate Child Population Q with size L
Perform Binary Tournament Selattio
Perform Recombination and mutation
End FOR
End PROCEDURE

In comparison wittNOSGAthe main differences are: a) Finding the norcsyroutranked
frontier, NOSGAsolves a single-criterion optimization problem)y NDSGA-Ilis based on
an enhanced theoretical characterization of mastfaetory solutions foMOPSs; c) the use
of Q(A,5,&andK(A,H) in NOSGA-I] d) as a consequence of points b) andN®SGA-II
promises an increase of the selective pressureadativa best portion of the Pareto frontier.



6. An illustrative example

Let us consider a decision making situation in \whtbe DM is choosing amond’
different public policies (projects) each with aedit social impact. This is measured by
using a nine-component vectdli( Np,.... N). Ni = n; denotes the number of people
belonging to thé-th social category which receive thth benefit level from that policy or
project. In this examplk= 1, 2, 3 correspond to (Extreme Poverty, Povéviigldle), andj
=1, 2, 3 to (High Impact, Middle Impact, Low Impad\;, N;, N3 correspond to extreme
poverty peopleN;, Ns, Ng concern middle class. For example, consider théovdd000,
0,0, 2000, 0,0,0, 1500, 0) associated to a paatiquioject. This means that 1000 extreme-
poverty people and 2000 poor people receive highach benefits from the project;
besides, 1500 middle-class people receive middpact benefits from the same project.
Note that these quantities can be added when afsptojects is considered. In the
following N;" denotes the value o associated to tha@-th project. C' denotes a portfolio
(a subset of the’ projects which receives financial support). ThiigafN; for the whole
portfolio isN; (C’) = xa Ni* + ... + x. N\ wherex; = 1 if thej-th project is supported ang
= 0, otherwise. The set of applicant projects imposed of 100 proposals. The aim of this
decision problem is to choose the “best” portfasiatisfying some budget constraints.
Formally, the problem is:

Maximize (N(C"), No(C),.... Ny(C")) (6)

C [JRe

whereRe is a feasible region determined by budget condsai
Budget constraints are imposed by the class ofeptofeducational, health, etc.),
geographic region and to the whole portfolio. Tlogalt available budget was set as
Total_budget= 2.5 billion dollars. The constraibysclass and region are given by:
0.3 Total_budgek Budget_Class ¥ 0.4 Total_budget
0.25 Total_budgek Budget_Class 2 0.35 Total_budget
0.2 Total_budgek Budget_Class 8 0.3 Total _budget (7)
0.4 Total_budgek Budget_Region ¥ 0.6 Total budget
0.4 Total_budgek Budget_Region Z 0.6 Total _budget

The degree of trutla(x,y) of the statementx‘is at least as good &5 is calculated as in
ELECTRE-III method, that is:

alx,y) = c(xy). N(d(x.y)) (8)

where:

c(x,y) denotes the degree of truth of the concordanediqate;
N(d(x,y)) denotes the degree of truth of the non-discardamedicate.
We shall take

(xg)= 2w (9)
JOCxy
whereCy is the concordance coalition awsb denote “weights”v1 + wao+ ... + wp = 1).



Let Dyy be the discordance coalition witl8y. The intensity of discordance is measured in
comparison with a veto threshold which is the maximum differenggx compatible with
a(x,y)>0. As in[10] we shall use here:

Xc)) = min /1 —d(x.y) / (10)
j 7Dy
1 iff0 2y
di(x.y) = G-w) (v—uw) iff y< <y (11)
0 ifﬂ]j < U

wherel]; =y;-x; andy; is a discordance threshold (see Figure 1).

dxy)

Yi

v

Xty X + Y
Figure 1 Partial discordance relatig(x,y)

We use binary encoding; a ‘1’ in the individyalh allele means that theth project
belongs to this particular portfolio. Other paraemstof the evolutionary search are:
crossover probability = 1; mutation probability B; population size = 100.

Preference model parameters:

Taking into account the importance of each objegtitie normalized weights were settled
by the decision-maker as (0.23, 0.14, 0.11, 0.141,00.07, 0.09, 0.07, 0.04). The
indifference thresholds were calculated as a measiuthe error evaluating each objective,
which was assessed as the 15% of its maximum \aluthe set of projects. The veto
thresholds were settled as 0.5*(Max-fMin f;)) as in some applications of ELECTRE
methods (cf[21]); operations Max and Min act on a populatiBid,5) andQ(A,5,&) were
obtained by settind= 0.67, 4= 0.2, &=0.1.

We experienced with five random instances. Codédicrosoft Visual C# 2005
(framework 2.0), the average run time was 5.1 neisain a laptop computer with 1.66

GHz Intel® Core™ 2 Duo microprocessor, 2 GB RAM BB¥z DDR2, 120GB hard disk,
and Windows® Vista Business.



The (known)#’-non outranked frontier of one random instance isf pnoblem is shown in
Table 1. The objective values are given in thousand

Table 1: Approximation to th& —non strictly outranked frontier

Portfolio N; N, N; N4 N5 Ns N- Ng Ny Card(W) F,
1 820 620 675 1,095 1,005 810 1,086 660 630 0 1.81
2 820 645 655 1,155 1,005 780 990 636 726 2 1.32
3 820 685 610 1,095 1,005 780 1,050 636 672 7 0.99
4 820 665 625 1,155 1,020 780 990 636 720 2 0.95
5 820 690 610 1,155 960 780 1,026 642 720 4 0.91
6 820 690 605 1,155 960 780 1,050 600 720 4 0.85
7 820 620 655 1,155 1,035 750 1,014 636 714 2 0.47
8 820 690 625 1,155 990 780 990 642 720 4 0.46
9 820 695 590 1,155 1,035 735 984 636 720 3 0.16
10 820 730 555 1,095 1,080 690 1,044 624 672 3 0.13
11 820 630 655 1,155 1,020 750 1,014 636 714 0 0.05
12 820 710 625 1,095 1,005 780 1,014 642 672 5 0.03
13 820 615 675 1,095 960 840 1,086 660 582 0 0.00
14 820 665 610 1,155 990 780 1,026 636 720 5 0.27
15 820 675 635 1,155 975 780 990 636 726 4 0.49

Ideal 820 740 830 1,260 1,095 1,065 1,104 696 870
Nadir 300 335 420 570 570 510 540 264 438

Card(W)andF, are calculated oNs

Portfolios 1, 11 and 13 hold the necessary conubtio be7-best compromise solutions @n

Portfolio 1 is the single nondominated solution froblem 4. If theDM were not
confident with respect tQLIK, he/she might consider also Solution 2.

Those 15 solutions were compared with ten runN@SGA In the followingN1 denotes
the set of non strictly outranked solutions obtdibby NOSGAIn its kth run. N2 is the set
shown in Table 1U will denote the union set dfil, and N2, and NO, the non-strictly
outranked set itd. Some results are pointed-out in Tables 2-3.

Table 2. Net flow score cddted onU (NOSGA versus NOSGA-II)

Set Average| Minimum Maximum
N1, -29 -3.3 -2.3
N2 0.5 -0.4 1.2
N1, 2.1 -4.1 -0.5
N2 0.8 -0.1 1.6
N13 -2.2 -4.9 0.0
N2 2.2 0.3 4.7




Set Average| Minimum Maximum
N1, 3.7 -5.0 -0.9
N2 2.0 0.1 3.0
N1s 2.0 -4.5 0.0
N2 2.0 -1.5 4.8
N1s -3.4 -5.8 1.0
N2 3.9 0.8 5.6
N1; -2.4 -4.7 -0.5
N2 1.2 0.0 2.1
N1s -1.0 -2.9 14
N2 0.5 -0.8 2.6
N1g 2.7 -4.7 -0.6
N2 0.5 -0.8 1.7
N110 -2.6 -7.1 0.1
N2 3.1 0.4 5.5

Table 3. Robustness of dtid N2 (NOSGA versus NOSGA-II)

Run| Card (N1) [ Card (NX n NOy) | Card (N2n NOy)
15
15
15
15
15
15
15
10
15
13

OIO|IFRLINFPWFLOOoIo

3
6
15
8
15
17
8
8
3
18

BSlo|o|Njo|ua|s|w|Ne

The following remarks come from Tables 2-3:

First: The net flow score of solutions BNOSGAIs very low compared with those obtained by
NOSGA-II Eight times to ten the worst solution in N2 oufpans the best solution in N1

Second: Only three solutions BOSGAremain non-strictly outranked i (third column of Table
3, fifth run). In comparison, ten solutions comiingm a singleNOSGA-IIrun (Table 1) are non-
strictly outranked in that union set.

An approximation to the Pareto front was obtainedthe same five instances using the standard
NSGA-I| which is still the benchmark in evolutionary nioitective optimization (e.d1, 27, 2§).

In the following, NO, and ND, will denote the best front obtained BYOSGA-Iland NSGA-I|
respectively, for thé-th instance. LetU be NO, /7 NDy . Let NOy and NDy be the non-strictly
outranked set and the nondominated seflimespectively. A comparison betwelID, and ND
was performed in such five random instances wigtréisults shown in Tables 4, 5 and 6:

Table 4. Net flow score calculated on U (NOSGA4lrsus NSGA-II)

Set Average Maximum value Minimum value




Set Average Maximum value Minimum value

NO, 37.71 42.35 30.29

ND; -7.92 8.36 -34.49
NO, 45.31 57.56 31.28
ND, -13.14 37.66 -52.46
NO; 50.24 62.85 45.55

ND; -17.35 19.01 -65.85
NO, 60.13 62.08 56.55
ND, -9.02 27.79 -41.00
NOs 63.58 66.74 55.53

NDs -11.44 22.63 -45.53

Table 5. Robustness of NONOSGA-II versus NSGA-II)

Instance| Card(NQ) | Card(NQ)) | Card(NQ n NOy) | Card(NQ n NDy)
1 21 25 21 21
2 29 34 29 29
3 32 32 32 32
4 15 15 15 15
5 18 18 18 18

Table 6. Robustness of ND

Instance| Card(NDy) | Card(NQ) | Card(ND, n NOy) | Card(ND, n NDy)
1 100 25 5 66
2 100 34 5 88
3 100 32 0 82
4 100 15 0 77
5 100 18 0 82

From Tables 4-6, it should be noticed that

1. The net flow score of solutionsNDy is very low compared with those NO;

2. Eachx O NOx is not dominated itJ (fifth column of Table 5);

3. Eachx O NG, remains as non-strictly outrankedUn(fourth column of Table 5);

4. Only a few non-strictly outranked solutions adeled byNDy (in two instances, first two rows,
fourth column of Table 6). However, those solutians outperformed by others belongind\Nioy;

5. In three instances, nmo [0 NDy is member ofNOy; NSGA-Il does not find the non-strictly
outranked set;

6. The differences betweeard(ND,) andcard(ND » NDy) indicate that 12-34% of the solutions
belonging taNDy are actually dominated by some elemeniNgj,..



In Table 7, the first column shows the cardinathaf knownZ” —best compromise solutions M.
The cardinal of the known Pareto frontier of Prablé (denoted byPF4) is pointed out in the
second column.

Table 7. Privileged” —non outranked solutions

Instance| Card (NW)| Card (PF4) Card (NWn PF4)

g|hjw|N|F
o|lw|o|r|N
RIENENT NN
o|r|o|r|r

According to the discussion in Section 4, undesuksption 1, the best solution should be an
element of Ny nPF4. Otherwise, th®M should consider the elementsRiF4. These sets contain
the non-strictly outranked solutions with highest flow score and lowest “weakness”. In instances
3 and 5 the solution with highest net flow scorads necessarily the best one. It depends on 1) the
comparison otard(W)andF, , and 2) how confident tHeM is onQ andK.

7. Conclusions

A relational system of preferences coming from mtteria decision aid, which includes
strict preference, weak preferenéepreference, indifference and incomparability binary
relations, is useful to characterize a best commensolution of a multiobjective
optimization problem. Such characterization seewsetthe most interesting result of this
paper. A fuzzy outranking relation can be useduibddba model of theDM’s asymmetric
preference relation, which is a central issue preaching most satisfactory solutions.
Under certain conditions of a decision maker’'s ¢sieacy, a best compromise solution is
obtained as the ideal solution of a bi-objectivération problem, which is a map of the
original problem. When thBM is confident on the asymmetric preference modekhee
should accept as satisfactory the ideal solutiortiHat bi-objective problem. Otherwise, a
best compromise solution may be obtained from eetlubjective problem, in which net-
flow score information is incorporated for improgithe asymmetric preference model.

The above characterization is very useful in ordeachieve selective pressure towards
preferential privileged Pareto solutions of thegoral problem. Using it, th&lOSGA-II
algorithm, which is a derivation from tHéSGA-II for solving the lexicographic mapped
formulation, seems capable of obtaining very goggireximations to the best compromise.
NSGA-Il and the originaNOSGAmethod are clearly outperformed in several random
instances of a real-size problem.

It is also interesting that the equivalence betwienoriginalMOP and its mapped two or
three-objective problem is valid independently loé original objective space dimension.
This may be very important to solMOPs with many objective functions.
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