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a b s t r a c t

An important number of publications deal with the computational efficiency of a novel Evolutionary
Algorithm called Differential Evolution (DE). However, there is still a noticeable lack of studies on
DE’s performance on engineering problems, which combine large-size instances, constraint-handling
and mixed-integer variables issues. This paper proposes the solution by DE of process engineering
problems and compares its computational performance with an exact optimization method (Branch-
eywords:
ifferential Evolution
ixed-integer constrained optimization

rocess engineering

and-Bound) and with a Genetic Algorithm. Two analytical formulations are used to model the batch
plant design problem and a set of examples gathering the three above-mentioned issues are also
provided.

The computational results obtained highlight the clear superiority of DE since its best found solutions
always lie very close to the Branch-and-Bound optima. Moreover, for an equal number of objective func-
tion evaluations, the results repeatability was found to be much better for the DE method than for the
Genetic Algorithm.
. Introduction

It appears that many engineering issues, drawn from many
pplication areas, may be formulated as optimization problems.
hese problems might differ, depending on the nature of the deci-
ion variables (continuous, discrete, etc.), on the mathematical
haracteristics of the functions involved (continuity, derivability,
inearity, convexity, etc.), or on the existence/absence of con-
traints. Generally speaking, a global optimization problem is
efined such as:

Minimize f (x, y)
Sujected to g(x, y) ≤ 0

h(x, y) = 0

here x is a continuous variable vector and y is a discrete variable
ector.
Please cite this article in press as: A. Ponsich, C.A.C. Coello, Differe
constrained process engineering problems, Appl. Soft Comput. J. (200

As an answer to the huge variety of optimization problems that
xist, a wide variety of solution techniques have been developed.

great research effort was first dedicated to the implementa-
ion of exact methods, i.e., granting the optimality of the solution.
owever, facing the necessity to solve more and more complex

∗ Corresponding author.
E-mail address: aponsich@itam.mx (A. Ponsich).

568-4946/$ – see front matter © 2009 Elsevier B.V. All rights reserved.
oi:10.1016/j.asoc.2009.11.030
© 2009 Elsevier B.V. All rights reserved.

problems, metaheuristic methods began to appear and were suc-
cessfully used for the solution of a wide range of applications.
Despite their inability to guarantee the generation of optimal solu-
tions, the simplicity of their operating mode and, in some cases,
their good computational efficiency have made them an attractive
option as solution methods in many types of optimization prob-
lems.

Recently, Storn and Price [1] proposed a novel Evolutionary
Algorithm called Differential Evolution (DE). Since then, an impor-
tant number of publications have been produced, dealing with the
computational performance of DE, evaluating the obtained results:

- through comparisons: in some cases, the optimal solution is
known and this allows to compute a distance between this solu-
tion and the DE’s best result. However, comparisons with other
optimization methods are often used in order to assess the com-
putational reliability of DE towards those techniques, whose
quality was already demonstrated.

- according to two kinds of criteria: computational time (or, in
order to enable fair comparisons in case different computer plat-
forms are used, number of objective function evaluations) and
ntial Evolution performances for the solution of mixed-integer
9), doi:10.1016/j.asoc.2009.11.030

solution quality. This latter one not only considers the best found
solution, but also, since DE’s stochastic nature does not ensure to
find every time the same result, the repeatability of the method
(mean value and standard deviation are typically computed for a
given number of runs).

dx.doi.org/10.1016/j.asoc.2009.11.030
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
mailto:aponsich@itam.mx
dx.doi.org/10.1016/j.asoc.2009.11.030
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on mathematical benchmark problems, formulated as equation-
oriented (usually non-linear) models having, to the best of our
knowledge, up to 100 (continuous) variables and 9 constraints
[1,2].

The computational results obtained in these studies usually
ighlight the good performances of DE solutions, in terms of quality
s well as number of objective function evaluations [3–6]. However,
part from its efficiency for pure mathematical problems solving, it
s also interesting to evaluate this metaheuristic method on applied
roblems, such as those drawn from an engineering framework.
he treatment of industrial problems would indeed lead the tech-
ique to face various types of computational difficulties that could
e absent in artificial test problems:

Size of the treated problems. Industrial applications may provide
instances that contain up to hundreds of decision variables.
Simultaneous handling of different types of variables. The original
DE method only considers continuous problems. Nevertheless,
the design variables appearing in classical engineering problems,
which, for example, represent the system configuration (exis-
tence, or number of treatment units), are generally of integer or
discrete type. Conversely, operating conditions or levels, as well
as equipment sizes or stream flows are commonly modeled by
continuous variables. Thus, the handling of decision variables is
required.
Literature reviews already report integer variable handling in DE
through very simple methods [7]. But the treatment of mixed
continuous and discrete variables, at the same time, breeds an
important issue for the application of DE to engineering optimiza-
tion problems.
Handling constrained problems. Even though this aspect has been
already tackled in the dedicated literature and has generated
the implementation or adaptation of many methods (cf. Sec-
tion 2), physical or material engineering constraints sometimes
allow a treatment through case-adapted techniques. Moreover,
the constraint-handling issue combined with the former two
points might be a challenging problem.

There exist some studies that have dealt with the application of
ifferential Evolution to engineering problems [5,6] but they rep-

esent a tiny minority of the literature devoted to DE’s performance
valuation. There still exists a clear lack of analysis of DE’s perfor-
ance on problems combining the three above-mentioned issues,
hich may arise in real-world optimization problems. The aim of

he present paper is thus to propose the solution by DE of problems
rawn from the process engineering area: for that sake, batch plant
esign problems constitute a relevant choice. Furthermore, many
ptimization techniques have already been tested on these prob-
ems, and such results might be used as a reference against which
he results produced by DE can be compared. Particularly, DE’s
omputational performances will be compared to results obtained
y the application of a stochastic method and an exact one [8].
omparisons will be made with respect to:

a classical Genetic Algorithm (this method was already applied
to batch plant design problems and was found to be effective in
many cases).
Mathematical programming techniques implemented in the
GAMS software [9], which provide optimal solutions.
Please cite this article in press as: A. Ponsich, C.A.C. Coello, Differe
constrained process engineering problems, Appl. Soft Comput. J. (200

So, two sets of computational experiments will be carried out on
ifferent (although relatively similar) models. The former (general)
ormulation enables the construction of an increasing complexity
et of instances, leading to the treatment of large-size problems
see [8]); while the latter one considers a (medium size) protein
 PRESS
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production plant problem [10], involving an additional complexity
arising from operating conditions variables integrated within the
design problem.

The remainder of this paper is organized as follows. Section
2 presents an overview of Differential Evolution, with a particu-
lar emphasis on methods devoted to the treatment of constrained
problems and integer variables handling. In Section 3, the two
formulations used to model batch plant design problems are devel-
oped. Finally, computational results are provided in Section 4, while
some conclusions and perspectives are drawn in Section 5.

2. Outline on Differential Evolution

2.1. DE basics

Differential Evolution (DE) is a very recent Evolutionary Algo-
rithm (EA), developed by [1]. The method was initially proposed for
unconstrained, continuous optimization problems. Its basic princi-
ple relies on the design of a simple mutation operator based on the
linear combination of three different individuals and on a crossover
step that mixes the initial and the mutated solutions. The mutation
process included in DE is, not only simple, but also, as indicated in
[11], fulfills the following requirements, which are important for
obtaining an efficient mutation scheme:

- uses a zero-mean distribution for generating mutated vectors;
- dynamically scales the distribution to suit each variable

“improvement interval”;
- correlates mutations to ensure rotational invariance.

To a certain extent, the implementation of the DE mutation
operator can be seen as a self-adaptive methodology, such as the
German evolution strategy (ES), since it produces a noise on the
involved individuals that gradually decreases when the population
converges towards the optimum.

Various DE versions exist, depending on the choice of the three
individuals used to build the mutated individual and depending on
the combination of mutated and initial solutions that takes place
during the crossover step. The version that will be presented next
is the most popular one, and is called DE/rand/bin, meaning that
the three individuals used for the mutation process are randomly
chosen; and that the crossover test (assigning either the initial or
the mutated individual gene) is performed for each gene indepen-
dently from what happened to the previous ones. The other existing
versions of DE are outlined in [1].

As in most EAs, a selection process is carried out by comparing
the trial solutions (obtained by the mutation and crossover steps) to
the initial ones. Two interesting points concerning the DE selection
scheme deserve, nevertheless, to be underlined [12]:

- a trial vector is not compared against the whole population, but
only against its counterpart in the current population;

- all the individuals of the next generation are as good or better
than their counterparts in the current generation (greedy aspect)
since the mechanism excludes stochastic operations.

The canonical steps of the algorithm are defined as follows:

Step 1: Random generation of NP initial individuals.
Step 2: Evaluation of the objective function f for each individual.
Step 3: For each individual xG in the current population (i being the
ntial Evolution performances for the solution of mixed-integer
9), doi:10.1016/j.asoc.2009.11.030

ij

individual index, j the variable index and G the current generation
number), creation of a mutated solution uG

ij
according to:

uG
ij = xG

1j + F(xG
2j − xG

3j), ∀j =
{

1, . . . , N
}

(1)

dx.doi.org/10.1016/j.asoc.2009.11.030
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where N is the number of decision variables, F is a scalar (F ∈ [0,1])
and xG

1j
, xG

2j
, xG

3j
are randomly selected individuals in the current

population (xG
1j

/= xG
2j

/= xG
3j

/= xG
ij

).
Step 4: Recombination of the initial and mutated individual accord-
ing to a crossover rate CR (CR ∈ [0,1]), to create an offspring yij:

uG+1
ij

=
{

uG
ij

if rand(j) ≤ CR or if j = rnbr(i)

xG
ij

if rand(j) > CR and if j /= rnbr(i)
, (2)

∀j =
{

1, . . . , N
}

, ∀i =
{

1, . . . , NP
}

where rnbr(i) is a randomly chosen index (rnbr(i) ∈
{

1, . . . , N
}

),

which ensures that uG+1
ij

gets at least one variable from uG
ij

.

Step 5: Evaluation of the objective function of the offspring uG+1
ij

and application of a deterministic selection process by comparing
the parent and offspring objective values:

xG+1
ij

=
{

uG+1
ij

if f (uG+1
ij

) ≤ f (xij)

xij if f (uG+1
ij

) > f (xij)
, (3)

∀j =
{

1, . . . , N
}

, ∀i =
{

1, . . . , NP
}

Step 6: If the termination criterion is met, output the best solution
found so far and its objective value; else, go back to Step 3.

The typical termination criterion is to reach a given number of
enerations NG. F (amplification factor) and CR (crossover rate) are
ontrol parameters that, with NP (population size), must be tuned
n an appropriate way. Lampinen and Zelinka [12] indicate that a
ne tuning of these parameters might improve the convergence
elocity and the robustness of the search process. Their optimal
alues depend on the tackled objective function and on the prob-
em characteristics; suitable values are commonly found by a trial
nd error process. However, Price [11] provides some general rec-
mmendations on how to tune these factors: he suggests to adopt
ery high values for CR (close to 1), values for NP between 20N and
00N, and random values between 0.5 and 1 for F.

.2. Treatment of constrained problem

.2.1. Boundary constraints
From its intrinsic operating mode (which combines three ran-

omly selected individuals), the DE process is very likely to produce
olutions that, in the case of bounded variables, lie outside their
llowed range of variation. Thus, some techniques were developed
o make these solutions feasible and repair the variables violating
heir bounds.

Price [11] mentions several options to reset the variable to an
llowable value:

(i) Setting the decision variable value to the violated bound. This
technique, however, may lead to a degradation of the solution’s
diversity.

(ii) A completely opposite strategy consists in (randomly) reini-
tializing the considered decision variable within its allowable
bounds.

iii) As a compromise between the two previous methods, setting
the decision variable midway between its initial value (i.e., the
parent’s decision variable value) and the violated bound, as
formulated in Eq. (4). This approach is also applied in [13].⎧
Please cite this article in press as: A. Ponsich, C.A.C. Coello, Differe
constrained process engineering problems, Appl. Soft Comput. J. (200

uG
ij =

⎪⎪⎨
⎪⎪⎩

(xG
ij

+ x(lo)
j

)/2 if uG
ij

< x(lo)
j

(xG
ij

+ x(up)
j

)/2 if uG
ij

> x(up)
j

uG
ij

otherwise

(4)
 PRESS
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Finally, in [3] is proposed the use of the violated bound as
a symmetry center to send the considered variable to the fea-
sible side of the boundary (i.e., inside the allowed variation
range), with a distance to the violated bound equal to the initial
constraint violation. This strategy is expressed as follows:

uG
ij =

⎧⎪⎪⎨
⎪⎪⎩

2x(lo)
j

− uG
ij

if uG
ij

< x(lo)
j

2x(up)
j

− uG
ij

if uG
ij

> x(up)
j

uG
ij

otherwise

(5)

2.2.2. Constraint functions
As in the case of many other EAs, the canonical DE scheme does

not integrate the treatment of constrained problems. Consequently,
several researchers have proposed schemes to add constraint-
handling methods to DE. In many cases, techniques inspired from
other EAs (Genetic Algorithms, particularly) have been directly
transferred to the DE algorithm. Next, we will briefly review the
most significant efforts of this sort, reported in the specialized lit-
erature.

First, a static penalty approach (named soft-constraint by the
authors) is proposed in [4], showing the drawbacks (just as for any
other EA) involved in the fine tuning of the penalty factors asso-
ciated to each constraint violation. A similar technique is used in
[14], not by considering a number of penalty terms equal to the
number of constraints, but adopting only one penalty term for the
normalized sum of constraint violations (this obviously reduces the
number of parameters to be tuned).

Another kind of penalty method is introduced in [15] by dynam-
ically tuning a penalty factor for the sum of inequality constraint
violations and another one for the sum of equality constraint vio-
lations. The general expression of each penalty factor is defined
through a NFT factor representing the threshold distance from the
feasible region in which the search is promoted:

1
NFT

= 1 + � · t

NFT0
(6)

where NFT0 is an upper bound for NFT, � is a user-defined positive
parameter and t is the generation counter. The penalty factor thus
increases with the iteration number, pushing more drastically the
solutions towards the feasible region of the search space.

The penalty factors may also be considered as strategy parame-
ters than can be evolved at the same time as the decision variables,
like a “second population”. In the resulting co-evolutionary opti-
mization algorithm [5], inspired on the self-adaptive penalty
approach proposed in [16], one generation for the set of strategy
parameters represents a global evolution of the decision variables,
evaluated with the mentioned set of penalty factors. This set is then
updated and another variable evolution is carried out. The amount
of computational effort is thus huge compared to more classical
algorithms.

Apart from the penalization of the infeasible solution fitness,
another relevant method is based on feasibility rules [5,13] adapted
from the Genetics Algorithms framework. According to Deb [17],
these rules were initially suggested by David Goldberg in 1992. Sub-
sequently implemented by Deb [18], the methodology adopts the
following comparison criteria:

- between two feasible solutions, the one with the higher fitness
ntial Evolution performances for the solution of mixed-integer
9), doi:10.1016/j.asoc.2009.11.030

value wins;
- if one solution is feasible and the other one is infeasible, the fea-

sible individual wins;
- if both solutions are infeasible, the one with the lower sum of

constraint violation wins.

dx.doi.org/10.1016/j.asoc.2009.11.030
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Another version is, in case of two non-feasible solutions, to
hoose the Pareto non-dominated one in constraints search space
4,19].

The two above-mentioned techniques lack a mechanism to
aintain diversity. Mezura-Montes et al. [3] proposed to allow

ach parent in the current population to generate more than one
ffspring. Furthermore, to introduce some diversity from regions
way from the feasible boundaries, an infeasible solution with a
ood fitness value, regardless of feasibility is, in some cases (deter-
ined according to a probability Sr) allowed to remain in the

opulation, i.e., to win a feasible solution. The expected behavior is
hat the population will include a proportion Sr (at most) of infeasi-
le solutions, with competitive values of the objective function: this
echanism is aimed to promote diversity in the population. This

rocess is also applied for various mathematical and engineering
roblems and was found to be more efficient than more traditional
E approaches in [6].

A similar way to handle constraints by making a difference
etween feasible and infeasible solutions is presented by [20],
ith the ε-level comparison. Considering �(x) a constraint vio-

ation function for solution x (� represents either the maximum
onstraint violation or the sum of constraint violations), the clas-
ical order relationship is replaced by the following comparison,
ubject to level ε:

f1, �1)<ε(f2, �2) ⇔

⎧⎪⎨
⎪⎩

f1 < f2 if �1, �2 ≤ ε

f1 < f2 if �1 = �2

�1 < �2 otherwise

(7)

here ε is a control parameter that is continuously decreased dur-
ng the search process, according to the following equation:

(0) = �(x0) (8)

(t) =
{

ε(0)
(

1 − t

Tc

)cp

if t < Tc

0 if t ≥ Tc

here x0 is the top �th individual with � = 0.2N and cp is a control
arameter. This technique enables to integrate, at the beginning of
he run, slightly infeasible solutions that bring an additional diver-
ity to the population. The pressure towards the feasible region is
hen enforced by decreasing the ε parameter down to a generation
hreshold Tc after which no constraint violation is allowed. At the
nd of the search, the process is similar to the feasibility rules used
n [3].

.3. Integer and discrete variables

DE is by nature a floating-point optimization method. A common
ethod to overcome the issue of integer or discrete variables is to

reat them all as if they were continuous. Once the problem has
een optimized, the integer or discrete variables can be rounded-
ff to the nearest available value. However, in practice, this method
ives less than optimal results since no attempt is made, during the
ptimization process, to evaluate only realizable systems [11].

In spite of the great variety of problems involving integer or dis-
rete variables, there are very few methods available to transform
he canonical DE algorithms for the treatment of this type of vari-
bles. Basically, the most common approach is that proposed by
7], which only requires, for the objective evaluation, the following

odification on integer variables yi:
Please cite this article in press as: A. Ponsich, C.A.C. Coello, Differe
constrained process engineering problems, Appl. Soft Comput. J. (200

i = INT(xi) (9)

here INT(·) is a function converting a real value into an integer
alue, by truncation or rounding-off, for instance. It is important to
arry out the conversion into integer values only in the evaluation
 PRESS
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context, and not to replace the initial continuous-valued variables
in the considered solution. This would lead us to a biased search
process and would likely prevent us from reaching the optimum.
Regarding discrete variables, the same process is applied but, this
time, by encoding the variables indexes instead of their values:
this process takes us back to the treatment of integer variables,
performed according to Eq. (9).

3. Optimal batch plant design problems

3.1. Generalities

Due to the current interest for batch operating mode, a lot of
studies deal with the batch plant design issue. Actually, the problem
has already been modeled under various forms for which assump-
tions are more or less simplistic. Generally, the objective consists
in the minimization of the plant investment cost. Grossmann and
Sargent [21] were the first authors to propose a simple posyno-
mial formulation for multiproduct batch plants. This model, which
involves only batch stages and is subject to a constraint on the
total production time, was used again in [22]. Modi and Karimi
[23] modified this approach by taking into account, in addition,
semi-continuous stages and intermediate finite storage with fixed
location. They solved small size examples (up to two products and
up to eight operating stages, i.e., 16 decision variables) with heuris-
tics.

The same model was adopted Patel et al. [24] who treated
larger size examples with Simulated Annealing and by Wang et
al. [25–27], who adopted, successively, Genetic Algorithms, Tabu
Search and an Ants Foraging Method. Nevertheless, Ponsich et al.
[8] showed that, for this mixed continuous and discrete formu-
lation, and independently from the size of the studied instance,
a Branch-and-Bound technique (implemented in the SBB solver,
available in the GAMS modeling environment [9]) is the most effi-
cient option. The same analytical formulation is used as an initial
test suite within the study reported in this paper.

Besides, the above-mentioned formulation was further
improved by taking into account continuous process variables
[28,10]. Thus, the optimization not only considers the plant config-
uration, but also integrates the operating conditions in each unit
of a process manufacturing four kinds of proteins. The associated,
additional variables generate second-order interactions with
the design variables that make the solution process much more
difficult for non-derivative supported methods, such as stochastic
methods [29]. This approach provides the second application
example involved in the following computations.

3.2. Generic model for batch plant design problems

Batch plants must be flexible enough to manufacture different
products, which are processed through various stages in the form
of limited size batches. Basically, each stage is composed of par-
allel items operating in a discontinuous way, meaning that the
product batches are successively loaded in and discharged from
the items, along with their synthesis sequence (the so-called pro-
duction recipe). In this study, we will only consider multiproduct
plants: all the products follow the same operating steps. Only the
operating times may be different from a recipe to another one.

The objective of optimal batch plant design (OBPD) problems is
typically the minimization of the investment cost for all the items
ntial Evolution performances for the solution of mixed-integer
9), doi:10.1016/j.asoc.2009.11.030

involved in the plant, by optimizing the number and size of par-
allel equipment units in each stage. The model formulation for
OBPD problems adopted in this paper is based on Modi’s approach
[23]. It considers not only treatment in batch stages, but also rep-
resents semi-continuous units that are part of the whole process

dx.doi.org/10.1016/j.asoc.2009.11.030
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Table 1
Characteristics of the first set of instances.

Instance Stage number Intermediate storage Product number Combinatorial effect

A 10 1 3 5.905 × 104

B 14 1 3 4.783 × 106

C 21 2 3 1.046 × 1010
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D 42 5
E 63 8
F 84 11
G 105 14

pumps, heat exchangers, etc.). A semi-continuous unit is defined as
continuous unit working alternating idle times and normal activ-

ty periods. Besides, this formulation takes into account mid-term
ntermediate storage tanks. They are just used to divide the whole
rocess into sub-processes in order to store an amount of materials
orresponding to the difference of each sub-process productivity.

Thus, the model considers the synthesis of I products treated in
batch stages and K semi-continuous stages. Each batch stage con-
ists of mj out-of-phase parallel items with the same size Vj. Each
emi-continuous stage consists of nk out-of-phase parallel items
ith the same processing rate Rk (i.e., treatment capacity, mea-

ured in volume unit per time unit). The item sizes (continuous
ariables) and equipment numbers per stage (discrete variables)
re bounded. The S–1 storage tanks, with size V∗

s , divide the whole
rocess into S sub-processes. Following these notations, a Mixed-

nteger Non-Linear Programming (MINLP) problem is formulated
n order to minimize the investment cost:

inCost =
J∑

j=1

ajmjV
˛j
j +

K∑
j=1

bknkRˇk
k +

S−1∑
j=1

csV
�s∗
s (10)

here ˛j and aj, ˇk and bk, �s and cs are classical cost coefficients.
The production requirements of each product and data related

o each item (processing times and cost coefficients) are specified,
s well as a fixed global production time. This problem is subject
o two kinds of boundary constraints and one constraint function.
he former is expressed as follows:

j ∈
{

1, . . . , J
}

Vmin ≤ Vj ≤ Vmax (11)

k ∈
{

1, . . . , K
}

Rmin ≤ Rk ≤ Rmax (12)

j ∈
{

1, . . . , J
}

1 ≤ mj ≤ 3 (13)
Please cite this article in press as: A. Ponsich, C.A.C. Coello, Differe
constrained process engineering problems, Appl. Soft Comput. J. (200

k ∈
{

1, . . . , K
}

1 ≤ nk ≤ 3 (14)

The second constraint enforces the respect of a deadline for
roduct orders, involving that the total production time must be

Fig. 1. Functional representation of
3 1.094 × 10
3 1.145 × 1030

3 1.197 × 1040

3 1.252 × 1050

lower than a given time horizon H:

H ≥
I∑

i=1

Hi =
I∑

i=1

Qi

Prodi
(15)

where Qi is the demand for product i and Prodi is the process pro-
ductivity for product i. The computation of the productivity derives
from an analytical model provided in Appendix A. The aim of batch
plant design problems is finally to find the plant structure that
respects the production requirements within the time horizon,
while minimizing the economic criterion. The resulting problem
proves to be non-convex and NP-hard [25].

The benchmark of this work is constituted by seven instances,
some of which are treated in [8]. The set of examples shows, for
purposes of evaluation of optimization method performances, an
increasing complexity that leads to the solution of huge size prob-
lems (see Table 1).

3.3. Protein production plant

The considered example, proposed [28] and then extended [10],
deals with the production of four kinds of proteins through an
8-stages production process: initially manufactured in a fermen-
tation stage, the products are separated in two microfiltration, one
homogenization, two ultrafiltration steps, one extraction and one
chromatographic separation steps (see Fig. 1). The associated for-
mulation is quite similar to that presented in the previous section
but shows differences related to the product recipes, to the plant
structure and to the processing unit models.

Concerning the former, the four manufactured products can be
divided into extracellular and intracellular proteins, having pro-
cessing sequences that differ a bit from one type to another (the
extracellular products do not need treatment in all the 8 stages).
ntial Evolution performances for the solution of mixed-integer
9), doi:10.1016/j.asoc.2009.11.030

With regard to the plant structure, the model only accounts for
batch stages. These ones are, just like in the previous model, char-
acterized by the item volume Vj and (out-of-phase) number mj; but
additional in-phase item numbers are also taken into account (this
allows that, in each stage, a batch can be divided into smaller size

the protein production plant.

dx.doi.org/10.1016/j.asoc.2009.11.030


ARTICLE IN PRESSG Model
ASOC-745; No. of Pages 11

6 A. Ponsich, C.A.C. Coello / Applied Soft Computing xxx (2009) xxx–xxx

Table 2
Analysis of NG and NP for instance B.

NP NG Best sol. Mean value Std. dev.

50 800 620,658.8 621,478.8 2251.6
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80 500 620,819.5
100 400 621,034.5
150 268 621,812.7
200 200 622,978.6

atches). A new integer variable nj now appears in the model, Eq.
16) replacing Eq. (A.7) as follows:

i ∈ {1, . . . , I}; Bi = Min
j ∈ J

[
Vjnj

Sij

]
(16)

The objective function also changes, as indicated in Eq. (17):

inCost =
J∑

j=1

njmjajV
˛j
j (17)

It is to note that storage tanks do not appear anymore in the new
ormalism. Besides, most processing stages are composed of several
quipment units (some of which might be seen as semi-continuous
tems). Table B1 in Appendix B sums up the design variables for each
tage.

Finally, the most important difference is due to the integration
f variables accounting for the operating conditions (or treatment
arameters) in each processing stage. These variables are allowed

n the formulation of performance models that represent the phys-
cal and chemical phenomena involved in the treatment steps. The
peration efficiency (or yield) can then be calculated to finally
educe the size factors and processing times that will influence
he plant design. Thus, the global decision variable vector can be
ritten X = [Xdes, Xproc]T, where Xdes is the design variable vector

nd Xproc = [Xi,Fer, Xi,Mf1, Wi,Mf1, Wi,Mf2, NPi, Ri]T the process variable
ector. The process variables are available in Appendix B while the
erformance model equations can be found in [10].

In conclusion, the resulting optimization has 16 continuous and
6 integer design variables, and 18 process variables involved in
strongly non-linear model. The coexistence of design and pro-

ess variables within the same equations makes the search process
arder than in the previous section formulation.

. Computational results

.1. Study operating mode

The operating mode of the following computations involves the
efinition of:

the optimization methods selected to stand the comparison with
Differential Evolution;
the choice of the internal procedures that drive DE’s search pro-
cess (constraint handling, variable encoding, etc.);
the criteria on which the comparison of the methods perfor-
mances are based.

First, to evaluate the computational performance of DE, the
btained results are compared, for both formulations (generic
odel and protein production plant), to two other optimization
Please cite this article in press as: A. Ponsich, C.A.C. Coello, Differe
constrained process engineering problems, Appl. Soft Comput. J. (200

echniques, namely a mathematical programming technique and
enetic Algorithms. These methods, often reported in the special-

zed literature, are widely used for the solution of batch plant design
roblems. Their applicability and performances were already stud-

ed in [8] and [29].
621,158.8 895.5
621,503.7 1048.3
622,536.9 448.6
624,748.6 942.9

The first (exact) technique is represented by a Branch-and-
Bound technique. Adapted for the solution of non-linear problems,
the latter is implemented in the SBB module, available in the GAMS
environment. Details on the method are not provided here since
the main features are presented in [8].

With regards to the other stochastic method, i.e., Genetic Algo-
rithms (GAs), we used its classical (or simple) version. The details
of how GAs work are not described here but it is, however, worth
describing the internal procedures that we adopted. After a random
generation of the initial population, the selection step is carried
out through a tournament that integrates, as a discrimination cri-
teria, the domination rules stated by [18]. Considering the mixed
continuous-integer nature of the tackled problem, a mixed encod-
ing technique is implemented: real and integer loci coexist in the
chromosome to represent, respectively, the item sizes and item
numbers. Concerning the genetic operators, the adopted crossover
technique is SBX [30] while mutation is performed by introducing
a uniform distribution based noise [31].

Besides, the choice of the DE’s internal procedures is made aim-
ing for generality and for having the fairest comparison possible.
Thus, no effort was made to add mechanisms that could improve
performance of our DE algorithm. For instance, in spite of its proved
efficiency, the multiple offspring generation technique proposed in
[3] is not adopted here. However, mechanisms of this sort could be
adopted in future extensions of the work reported here. The sec-
ond indication encourages us to adopt procedures similar to those
used in the other stochastic technique, i.e., the Genetic Algorithm
(obviously, because of its completely different working mode, no
similarity with the mathematical programming technique adopted
is possible).

Thus, the main features chosen for this work are a randomly gen-
erated initial population and a selection process based, as proposed
in [3], on Deb’s domination rules (both procedures are identical
to those used in the GA). A combination of two of the above-
mentioned methods is chosen for boundary constraint handling:
(i) setting the variable value to the violated bound; (ii) using the
violated bound as a symmetry center to send the considered vari-
able to the feasible side of the boundary. The application of these
options depends on a probability PBound: for each boundary viola-
tion, the first scheme is adopted if a drawn random number is lower
than PBound, and the second scheme elsewhere. With regards to the
encoding technique, real loci are adopted (as proposed in [7]) and
the item number variables are transformed to integer values only
for the objective evaluation.

Some of the search parameters are also tuned aiming to allow
a fair comparison: this is the case for the population size NP
and generation number NG. These are chosen in such a way that
the total number of evaluations is equal to the evaluation num-
ber required by the GA method (the GAMS environment does
not provide this information for SBB runs). We will thus adopt
NPDE × NGDE = NPGA × NGGA. Nevertheless, some sensitivity analysis
is necessary for each example, in order to determine the values
ntial Evolution performances for the solution of mixed-integer
9), doi:10.1016/j.asoc.2009.11.030

of these two parameters (imposing the total number of evalu-
ations as a constraint), as well as for the amplification factor
F, the crossover rate CR and probability for boundary constraint
handling PBound. This issue will be specified in the next sec-
tion.

dx.doi.org/10.1016/j.asoc.2009.11.030
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Table 3
Analysis of CR for instance B.

CR Best sol. Mean value Std. dev.

0.1 624,437.5 626,719.3 1324.4
0.3 621,662.7 622,439.1 512.3
0.5 621,259.9 621,571.6 204.1
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Table 5
Analysis of PBounds for instance A.

PBounds Best sol. Mean value 1%-dispersion

0.0 356,615.3 367,801.8 25
0.2 356,627.2 368,616.8 19

formulated according to the generic model. In addition, Figs. 2 and 3
0.7 621,110.2 621,416.1 185.8
0.8 621,033.1 621,286.6 148.9
1.0 621,728.0 627,929.0 6589.0
rand[0.8;1.0] 620,809.9 620,966.6 113.5

Finally, concerning the criteria used for the evaluation and com-
arison of the methods’ performances, they are basically the same
hat the classical ones found in the literature: solution quality and
umber of objective evaluations. The former is based on the knowl-
dge of the optimal solution provided by the Branch-and-Bound
ethod. The quality is also evaluated in terms of repeatability of

he result found, since the stochastic nature of GAs and DE can-
ot guarantee identical solutions for each of their runs. Thus, each
etaheuristic is run 100 times and mean values and standard

eviations are computed for the best solution obtained for each
nstance. Furthermore, in addition to these statistics, another qual-
ty measure proposed in [8] is considered here: the 1%-dispersion
nd 2%-dispersion of the results with respect to the best found
olution f ∗

DE within the 100 runs set (i.e., the percentage of runs
roviding a result lying respectively in the range [f ∗

DE, f ∗
DE + 1%] and

f ∗
DE, f ∗

DE + 2%]). These dispersion measures enable us to know if the
olution set is well-distributed, and close to the best found solu-
ion f ∗

DE , instead of evaluating the distance to a mean value through
tandard deviation.

.2. Sensitivity analysis

As mentioned in the above section, the first issue of the study is
o tune the DE search parameters, i.e., the population size NP and

aximum number of generations NG, as well as the amplification
actor F, the crossover rate CR and the probability for boundary con-
traint handling PBounds. Since the two first parameters (NP and NG)
re constrained by the total number of objective evaluations allow-
ble (which must be equal to the number of evaluations performed
y the GA), their tuning involves sensitivity analysis for each treated

nstance. This is also the case for PBounds. On the other hand, F and CR
re tuned for the first example and their values are kept unchanged
or all the following computations.

Tables 2–4 present the sensitivity analysis results for instance B.
nly 10 runs are calculated for each test computation. Dispersions
o not appear in the tables since, for this example, no noticeable dif-
erence according to the different parameter sets can be observed.
he number of objective function evaluations performed by the GA
s, in this case, equal to 40,000. The values in boldface indicate the
elected parameters.
Please cite this article in press as: A. Ponsich, C.A.C. Coello, Differe
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It is worth noting that in example B (but this is also true for
ther instances), a compromise is necessary between parameters
romoting the best found solution and those promoting mean
alue–standard deviation statistics: a parameter set may indeed
resent the best solution while another one provides the best statis-

able 4
nalysis of F for instance B.

F Best sol. Mean value Std. dev.

0.3 620,754.3 628,160.0 8486.6
0.6 621,080.9 621,453.3 219.5
0.7 622,909.0 624,271.6 942.8
0.9 636,428.2 641,643.4 2955.1
rand[0.3;0.9] 620,869.2 621,323.3 1303.7
rand[0.3;0.6] 620,645.9 621,535.0 3585.5
0.4 356,633.8 369,729.2 12
0.6 356,621.0 370,606.4 6
0.8 371,401.0 371,411.7 0
1.0 356,690.9 371,119.3 2

tics. Generally in this study, priority is granted to the parameter set
showing the best statistic results, but also ensuring a reasonable
quality of the best found solution.

The former comment is especially true concerning the NP and
NG parameters. It is observed that, for all instances, low values
of NP lead to the best values for the best found solution, while
the corresponding statistics (including the dispersions) are not
really satisfactory. Slightly increasing NP (which is equivalent to
decreasing NG) generated a slightly worse value of the solution but
improved the statistical results. Then, for really high values of NP,
both quality criteria decrease. So, for most of the tackled instances
(even though there are exceptions), medium values are chosen.

A similar study is carried out for the PBounds parameter. Its value
is tuned for each example, since the experience has shown that,
although in most cases the optimum is located on a variable bound-
ary, setting the variable value to the violated bound does not always
provide the best results. In order to illustrate this point, the sensitiv-
ity analysis made for instance A is presented in Table 5. The standard
deviation here is not significant because the 100 run solutions
are basically divided between two local optima, showing different
qualities. The standard deviation is thus only a function of the num-
ber of runs locating the correct optimum and dispersions are much
more expressive in this case. Actually, since 1%-dispersion and 2%-
dispersion were found to be always identical for this instance, only
the former is presented in the table. The parameter PBounds = 0 there-
fore indicates that, in all cases of bounds violation, the variable is
set to the bound value.

Not all the performed sensitivity analysis is shown in this paper,
but the parameter set used for each instance is available in Table 6.
Parameters F and CR do not appear since they are taken, for all the
examples, equal to those selected in Tables 3 and 4. Regarding the
used parameters set in Table 6, it should be finally highlighted that,
in spite of very global trends (such as NP much lower than NG),
no precise guidelines can be defined to make the tedious step of
parameter tuning easier: like it is done in this work, only a harsh
preliminary study based on sensitivity analysis may help.

4.3. Generic batch pant design model

Table 7 summarizes the results obtained for the seven instances
ntial Evolution performances for the solution of mixed-integer
9), doi:10.1016/j.asoc.2009.11.030

help to illustrate the global trends as well as the comparison with
the solutions generated by the GA. The Branch-and-Bound method
converged in all cases and the obtained solutions are only recalled in
the first row of Table 7. As mentioned above, the evaluation number

Table 6
DE search parameters for all instances.

Instance Obj. evaluation nbr (equal to GA’s) NP NG PBounds

A 4.0 × 104 150 268 0.0
B 4.0 × 104 80 500 1.0
C 2.0 × 105 200 1000 0.0
D 2.5 × 105 100 2500 0.0
E 2.25 × 106 300 7500 0.0
F 4.0 × 106 300 13,334 1.0
G 1.8 × 107 600 30,000 0.80

dx.doi.org/10.1016/j.asoc.2009.11.030
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Table 7
General results for the generic formulation.

Instance A Instance B Instance C

GA DE GA DE GA DE

Optimum (SBB) 356,610.2 620,638.1 957,270.5
Best result 360,831.8 356,648.9 621,333.1 620,726.8 958,778.3 957,413.7
Mean value 377,661.7 365,549.8 628,516.1 620,853.6 993,561.2 964,412.9
Std. dev. 6057.7 7268.8 8441.5 74.0 16,873.5 9600.0

Instance D Instance D Instance F

GA DE GA DE GA DE

Optimum (SBB) 1,925,887.8 1,925,887.8 3,865,106.5
Best result 1,975,027.2 1,930,721.7 2,967,473.6 2,939,601.2 3,961,817.8 3,948,048.5
Mean value 2,010,648.8 1,971,325.2 3,012,587.2 2,965,096.1 4,046,061.5 3,952,854.13
Std. dev. 28,970.8 9267.9 35,884.9 15,549.7 42,324.0 9477.8

Instance G

GA DE

Optimum (SBB) 4,786,804.7
Best result 4,955,658.6 4,93
Mean value 5,075,988.6 4,93
Std. dev. 58,806.4 888

F

o
w
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ig. 2. Distance of both stochastic methods best found solution and SBB optimum.

f the exact method cannot be recorded but the convergence times
ere found to be quite similar to those of the Genetic Algorithm

8], or at least of the same order of magnitude.
The general trends are easy to find from the table and both fig-

res: DE seems to provide better results than the GA, and with
better robustness, as can be inferred from the repeatability
easures adopted. However, a more accurate description of the
Please cite this article in press as: A. Ponsich, C.A.C. Coello, Differe
constrained process engineering problems, Appl. Soft Comput. J. (200

olutions for each instance is straightforward.
For instance A, it is clear that DE finds the SBB optimum while

he GA is not able to do so. It should nevertheless be mentioned that,
ith another constraint-handling strategy (namely, elimination of

nfeasible individuals), the GA finds the optimum value, although

Fig. 3. 1%-dispersion and 2%-dispersi
4,896.5
8,840.8
9.4

with a weak repeatability [8]. Actually, among the solutions pro-
duced we can distinguish two local optima: the best one is that
found by SBB (with an objective function equal to 356,610), while
the other one has an objective lying at approximately 4% of the for-
mer. This gap is explained by a structural difference of the identified
plant configurations, mainly for the item number in batch stages 2
and 3 (see Fig. 4).

The quality of the experiment is thus defined by the number
of runs locating the best optimum; mean value and stan-
dard deviation are just functions of the ratio of successful
runs within the whole set of results. Dispersions show that
DE finds the best local optimum for 41% of the runs, while,
except for one run, the GA only locates the second one. Both
GA and DE find solutions very close to the SBB optimum
of instance B, but DE’s repeatability measures are unques-
tionably the best ones (the standard deviation, equal to 74,
clearly indicates that DE locates almost always the correct solu-
tion).

Except for example D, results are similar for the following
runs. DE is superior to GA in terms of distance to the optimum,
mean value, standard deviation and dispersions. But it can be
observed that the gap between both methods reduces as instances
become more complex, especially regarding the distance to the
ntial Evolution performances for the solution of mixed-integer
9), doi:10.1016/j.asoc.2009.11.030

optimum. However, the variability of the results produced by the
GA increases, example after example, while DE’s variability remains
steady.

Concerning example D, the very weak value of 1%-dispersion
clearly indicates that DE only finds once a solution lying at 0.25% of

on for both stochastic methods.

dx.doi.org/10.1016/j.asoc.2009.11.030
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Fig. 4. Locally optimal solutions of

Table 8
Results for the protein production plant model.

GA DE

Optimum (SBB) 1,501,434.2
Best result 1,516,559.1 1,501,939.5
Distance to optimum (%) 1.01 0.03
Mean value 1,564,022.2 1,508,547.6
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Std. dev. 35,123.5 5444.3
1%-dispersion 10 94
2%-dispersion 34 100

he optimum. This good solution might thus be seen as an excep-
ion; nevertheless, the quality of the global run set is demonstrated
y the 2%-dispersion, as well as the mean value.

.4. Protein production plant

Similar conclusions can be drawn from the solutions obtained
or the protein production plant model. Actually, the difference
etween the two stochastic techniques appears to be more dras-
ic. The best found solution and statistics of both the GA and DE are
vailable in Table 8. On the one hand, the DE method finds a value
uite close to the optimum, and does so in almost all the runs. On
he other hand, the GA solution lies at 1% of the optimum with a
ery poor repeatability. Furthermore, the DE’s 1%-dispersion means
hat almost all its runs find a better solution that the best solution
enerated by the GA.

. Conclusions

This work proposed the application of the Differential Evolution
echnique to problems drawn from the process engineering frame-
ork. Since the aim of the study is to provide general results for this

tochastic method, very classical internal procedures were chosen,
specially for the two most crucial issues: constraint-handling and
ixed variables encoding. The method was evaluated on two (sim-

lar) formulations for the batch plant design problem and results
ere compared to those obtained by a Genetic Algorithm and a
ranch-and-Bound technique. The latter provided optimal points
hat could be used as references to evaluate the metaheuristics
fficiency. The fairness of comparison was enforced by ensuring
n equal number of objective evaluations for these techniques.

The comparison of solutions turned very clearly to the advan-
Please cite this article in press as: A. Ponsich, C.A.C. Coello, Differe
constrained process engineering problems, Appl. Soft Comput. J. (200

age of Differential Evolution: the best found solution is always
uch closer to the Branch-and-Bound optimum than the one gen-

rated by the GA. Moreover, the results’ repeatability is better for
he DE method too: the used measures all support the fact that DE,
ompared to the widely used GAs, can find for both formulations of

(

instance A (a is the best one).

batch plant design problems better solutions, with a higher degree
of confidence.

As part of our future work, it might be useful to extend our
research interests towards two points. The first one is the treatment
of integer or discrete variables: DE is a method designed to deal with
decision variables provided as real numbers, and the technique that
we used in this paper to handle integer variables is not really sophis-
ticated. Trying to solve purely integer optimization problems might
therefore result in few satisfactory solutions. A growing attention
has been actually focused on the development of DE extensions, for
the treatment of combinatorial optimization such as mentioned in
the survey presented in [32] or for the case of permutation-based
representations [33]. However, there still exists a lot of room for
significant improvement in this research line. Another extension,
which has already attracted interest among some researchers is
the treatment of multi-objective problems with DE: in this regard,
engineering problems would probably provide a wide range of
application problems. Actually, in the process engineering area,
various works already propose the application of Genetic Algo-
rithms for the multi-objective optimization of chemical processes.
We refer the reader to [34–40] for more details.
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Appendix A. Generic batch plant design model

The global productivity (Prodi) used in Eq. (15) is computed from
local productivities (of each sub-process s):

∀i ∈
{

1, . . . , I
}

Prodi = Min
s ∈ S

[Prodlocis] (A.1)

These local productivities are calculated from the following
equations:

a) Local productivities for product i in sub-process s:

∀i ∈
{

1, . . . , I
}

; ∀s ∈
{

1, . . . , S
}

Prodlocis = Bis
L

(A.2)
ntial Evolution performances for the solution of mixed-integer
9), doi:10.1016/j.asoc.2009.11.030

is

b) Limiting cycle time for product i in sub-process s:

∀i ∈ {1, . . . , I}; ∀s ∈ {1, . . . , S} TL
is = Max

j ∈ Js

[
Tij, �ik

]
(A.3)

dx.doi.org/10.1016/j.asoc.2009.11.030
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where Js and Ks are, respectively, the sets of batch and semi-
continuous stages in sub-process s.

c) Cycle time for product I in batch stage j:

∀i ∈ {1, . . . , I}; ∀j ∈ {1, . . . , J} Tij = �ik + �i(k+1) + pij

mj
(A.4)

where k and k + 1 represent the semi-continuous stages before
and after batch stage j.

d) Processing time of product i in batch stage j:

∀i ∈ {1, . . . , I}; ∀j ∈ {1, . . . , Js}; ∀s ∈ {1, . . . , S} pij = p0
ij + gijB

dij
is

(A.5)

e) Operating time for product i in semi-continuous stage k:

∀i ∈ {1, . . . , I}; ∀k ∈ {1, . . . , Ks}; ∀s ∈ {1, . . . , S} �ik = BisDik

Rknk

(A.6)

f) Batch size of product i in sub-process s:

∀i ∈ {1, . . . , I}; ∀s ∈ {1, . . . , S} Bis = Min
j ∈ Js

[
Vj

Sij

]
(A.7)

Finally, the size of intermediate storage tanks is estimated as
the highest size difference between the batches treated in two
successive sub-processes:

∀s ∈ {1, . . . , S − 1}
V∗ = Max

i ∈ I

[
SisProdi(T

L
is + TL

i(s+1) − �ik − �i(k+1))
]

(A.8)
Please cite this article in press as: A. Ponsich, C.A.C. Coello, Differe
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ppendix B. Protein production plant model

Tables B1 and B2.

able B1
esign variables for the protein production plant problem.

Variable Description

VFer Fermentation volume [m3]
VMf1,ret 1st microfilter retentate volume [m3]
VMf1,per 1st microfilter permeate volume [m3]
SMf1,fil 1st microfilter filtration area [m2]
VHom Homogenizer tank volume [m3]
CapHom Homogenizer capacity [m3/h]
VMf2,ret 2nd microfilter retentate volume [m3]
VMf2,per 2nd microfilter permeate volume [m3]
SMf2,fil 2nd microfilter filtration area [m2]
VUf1 1st ultrafilter retentate volume [m3]
SUf1,fil 1st ultrafilter filtration area [m2]
VExt Extractor volume [m3]
VUf2 2nd ultrafilter retentate volume [m3]
SUf2,fil 2nd ultrafilter filtration area [m2]
VChr Chromatographic stage—tank volume [m3]
VChr,col Chromatographic stage—column volume [m3]

able B2
rocess variables for the protein production plant problem.

Variable Description

Xi,Fer Fermentation output concentration for product i [kg m−3]
Xi,Mf1 1st microfilter output concentration for product i [kg m−3]
Wi,Mf1 Water added in the 1st microfilter for extracellular product i
Wi,Mf2 Water added in the 2nd microfilter for intracellular product i
NP Pass number in homogenizer, intracellular product i
Ri Phase ratio in extractor for product i
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