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Abstract—In this paper, we present a surrogate-based multi-
objective evolutionary optimization approach to optimizeairfoil
aerodynamic designs. Our approach makes use of multiple
surrogate models which operate in parallel with the aim of
combining their features when solving a costly multi-objective
optimization problem. The proposed approach is used to solve
five multiobjective airfoil aerodynamic optimization prob lems.
We compare the performance of a multi-objective evolutionary
algorithm with surrogates with respect to the same approach
without using surrogates. Our preliminary results indicate that
our proposal can achieve a substantial reduction in the number
of objective function evaluations, which has obvious advantages
for dealing with expensive objective functions such as those
involved in aeronautical optimization problems.

I. I NTRODUCTION

Multi-Objective Optimization (MOO) provides designers
with more trade-off solutions to choose from, in situations
in which we aim to fulfill several (conflicting) objectives.
This contrasts with traditional design, in which a single
solution is obtained. The trade-off solutions that are obtained
by multi-objective optimization techniques are referred to
as the Pareto optimal set (in decision variable space) and
their corresponding objective function values form the so-
called Pareto front [1]. This sort of approach contrasts
with traditional design optimization techniques, which only
produce one (the best possible) solution without providing
alternative choices to the designer.

In aeronautical systems design as well as in the design
of propulsion system components, such as turbine engines,
aerodynamics plays a key role. Thus, aerodynamic shape
optimization (ASO) is a crucial task, which has been ex-
tensively studied and developed. This discipline has recently
benefitted from the use of multi-objective evolutionary algo-
rithms (MOEAs), which have gained an increasing popularity
in the last few years [2]. However, MOEAs have to face
several challenges when applied to ASO problems:

1) The flow field for some ASO applications, can be
extremely complex. Therefore, complex Computational
Fluid Dynamics (CFD) Navier-Stokes computations
(which are very expensive, computationally speaking)
are required.
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2) The performance of aerodynamic shapes such as
wing’s airfoils or turbine airfoils blades, is very sen-
sitive to the shape itself. Thus, an airfoil must be
modeled with a large number of decision variables. In
addition, the objective function landscape of an ASO
problem is often multimodal and nonlinear because the
flow field is governed by a system of nonlinear partial
differential equations.

3) ASO problems are usually subject to several constraints
and in some cases, such constraints can be evaluated
only after performing a CFD simulation, turning it into
a very expensive process (computationally speaking).

4) MOEAs require a considerable number of fitness func-
tion calls to the CFD simulation code in order to
conduct an appropriate search. This may turn them
impractical if the objective functions are too costly.

Thus, there is an evident need to have mechanisms that
allow the solution of computationally expensive problems in
reasonably short periods of time. A common approach is
the use of parallel processing techniques, which, however,
may not be sufficient in some cases [3]. Another alternative
that has been widely adopted in the engineering optimization
literature is the use of surrogates (also called metamodels),
which use (computationally cheap) approximate models of
the problem which are periodically adjusted (using real
objective function evaluations).

In this paper, we present a surrogate-based multiobjective
evolutionary approach to optimize airfoil aerodynamic de-
signs. Our approach makes use of multiple surrogate models
which operate in parallel, aiming to combine the features of
different approximation models in order to produce the com-
bination that reduces, as much as possible, the computational
cost of the MOEA being used.

The remainder of this paper is organized as follows.
Section II presents some basic concepts related to multi-
objective optimization. In Section III, we present general
concepts about surrogate modeling emphasizing some of the
main points to consider when adopting them. Section IV
describes our proposed approach. Section V describes the
experimental setup used to validate our proposed approach.
Section VI presents the results obtained and a discussion of
them. Finally, in Section VII, we present our conclusions and
some possible paths for future research.



II. M ULTI -OBJECTIVE OPTIMIZATION

A multi-objective optimization problem (MOP) can be
mathematically defined as1:

min ~f(~x) := [f1(~x), f2(~x), . . . , fk(~x)] (1)

subject to:
gi(~x) ≤ 0 i = 1, 2, . . . , m (2)

hi(~x) = 0 i = 1, 2, . . . , p (3)

where ~x = [x1, x2, . . . , xn]T is the vector of decision
variables,fi : IRn → IR, i = 1, . . . , k are the objective
functions andgi, hj : IRn → IR, i = 1, . . . , m, j = 1, . . . , p
are the constraint functions of the problem.

Other relevant definitions are the following:
Definition 1. A vector of decision variables~x ∈ IRn

dominates another vector of decision variables~y ∈ IRn,
(denoted by~x ≺ ~y) if and only if ~x is partially less than
~y, i.e. ∀i ∈ {1, . . . , k}, fi(~x) ≤ fi(~y) ∧ ∃i ∈ {1, . . . , k} :
fi(~x) < fi(~y).

Definition 2. A vector of decision variables~x ∈ X ⊂ IRn

is nondominated with respect toX , if there does not exist
another~x′ ∈ X such that~f(~x′) ≺ ~f(~x).

Definition 3. A vector of decision variables~x∗ ∈ F ⊂ IRn

(F is the feasible region) isPareto optimal if it is
nondominated with respect toF .

Definition 4. The Pareto Optimal SetP∗ is defined by:

P∗ = {~x ∈ F|~x is Pareto optimal}

Definition 5. The Pareto Front PF∗ is defined by:

PF∗ = {~f(~x) ∈ IRk|~x ∈ P∗}

The goal when solving a MOP consists on determining the
Pareto optimal set from the setF of all the decision variable
vectors that satisfy (2) and (3).

III. SURROGATE MODELS

We will limit our discussion to the use of surrogate models
in multi-objective ASO problems, since that is the scope of
this paper. In this context, surrogate models [4] replace direct
calls to any CFD simulation code. Figure 1 shows the general
flow in any surrogate-based optimization approach.

When designing and/or using a surrogate modeling ap-
proach several issues need to be addressed [5]:

1) Model to use:Several options are available: Response
Surface Methods (RSM) based on low-order polyno-
mial functions, Gaussian processes or Kriging, Radial
Basis Funcions (RBFs), Artificial Neural Networks
(ANNs), and Support Vector Machines (SVMs), among
others [6].

1Without loss of generality, minimization is assumed in the following
definitions, since any maximization problem can be transformed into a
minimization one.

2) Global/local surrogate model: A global approxima-
tion model, associated with a reduced accuracy can be
designed with a better ability to reflect general ten-
dencies in the fitness landscape, allowing the designer
to perform an explorative design search in the whole
design space in an efficient and rapid manner. When a
local surrogate model is adopted, the accuracy of the
approximation can be increased with a better ability
to capture local tendencies in the fitness landscape,
but its region of validity is limited to a predefined
neighborhood in the design space, and the designers
are able to explore only small regions of it.

3) Sample size and distribution for initial surrogate
training: The metamodel must first be trained using
a number of initial simulations, whose evaluation is
costly. These initial points are defined by a design
of experiment (DoE) technique [7], and must be kept
to a minimum. Several initial point distributions have
been proposed. A relatively common approach is to
use Latin Hypercube Sampling (LHS) [7].

4) Infilling criterion: Once the surrogate model is initial-
ized, its operation will require a selection of (surrogate-
obtained) optimal designs which will be evaluated
with the real objective functions. These evaluations
will be used to adjust the model (aiming to reduce
its approximation error). Clearly, these so-calledinfill
points, must be carefully selected (using a goodinfill-
ing criterion). This is not an easy task, since we aim
not only at reducing the approximation errors, but also
at exploring as many different regions of the search
space as possible. Thus, accuracy and diversity need
somehow to be balanced within our infilling criterion.

A. Surrogate modeling in ASO problems

Next we present a short review of some representative
research work on the use of surrogate modeling for solving
ASO problems. The way in which the issues indicated before
are addressed in each paper is emphasized in our discussion.

From the different mathematical models available, RSM
based on low order polynomials are probably the most
popular choice in the literature. For example, Lian and Liou
[8] presented the use of MOGA [9] coupled to a second order
polynomial based RSM, for solving the bi-objective ASO of a
turbine blade. This is probably a natural extension of methods
that have been found to be effective for the single-objective
case. The main advantage of using polynomial based RSM
is probably its generalization abilities. However, its training
cost is proportional to the number of sampling points, and a
high number of them is required for getting a good accuracy
of the model. More recently, RSM based on low order poly-
nomials have become less common, probably due to its limi-
tation in accurately representing fitness landscapes whichare
very rough and with high nonlinearities. For such cases, some
reserachers have relied on more elaborated surrogate models
as in Karakasis et al. [10], who presented the multi-objective
optimization of a turbine engine compressor blade using
RBF surrogate models. RBFs are very powerful functions
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Fig. 1. Surrogate-based optimization framework

to represent complex fitness landscapes, and for some kernel
functions, there exist some tuning parameters to control the
accuracy of the approximation model. Emmerich et al. [11]
and Keane [12] presented the application of a Kriging-based
metamodel for multi-objective airfoil shape optimizationin
transonic flow conditions. Kriging has a strong mathematical
basis, and is probably one of the most powerful interpolation
methods currently available. Also, kriging is able to provide
an estimate of its associated accuracy, and it allows the model
to be tuned for an improved accuracy. However, its cost
increases as the dimensionality and the number of training
points in the problem increase.

Concerning the globality/locality of the model, the RSM
presented by Lian and Liou [8] corresponds to a global
one, while the model presented by Karakasis et al. [10]
corresponds to multiple local models. In this case, the
database containing the history of designs evaluated with the
CFD tool, is subdivided into clusters, using a self-organizing
map technique. This sort of technique aims at training local
RBF surrogate models with small subpopulations, but also
guaranteeing that the whole design space is covered by
allowing the overlaping of the local RBF models. In the
work of Emmerich et al. [11], the model is also local, i.e.,
local kriging models in the neighborhood of the solution
are evaluated. In the work of Keane [12], the global kriging
model is adopted.

Regarding the initial sampling technique, most of the
research works that we reviewed use a DoE technique,
based on either a particular LHS approach [8] (Improved
Hypercube Sampling (IHS) algorithm [13]), or theLPτ
technique [12]. The size of the initial population is mainlya
choice based both on the dimensionality of the problem, as
well as on the number of CFD evaluations available.

Finally, regarding the infilling criterion, we identified the
following options. Lian and Liou [8], do not adopt an infilling
criterion. In this case, the trained model, which comprised
1,024 design solutions, is used to obtain the approximationof
the Pareto front. From this set, some candidate solutions are
selected to be evaluated with the CFD simulation code. This
is probably the simplest possible technique, but designers
must rely on very accurate models in this case. In the works
of Karakasis et al. [10], and Emmerich et al. [11], the infilling
criterion corresponds to a prescreening technique. In this
technique, the offspring are evaluated with the local models
and with this evaluation they are either ranked based on

Pareto dominance [10] or their Hypervolume contribution is
estimated [11]. In both cases, the most promising individuals
are selected to be evaluated with the CFD simulation code.
Finally, in the work of Keane [12], the infilling criterion
corresponds to a multi-objective extension of a commonly
used technique for single-objective kriging models. This
approach consists in adopting a metric defined in terms
of the probability of improvement, and on the expected
improvement which can be computed from the estimated
accuracy of interpolation given by the model.

IV. OUR PROPOSEDSURROGATE MODELING APPROACH

Our proposed surrogate-based multiobjective evolutionary
approach has the following features:

(a).- Model: When a single surrogate is needed, it is
common practice to train several surrogate models and
pick one based on their accuracy or their cross-validation
error [14]. Another option is to combine different surrogate
models into a single one by weighting their contribution [15].
In our case, and inspired by the notion of“blessing and
curse of uncertainty” in approximation models [16], we
propose to use not only one surrogate model, but a set
of them. So, the idea is to train, in parallel,N surrogate
models (SM1,SM2,...SMN ). Thus, N new solutions will
be selected for updating the database and to update the
set of surrogate models itself. The motivation behind this
choice is also that, by using different models, which are
trained with the same data points, we can inherently balance
the exploration/exploitation required in any surrogate-based
optimization technique. Solutions selected from a surrogate
model with high accuracy will emphasize exploitation, while
solutions selected from a surrogate with low accuracy will
emphasize exploration. Towards the end of the evolutionary
process, it is expected that all surrogate models will have
a high accuracy and will, therefore, contribute more to the
exploitation. By performing the search in parallel, we can
reduce the computational cost associated with the MOEA
being used. In our approach, the surrogate models can
be any combination of the options previously mentioned.
Alternatively, it is also possible to use a single surrogate
model but with different tuning parameters which will be
tested in parallel.



(b).- Globality/locality: In our proposed approach we
decided to adopt a global model, but this globality is defined
in terms of the training points in the database. Thus, the
models are trained in the design space implicitly defined by
the database points. We propose to define an initial number
of training points NTP init, and a maximum allowable
number of training points to hold in the databaseNTP max.
Once this upper limit is reached, we still allow the insertion
of new points, but the database is pruned until reaching
again the maximum allowable number of solutions. The
pruning technique adopted here is based on Pareto ranking
(i.e., individuals in the database with the highest Pareto
ranks, which are the worst in terms of Pareto optimality,
are removed, until reaching the upper limit allowed in
the database). The motivation for defining a maximum
number of points to be kept in the database, is to reduce the
computational cost associated to the training process, and
to adapt the model in the neighborhood of the Pareto front
approximation, as the evolution progresses.

(c).- Initial sampling: In the experiments that we present
here, we adopted a sampling procedure based on the Halton
distribution of points. Regarding the initial database size
NTP init, this will depend on the budget of CFD evaluations
availabe and on the number of dimensions of the problem.
We will provide guidelines for this, later on.

(d).- Infilling criterion: In our approach, we adoptN
parallel surrogate models, and we extract one solution from
each of them. Therefore,N new solutions will be generated
at each design cycle, which will also be evaluated in parallel.
For performing this selection, we first define a set of weight
vectors[λ1, λ2, . . . , λNP ], whereNP is the population size
used in the MOEA. Next, and from each surrogate model,
we select a solution that minimizes a scalar function for a se-
lected weight vector. For that sake, we adopt the Tchebycheff
scalarization function given by:

g(~x|λ, z∗) = max
1≤i≤k

{λj
i |fi(x) − z∗i |} (4)

In the above equation,λj , j = 1, . . . , NP represents the set
of weight vectors used to distribute the solutions along the
Pareto front.z∗ corresponds to a reference point, defined in
objective space and determined with the minimum objective
values of the population used in the MOEA. In order to cover
the whole Pareto front, each surrogate model must choose a
different weight vector from the set. Additionally, in each
design cycle, a different weight vector must be selected. For
doing this, we perform, in each surrogate model, a sweeping
in the set of weight vectors, and start from a different weight
vector. This process is illustrated in Figure 2. The indicated
sweeping is done in a cyclic manner, i.e. once the last weight
vector is selected, the next one is picked from the begining.
The aim of this technique is to guarantee the coverage of all
regions of the Pareto front. Evidently, once theN solutions
are selected, they are evaluated with the CFD code and added
to the database, and the approximation of the Pareto front is

updated.
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Fig. 2. Infill criterion adopted by our proposed approach

V. EXPERIMENTAL SETUP

In order to validate our proposed approach, we defined five
ASOs, based on problems found in the specialized literature.
Three of these problems are bi-objective, and the other two
have three objectives each.

We are interested in designing airfoil shapes (AirfGeom),
with optimal values in their aerodynamics forces and mo-
ments, and for different operating conditions. In airfoil
design and analysis, it is common to define these forces and
moments as scalar coefficients. It follows that for an airfoil
shape (AirfGeom) at a given flow incidence angle (α), the
lift ( Cl), drag (Cd), and pitching moment (Cm) are a function
of:

[Cl, Cd, Cm]AirfGeom = f(α, Re, M) (5)

where the Reynolds number (Re) is the dimensionless
ratio of the inertial forces to viscous forces and quantifies
their respective relevance for a given operating condition.
The Mach number (M ) is a measure of the air velocity
against the speed of sound. The CFD solver adopted in this
benchmark corresponds to XFOIL [17]. These coefficicients,
as well as their ratio in some cases, have different effects
on aircraft performance. Thus, for the benchmark we
defined the following ASO MOPs, aiming at presenting
different Pareto front geometries, as well as different fitness
landscapes.

ASO-MOP1:
min(Cd) @ α = 0.0o, Re = 4.0 × 106, M = 0.2
min(2.0− Cl) @ same flow conditions.

ASO-MOP2:
min(Cd/Cl) @ α = 4.0o, Re = 2.0 × 106, M = 0.1
min(C2

m) @ same flow conditions.



ASO-MOP3:
min(Cd/Cl) @ α = 1.0o, Re = 3.0 × 106, M = 0.3
min(C2

d/C3
l ) @ α = 5.0o, Re = 1.5 × 106, M = 0.15

ASO-MOP4:
min(Cd) @ α = 4.0o, Re = 3.0 × 106, M = 0.3
min(2.0− Cl) @ same flow conditions.
min(C2

m) @ same flow conditions.

ASO-MOP5:
min(Cd/Cl) @ α = 1.0o, Re = 4.0 × 106, M = 0.3
min(C2

d/C3
l ) @ α = 3.0o, Re = 3.0 × 106, M = 0.3

min(C2
d/C3

l ) @ α = 5.0o, Re = 2.0 × 106, M = 0.3

A. Geometry Parameterization

We adopt here the PARSEC airfoil representation [18].
Figure 3 illustrates the 11 basic parameters used for this rep-
resentation. In our case, a modified PARSEC geometry rep-
resentation was adopted, allowing us to define independently
the leading edge radius, both for upper and lower surfaces.
Thus, 12 variables in total were used. Their allowable ranges
are defined in Table I.

rleup rlelo αte βte Zte ∆Zte

min 0.0085 0.002 7.0 10.0 -0.006 0.0025
max 0.0126 0.004 10.0 14.0 -0.003 0.0050

Xup Zup Zxxup Xlo Zlo Zxxlo

min 0.41 0.11 -0.9 0.20 -0.023 0.05
max 0.46 0.13 -0.7 0.26 -0.015 0.20

TABLE I
PARAMETER RANGES FOR THE MODIFIEDPARSECAIRFOIL

REPRESENTATION ADOPTED HERE

Fig. 3. PARSEC airfoil parameterization

The PARSEC airfoil geometry representation adopted here
uses a linear combination of shape functions for defining
the upper and lower surfaces. These linear combinations are
given by:

Zupper =

6
∑

n=1

anx(n− 1

2
), Zlower =

6
∑

n=1

bnx(n− 1

2
) (6)

In the above equations, the coefficientsan, and bn are
determined as a function of the 12 described geometric
parameters, by solving two systems of linear equations.

For solving the above ASO MOPs, we adopted a MOEA
called MODE-LD+SS [19] as our search engine. This MOEA
makes use of the differential evolution operators and incor-
porates the concept of local dominance and scalar selection

mechanisms for improving, on the one hand, its convergence
rate, and, on the other hand, to distribute solutions along
the Pareto front. The details of this MOEA, which has been
compared to state-of-the-art MOEAs, can be found in [19].2

Since we were only interested in evaluating the role of
our performance modelling scheme, we only compared the
results obtained by our original MODE-LD+SS with respect
to those of the version that incorporates surrogate modelling.

B. Performance Measures

In the context of MOEAs, it is common to compare
results on the basis of some performance measures [1].
Next, and for performance assessment purposes, we report
the hypervolume (Hv) values attained by each of the two
MOEAs compared (with and without surrogate modelling).
However, we present first the definition of theHv measure:

Hypervolume (Hv): Given a Pareto approximation set
PFknown, and a reference point in objective spacezref , this
performance measure estimates the non-overlaping volume of
all the hypercubes formed by the reference point and every
vector in the Pareto set approximation. This is mathemati-
cally defined as:

HV = {∪ivoli|veci ∈ PFknown} (7)

veci is a nondominated vector from the Pareto set
approximation, andvoli is the volume for the hypercube
formed by the reference point and the nondominated vector
veci. This performance measure is Pareto compliant [20],
[21], and is used to assess both convergence and maximum
spread of the solutions from the approximation of the Pareto
front obtained with a MOEA. High values of this measure
indicate that the solutions are closer to the true Pareto front
and that they cover a wider extension of it.

C. Parameters Settings

Surrogate Model:As previously indicated, we use a set of
surrogate models. For this benchmark, we adopted five RBF
models defined by the following kernels:

• Cubic: ϕ(r) = r3

• Thin Plate Spline:ϕ(r) = r2ln(r)
• Gaussian:ϕ(r) = e−r2/(2σ2)

• Multiquadratic:ϕ(r) =
√

r2 + σ2

• Inverse Multiquadratic:ϕ(r) = 1/
√

r2 + σ2

Above,r = ||x − ci||, ci, i = 1, 2, . . . , h, is the center for
the RBF, andh is the number of hidden layers. The first two
RBF models contain no tuning parameters, while in the other
three theσ parameter can be adjusted to improve the model
accuracy. All the models are trained with the points stored
in the actual database. For each model, the approximated
function is defined by:

2Is interesting to note that, since this MOEA already uses a weight
vector set in its selection mechanism, coupling it to a surrogate model is
straightforward by adopting the infilling criterion described in Section IV.



ŷSM = Σh
j=1ωjϕj(x) (8)

We used a value ofh = 20 for the number of hidden
layers.ϕ(r) is the kernel of the hidden layer, andωj is the
weighting coefficient. Sinceh is less than the number of
training points in the database, we adopted aK − means
clustering technique to obtain the respective center for each
hidden layer. The training process for each RBF model,
required the determination of the weighting parametersωj

by means of:

[ω1, ω2, . . . , ωp]
T = (HT H)−1HT YS (9)

where YS corresponds to the vector of the objective
functions for the sample points, and

H =











ϕ1(X1) ϕ2(X1) · · · ϕp(X1)
ϕ1(X2) ϕ2(X2) · · · ϕp(X2)

· · · · · ·
... · · ·

ϕ1(XNTP ) ϕ2(XNTP ) · · · ϕp(XNTP )











(10)

MOEA parameters:We used the following set of parameters.

MODE-LD+SS without surrogate modelling:
F = 0.5, CR = 0.5, NB = 5, GMAX = 20 and
NP = 100 for the bi-objective problems. We only changed
NP = 120 for the problems with three objectives. We
defined a budget of 2000 objective function evaluations
(OFEs). This was based on the OFEs commonly reported
in the specialized literature for the problems of our interest,
which range from 1000 [11] to 2000 [8].

MODE-LD+SS with surrogate modelling:
F = 0.5, CR = 0.5, GMAX = 100 and NP = 300 3

for both, the bi-objective and the three objective cases. The
number of cycles in the surrogate approach was adjusted
for performing a total of 2000 OFEs.

Weight vector index for the infilling criterion:The index
was defined in terms of the current iteration or generation
(gen) using the following expression:

Weight Index = (SMi − 1) × NP

N
+ Shift× (gen − 1)

(11)
From this expression, we can observe that each surrogate

model starts the infilling criterion at a different weight
vector, and then the whole set of vectors is swept during
the evolutionary process. In this equation,NP is the
population size used for the MOEA when the surrogate
model is searched for,N is the number of surrogate models
adopted,gen is the current generation number andShift
is a constant used for the sweeping process defined in the
infilling criterion. In our experiments, this constant was

3A higher population size is adopted, because the evolutionary process is
performed on the surrogate model, and, therefore, has a low computational
cost.

set to 13 in order to minimize the number of times that a
weight vector is selected during the evolutionary process.

Initial and maximum training points in the database:We
adopted:NTP init = 200 and NTP max = 300 for both,
the bi-objective and the three objective problems. Here we
propose to set this parameter to approximately twice the
number of points corresponding to the population size of
the MOEA, when no surrogate model is used. The upper
limit aims at reducing the training cost associated to the RBF
models, specially for those where the tuning parameters are
adjusted for improving their accuracy.

VI. RESULTS AND DISCUSSION

Table II summarizes the results obtained for the five ASO
MOPs adopted and for each of the two MOEAs compared.
In this table, the average HV measure, and its standard
deviation are obtained from 32 independent runs for each
MOP. The Hv measures shown here correspond to a total of
2000 real objective function evaluations. From this table,we
can observe that the surrogate model approach consistently
obtained better values than the approach not using it, both
for the HV mean value and for their standard deviation.
According to a Wilcoxon rank-sum statistical test [22] with
a significance level of0.05, for all the ASo-MOPs, the
surrogate approach were significantly better.

MODE-LD+SS MODE-LD+SS w/s

MOP Hv Mean Std Dev Hv Mean Std Dev

ASO-MOP1 5.6593E-04 5.3074E-06 5.8790E-04 4.3753E-06
ASO-MOP2 6.3550E-04 6.2108E-06 6.4942E-04 2.1426E-06
ASO-MOP3 1.6747E-06 7.4601E-08 1.9076E-06 1.7524E-08

ASO-MOP4 4.3639E-04 3.4658E-06 4.4202E-04 2.5353E-06
ASO-MOP5 5.8814E-09 3.0200E-10 7.0975E-09 6.0863E-11

TABLE II
SUMMARY OF RESULTS

In order to better analyze the impact of the proposed surro-
gate model approach, in Figures 4 through 8, we present, for
all the test cases adopted, the Hv measure convergence plots,
and the Pareto fronts approximations obtained after 1000
OFEs. From these convergence plots we can observe that, in
general, at the beginning of the evolutionary process, the pro-
posed surrogate model approach, has very good convergence
properties. Considering as a first stage that defined up to
reaching 500 OFEs, a high improvement of the Hv measure
is achieved by the surrogate model approach. In fact, in
all cases, except for the ASO-MOP4 problem, the surrogate
model approach attains a Hv measure similar to that obtained
after performing 2000 OFEs with the MOEA that does not
incorporate a surrogate approach. For the case of the ASO-
MOP4 test problem, about 50 additional OFEs are required
for attaining the same state. Thus, if we consider the Hv
measure improvement, we can estimate that our proposed
surrogate-based optimization approach can produce savings
of about 75% in the number of OFEs performed. This sort
of savings can be considered a significant one for the type



of application being analyzed, because it translates into very
important CPU time reductions.

Taking a closer look at the convergence plots for ASO-
MOP1 and ASO-MOP3, after approximately 350 and 400
OFEs, respectively, we can observe that, prior to these
points, the convergence rate clearly shows a tendency to
be substantially reduced and probably even to stagnate.
However, after these points, the convergence rate suddenly
increases. This behavior can be explained in part by the
combined action of the exploration/exploitation abilities of
the differents models incorporated in our approach. A more
detailed analysis is, however, required, to confirm our hy-
pothesis. After performing 500 OFEs, our proposed approach
continues to show an improvement in the HV measure, but
the rate has considerably reduced. Nevertheless, our approach
is still able to consistently attain higher values than those
achieved by the MOEA without surrogate modelling.

Looking at the Pareto front approximations, compared at
an intermediate stage of 1000 OFEs, we can also observe
that, in general, our proposed approach is able to, consis-
tently, improve convergence towards the true Pareto front,
and to cover a wider area along it. The first condition is
clearly exemplified in the ASO-MOP3 problem, while the
second condition is clearly seen on the ASO-MOP1 and the
ASO-MOP2 problems. These same conditions apply to the
problems with three objectives.

VII. C ONCLUSIONS ANDFUTURE WORK

In this paper, we have presented a surrogate-based mul-
tiobjective evolutionary optimization approach. The main
characteristic of our proposed approach is that it uses not
only one surrogate model, but a set of them. Unlike other
approaches in which only one model is picked up from a set
of trained models, or several models are combined by means
of a weighting approach, here, each model is searched for
Pareto optimal solutions using a MOEA. From the solutions
obtained, some of them are selected to solve the MOP in
parallel and in a collaborative manner.

Our proposal was tested on five ASO MOPs. Our results
indicated that our proposal helps to speed up convergence and
that it can produce a substantial reduction in the number of
objective function evaluations performed (reaching savings
of up to 75% with respect to the same MOEA not using
surrogates).

As part of our future work, we plan to add more combina-
tions of surrogate models to the ones adopted here. It would
also be interesting to couple our surrogate-based approach
to other MOEAs and, more interestingly, to combinations of
them. This would allow a higher degree of variability during
the search which could probably lead to further reductions
on the number of objective function evaluations performed.
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