Multi-Objective Airfoil Shape Optimization
Using a Multiple-Surrogate Approach

Alfredo Arias-Montafié, Carlos A. Coello Coellband Efren Mezura-Montés

*TCINVESTAV-IPN, Departamento de Computacion, Av. IPN N&08,
Col. San Pedro Zacatenco, México, D.F., 07360, MEXICO.
fILANIA A.C. Rébsamen 80, Centro, Xalapa, Veracruz, 9100EXVCO.
e-mail: *aari as@ pn. mx, fccoel | o@s. ci nvest av. nx, femezur a@ ani a. nx

Abstract—In this paper, we present a surrogate-based multi-
objective evolutionary optimization approach to optimizeairfoil
aerodynamic designs. Our approach makes use of multiple
surrogate models which operate in parallel with the aim of
combining their features when solving a costly multi-objetive
optimization problem. The proposed approach is used to sob/
five multiobjective airfoil aerodynamic optimization problems.
We compare the performance of a multi-objective evolutionay

2) The performance of aerodynamic shapes such as

wing’s airfoils or turbine airfoils blades, is very sen-
sitive to the shape itself. Thus, an airfoil must be
modeled with a large humber of decision variables. In
addition, the objective function landscape of an ASO
problem is often multimodal and nonlinear because the
flow field is governed by a system of nonlinear partial

algorithm with surrogates with respect to the same approach
without using surrogates. Our preliminary results indicate that

our proposal can achieve a substantial reduction in the numeéer

of objective function evaluations, which has obvious advaages
for dealing with expensive objective functions such as thes
involved in aeronautical optimization problems.

differential equations.

3) ASO problems are usually subject to several constraints
and in some cases, such constraints can be evaluated
only after performing a CFD simulation, turning it into
a very expensive process (computationally speaking).

4) MOEAs require a considerable number of fithess func-
tion calls to the CFD simulation code in order to
conduct an appropriate search. This may turn them
impractical if the objective functions are too costly.

I. INTRODUCTION

Multi-Objective Optimization (MOQO) provides designers
with more trade-off solutions to choose from, in situations

in which we aim to fulfill several (conflicting) objectives. Thus, there is an evident need to have mechanisms that
This contrasts with traditional design, in which a singley o, the solution of computationally expensive problems i
solution is obtained. The trade-off solutions that are i@ ¢550nahly short periods of time. A common approach is
by multi-objective optimization techniques are referred ty,o \;se of parallel processing techniques, which, however,
as _the Pareto OP“ma' _set_ (in deC|_S|on variable space) aﬂﬁjay not be sufficient in some cases [3]. Another alternative
their corresponding objective function values form the SGat hag peen widely adopted in the engineering optimizatio

called Pareto front [1]. This sort of approach contrastfaayre is the use of surrogates (also called metampdels
with traditional design optimization techniques, whichiyon which use (computationally cheap) approximate models of

produce one (the best possible) solution without providinghe problem which are periodically adjusted (using real
alternative choices to the designer. objective function evaluations).

In aeronautical systems design as well as in the design|, is paper, we present a surrogate-based multiobjective
of propulsion system components, such as turbine enginggy|ytionary approach to optimize airfoil aerodynamic de-
aerodynamics plays a key role. Thus, aerodynamic shapgns our approach makes use of multiple surrogate models
optimization (ASO) is a crucial task, which has been exypich operate in parallel, aiming to combine the features of
tensively studied and developed. This discipline has rieen yiterent approximation models in order to produce the com-

benefitted from the use of multi-objective evolutionary®lg pination that reduces, as much as possible, the compugtion
rithms (MOEAs), which have gained an increasing popularity,st of the MOEA being used.

in the last few years [2]. However, MOEAs have.to facé The remainder of this paper is organized as follows.
several challeng(_es when applied to ASO proplems. Section Il presents some basic concepts related to multi-
1) The flow field for some ASO applications, can beobjective optimization. In Section Ill, we present general
extremely complex. Therefore, complex Computationatoncepts about surrogate modeling emphasizing some of the
Fluid Dynamics (CFD) Navier-Stokes computationgnain points to consider when adopting them. Section IV
(which are very expensive, computationally speakingdescribes our proposed approach. Section V describes the
are required. experimental setup used to validate our proposed approach.
y . _ _ Section VI presents the results obtained and a discussion of
Also affiliated to IPN-ESIME Ticoman, Av. Ticoman 600, Sans&o . . . .
Ticoman, México, D.F., 07340, MEXICO. them. Flnal_ly, in Section VII, we present our conclusiond an
TAlso affiliated to the UMI LAFMIA 3175 CNRS at CINVESTAV-IPN.  some possible paths for future research.



Il. MULTI-OBJECTIVE OPTIMIZATION 2) Global/local surrogate model: A global approxima-
tion model, associated with a reduced accuracy can be
designed with a better ability to reflect general ten-
dencies in the fitness landscape, allowing the designer

A multi-objective optimization problem (MOP) can be
mathematically defined &s

S - - - to perform an explorative design search in the whole
min f(7) := (@), f2(2), .. fi(@)] @ design space in an efficient and rapid manner. When a
subject to: local surrogate model is adopted, the accuracy of the
g:i(¥) <0 i=1,2,...,m 2 approximation can be increased with a better ability
. ) to capture local tendencies in the fitness landscape,
hi(@) =0 i=12....p @) but its region of validity is limited to a predefined
where z — [Il,xz,...,xn]T is the vector of decision neighborhood in the design space, and the designers

are able to explore only small regions of it.

3) Sample size and distribution for initial surrogate
training: The metamodel must first be trained using
a number of initial simulations, whose evaluation is
costly. These initial points are defined by a design
of experiment (DoE) technique [7], and must be kept
to a minimum. Several initial point distributions have

variables, f; : R" — R, ¢« = 1,...,k are the objective
functions andg;, h; - R" - R,i=1,...,m,j=1,...,p
are the constraint functions of the problem.

Other relevant definitions are the following:
Definition 1. A vector of decision variablesf € R"
dominates another vector of decision variablgs € R",
(denoted byz < g) if and only if £ is partially less than

7, ie. Vi€ {1,... kY fi(@) < () AZi e {1,... k) : been proposed. A relatively_ common approach is to
£:(@) < fi(3)- us_e_Latln_Hy_percube Sampling (LHS) [7]. o

4) Infilling criterion: Once the surrogate model is initial-
Definition 2. A vector of decision variables ¢ X ¢ R" ized, its operation will require a selection of (surrogate-
is nondominated with respect toX, if there does not exist obtained) optimal designs which will be evaluated
anotherz’ € X such thatf(z’) < f(Z). with the real objective functions. These evaluations

will be used to adjust the model (aiming to reduce
its approximation error). Clearly, these so-calladll
points must be carefully selected (using a gdafill-
ing criterion). This is not an easy task, since we aim

Definition 3. A vector of decision variables* € F ¢ R"
(F is the feasible region) isPareto optimal if it is
nondominated with respect t6.

Definition 4. The Pareto Optimal SetP* is defined by: not only at reducing the approximation errors, but also
at exploring as many different regions of the search
P* = {& € F|Z is Pareto optimal space as possible. Thus, accuracy and diversity need

. , , somehow to be balanced within our infilling criterion.
Definition 5. The Pareto Front PF* is defined by:

A. Surrogate modeling in ASO problems
PF* = {f(Z) € R*|& € P*} Next we present a short review of some representative
i i . research work on the use of surrogate modeling for solving
The goal when solving a MOP consists on determining thgs g problems. The way in which the issues indicated before
Pareto optimal set from the sétof all the decision variable ¢ 4qqressed in each paper is emphasized in our discussion.
vectors that satisfy (2) and (3). From the different mathematical models available, RSM
I1l. SURROGATE MODELS based on I_ow _order _polynomials are probab_ly the m_ost
e ) ) opular choice in the literature. For example, Lian and Liou
. We W'” I|_m|t our discussion to the_use of su_rrogate modelﬂ§8] presented the use of MOGA [9] coupled to a second order
m_multl-objecnv_e ASQ problems, since that is the scope olynomial based RSM, for solving the bi-objective ASO of a
this paper. In this qontex_t, surrogate_ models [4] replacectli turbine blade. This is probably a natural extension of mgsho
Ca"S,tO any CFD simulation COdG‘T‘ F_|gu.re 1 shows the generﬂat have been found to be effective for the single-objectiv
flow in any syrrc_)gate-based o_ptlmlzat|0n approach. _ case. The main advantage of using polynomial based RSM
When designing and/or using a surrogate modeling ags onhaply its generalization abilities. However, itsiftiag
proach several issues need to be addressed [5]: cost is proportional to the number of sampling points, and a
1) Model to use: Several options are available: Responsgigh number of them is required for getting a good accuracy
Surface Methods (RSM) based on low-order polynopf the model. More recently, RSM based on low order poly-
mial functions, Gaussian processes or Kriging, Radiglomials have become less common, probably due to its limi-
Basis Funcions (RBFs), Artificial Neural Networkstation in accurately representing fitness landscapes varieh
(ANNSs), and Support Vector Machines (SVMs), amongery rough and with high nonlinearities. For such casesgsom
others [6]. reserachers have relied on more elaborated surrogate snodel
. _ o _ _ as in Karakasis et al. [10], who presented the multi-objecti
Without loss of generality, minimization is assumed in tlodofving

definitions, since any maximization problem can be tramsést into a optimization of a turbine engine compressor blade u_smg
minimization one. RBF surrogate models. RBFs are very powerful functions
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Fig. 1. Surrogate-based optimization framework

to represent complex fithess landscapes, and for some kerRaketo dominance [10] or their Hypervolume contribution is
functions, there exist some tuning parameters to contel tlestimated [11]. In both cases, the most promising indivslua
accuracy of the approximation model. Emmerich et al. [114re selected to be evaluated with the CFD simulation code.
and Keane [12] presented the application of a Kriging-basdednally, in the work of Keane [12], the infilling criterion
metamodel for multi-objective airfoil shape optimization corresponds to a multi-objective extension of a commonly
transonic flow conditions. Kriging has a strong matheméticaised technique for single-objective kriging models. This
basis, and is probably one of the most powerful interpotaticapproach consists in adopting a metric defined in terms
methods currently available. Also, kriging is able to pd®/i of the probability of improvement, and on the expected
an estimate of its associated accuracy, and it allows theemodmprovement which can be computed from the estimated
to be tuned for an improved accuracy. However, its costccuracy of interpolation given by the model.
increases as the dimensionality and the number of training
points in the problem increase. IV. OUR PROPOSEDSURROGATE MODELING APPROACH
Concerning the globality/locality of the model, the RSM
presented by Lian and Liou [8] corresponds to a global Our proposed surrogate-based multiobjective evolutipnar
one, while the model presented by Karakasis et al. [1@pproach has the following features:
corresponds to multiple local models. In this case, the
database containing the history of designs evaluated Wéth t(a).- Model: When a single surrogate is needed, it is
CFD tool, is subdivided into clusters, using a self-orgayz common practice to train several surrogate models and
map technique. This sort of technique aims at training locglick one based on their accuracy or their cross-validation
RBF surrogate models with small subpopulations, but alserror [14]. Another option is to combine different surragjat
guaranteeing that the whole design space is covered bdels into a single one by weighting their contribution][15
allowing the overlaping of the local RBF models. In thein our case, and inspired by the notion ‘tiflessing and
work of Emmerich et al. [11], the model is also local, i.e.curse of uncertainty”in approximation models [16], we
local kriging models in the neighborhood of the solutiorpropose to use not only one surrogate model, but a set
are evaluated. In the work of Keane [12], the global krigingf them. So, the idea is to train, in parallé}, surrogate
model is adopted. models 6M;,SMs,...SMy). Thus, N new solutions will
Regarding the initial sampling technique, most of thée selected for updating the database and to update the
research works that we reviewed use a DoE techniqusst of surrogate models itself. The motivation behind this
based on either a particular LHS approach [8] (Improvedhoice is also that, by using different models, which are
Hypercube Sampling (IHS) algorithm [13]), or thePr trained with the same data points, we can inherently balance
technique [12]. The size of the initial population is maialy the exploration/exploitation required in any surrogaseesl
choice based both on the dimensionality of the problem, asptimization technique. Solutions selected from a sunega
well as on the number of CFD evaluations available. model with high accuracy will emphasize exploitation, whil
Finally, regarding the infilling criterion, we identifiedeéh solutions selected from a surrogate with low accuracy will
following options. Lian and Liou [8], do not adopt an infilin  emphasize exploration. Towards the end of the evolutionary
criterion. In this case, the trained model, which comprisefdrocess, it is expected that all surrogate models will have
1,024 design solutions, is used to obtain the approximation a high accuracy and will, therefore, contribute more to the
the Pareto front. From this set, some candidate solutioms axploitation. By performing the search in parallel, we can
selected to be evaluated with the CFD simulation code. Thisduce the computational cost associated with the MOEA
is probably the simplest possible technique, but designébging used. In our approach, the surrogate models can
must rely on very accurate models in this case. In the workse any combination of the options previously mentioned.
of Karakasis et al. [10], and Emmerich et al. [11], the infiji Alternatively, it is also possible to use a single surrogate
criterion corresponds to a prescreening technique. In thisodel but with different tuning parameters which will be
technique, the offspring are evaluated with the local m®detested in parallel.
and with this evaluation they are either ranked based on



(b).- Globality/locality: In our proposed approach we updated.
decided to adopt a global model, but this globality is defined

in terms of the training points in the database. Thus, the f2
models are trained in the design space implicitly defined by

the database points. We propose to define an initial number

of training points NT P and a maximum allowable
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number of training points to hold in the databasé P, f‘ F2No il Griteri
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Once this upper limit is reached, we still allow the insettio 21 Sumogate Model 2 A

of new points, but the database is pruned until reaching LN

. . . ,)\g-ﬁ-l - >
again the maximum allowable number of solutions. The e

pruning technique adopted here is based on Pareto ranking —— 5
(i.e., individuals in the database with the highest Pareto ‘
ranks, which are the worst in terms of Pareto optimality, 21 Surogate Mode M
are removed, until reaching the upper limit allowed in r

the database). The motivation for defining a maximum \

number of points to be kept in the database, is to reduce the e Mon
computational cost associated to the training process, and z*A‘;Zl

to adapt the model in the neighborhood of the Pareto front
approximation, as the evolution progresses.

Fig. 2. Infill criterion adopted by our proposed approach

(c).- Initial sampling: In the experiments that we present
here, we adopted a sampling procedure based on the Halton V. EXPERIMENTAL SETUP

distribution of points. Regarding the initial databaseesiz |n order to validate our proposed approach, we defined five
NT P, this will depend on the budget of CFD evaluationszSOs, based on problems found in the specialized literature
availabe and on the number of dimensions of the problenthree of these problems are bi-objective, and the other two
We will provide guidelines for this, later on. have three objectives each.

We are interested in designing airfoil shapdsi(f Geom),
(d).- Infilling criterion: In our approach, we adopN with optimal values in their aerodynamics forces and mo-
parallel surrogate models, and we extract one solution froments, and for different operating conditions. In airfoil
each of them. Thereforéy new solutions will be generated design and analysis, it is common to define these forces and
at each design cycle, which will also be evaluated in pdrallemoments as scalar coefficients. It follows that for an dirfoi
For performing this selection, we first define a set of weighéhape @ir fGeom) at a given flow incidence angley, the
vectors[\', A%, ..., ANF], where N P is the population size |ift (C)), drag (), and pitching moment{,,,) are a function
used in the MOEA. Next, and from each surrogate modeps:
we select a solution that minimizes a scalar function for-a se
lected weight vector. For that sake, we adopt the Tchebfchef [C1, Ca, Con) Air fGeom = f(a, Re, M) (5)

scalarization function given by:
g y where the Reynolds numbei?¢) is the dimensionless

g(Z|\, 2") = lgagxk{/\-ﬂfi(x) -z} (4) ratio of the inertial forces to viscous forces and quantifies
‘ ='= their respective relevance for a given operating condition
In the above equationy’,j = 1,..., NP represents the set The Mach number X/) is a measure of the air velocity

of weight vectors used to distribute the solutions along thagainst the speed of sound. The CFD solver adopted in this
Pareto frontz* corresponds to a reference point, defined ienchmark corresponds to XFOIL [17]. These coefficicients,
objective space and determined with the minimum objectivas well as their ratio in some cases, have different effects
values of the population used in the MOEA. In order to coveon aircraft performance. Thus, for the benchmark we
the whole Pareto front, each surrogate model must chooselefined the following ASO MOPs, aiming at presenting
different weight vector from the set. Additionally, in eachdifferent Pareto front geometries, as well as differenefn
design cycle, a different weight vector must be selected. Ftandscapes.

doing this, we perform, in each surrogate model, a sweeping

in the set of weight vectors, and start from a different weighASO-MOP1.:

vector. This process is illustrated in Figure 2. The indidat min(C;) @ o = 0.0°, Re = 4.0 x 105, M = 0.2

sweeping is done in a cyclic manner, i.e. once the last weightin(2.0 — C;) @ same flow conditions.

vector is selected, the next one is picked from the begining.

The aim of this technique is to guarantee the coverage of #iSO-MOP2:

regions of the Pareto front. Evidently, once tNesolutions min(Cy/C)) @ o = 4.0°, Re = 2.0 x 105, M = 0.1

are selected, they are evaluated with the CFD code and addaeih(C2,) @ same flow conditions.

to the database, and the approximation of the Pareto front is



ASO-MOP3: mechanisms for improving, on the one hand, its convergence

min(Cy/C;) @ a = 1.0°, Re = 3.0 x 105, M = 0.3 rate, and, on the other hand, to distribute solutions along
min(C2/C?) @ o = 5.0°, Re = 1.5 x 105, M = 0.15 the Pareto front. The details of this MOEA, which has been
compared to state-of-the-art MOEAs, can be found in f19].
ASO-MOP4: Since we were only interested in evaluating the role of
min(Cy) @ o = 4.0°, Re = 3.0 x 105, M = 0.3 our performance modelling scheme, we only compared the
min(2.0 — C;) @ same flow conditions. results obtained by our original MODE-LD+SS with respect
min(C2) @ same flow conditions. to those of the version that incorporates surrogate maodgelli
ASO-MOPS5: B. Performance Measures
min(Cy/C) @ o = 1.0°, Re = 4.0 x 10%, M = 0.3 In the context of MOEAs, it is common to compare
min(C3/C}) @ a = 3.0°, Re = 3.0 x 10°, M = 0.3 results on the basis of some performance measures [1].
min(C3/C}) @ a =5.0°, Re = 2.0 x 10°, M = 0.3 Next, and for performance assessment purposes, we report

the hypervolume fv) values attained by each of the two

A. Geometry Parameterization MOEAs compared (W|t_h and W|th_o_u_t surrogate modelling).
. ) However, we present first the definition of tii&v measure:

We adopt here the PARSEC airfoil representation [18].

Figure 3 illustrates the 11 basic parameters used for tpis re Hypervolume (Hv): Given a Pareto approximation set

resentation. In our case, a modified PARSEC geometry repp, and a referénce point in objective spagey, this

rﬁselnta(;qon WZS adog_ted, sllor:/v]lcng us to def'(;‘? 'ndeDe”?enHerformance measure estimates the non—overlapin'g volime o

the leading edge radius, both for upper and lower surfaceg ,q hypercubes formed by the reference point and every

Thus, 12 variables in total were used. Their allowable rang€actor in the Pareto set approximation. This is mathemati-
are defined in Table 1. cally defined as:

Tleup Tlelo Qte Bte Zte AZte
min | 0.0085| 0.002| 7.0 | 10.0| -0.006 | 0.0025 HV = {U;vol;|vec; € PFrnown} (7
max | 0.0126 | 0.004 | 10.0 | 14.0 | -0.003 | 0.0050
| [ Xup | Zup | Zoowp | Xto | Zto | Zasls | vec; is a nondommated vector from the Pareto set
min | 041 | 011 09 1020] -0023] 005 approximation, andvol; is the volume for the hypercube
max | 046 | 013 | -0.7 [026] -00I5] 0.20 formed by the reference point and the nondominated vector
vec;. This performance measure is Pareto compliant [20],
TABLE | [21], and is used to assess both convergence and maximum

PARAMETER RANGES FOR THE MODIFIEDPARSECAIRFOIL

REPRESENTATION ADOPTED HERE spread of the solutions from the approximation of the Pareto

front obtained with a MOEA. High values of this measure
indicate that the solutions are closer to the true Parefat fro

Z Ujf . . .
pr and that they cover a wider extension of it.
o AZ7E
X, TE Zre :
u K- C. Parameters Settings
M Surrogate Model:As previously indicated, we use a set of
B surrogate models. For this benchmark, we adopted five RBF

models defined by the following kernels:
o Cubic:p(r) =13

« Thin Plate Splineip(r) = r2In(r)

« Gaussiany(r) = e~ /(20%)

Fig. 3. PARSEC airfoil parameterization

The PARSEC airfoil geometry representation adopted here ; e
uses a linear combination of shape functions for defining * Multiquadratic:o(r) = vr? + o2

. . . I 1 — A/ r2 2
the upper and lower surfaces. These linear combinations are’ Inverse Multiquadraticiy(r) = 1/vr2 + o
given by: 6 Above,r = ||z — ¢|, ¢i,i = 1,2,...,h, is the center for

6
Zupper = Z ant ™D | Ziower = Z b,z 2)  (6) the RBF, and: is the number of hidden layers. The first two
ne1 el RBF models contain no tuning parameters, while in the other

In the above equations, the coefficients, and b, are three thes parameter can be adjusted to improve the model
determined as a function of the 12 described geometrffcCUracy. All the models are trained with the points s_tored
parameters, by solving two systems of linear equations. [N the actual database. For each model, the approximated

For solving the above ASO MOPs, we adopted a MOEAUNction is defined by:
called MODE-LD+SS [19] as our search engine. This MOEA , _ _ _ _

kes use of the differential evolution operators and HNco,.., e estng to note that, since this MOEA already uses igiwe
ma ) p _{;ector set in its selection mechanism, coupling it to a gate model is
porates the concept of local dominance and scalar selectigraightforward by adopting the infilling criterion dedmed in Section IV.



set to 13 in order to minimize the number of times that a
Jsm = E?lejgoj (x) (8) weight vector is selected during the evolutionary process.

We used a value oh = 20 for the number of hidden
layers.p(r) is the kernel of the hidden layer, ang is the
weighting coefficient. Sincé: is less than the number of

Initial and maximum training points in the databaséle
adopted:NT Pt = 200 and NTP™** = 300 for both,
the bi-objective and the three objective problems. Here we

gla';'g?npci'g;r:p tzet:it;?nsir’]gvree:dggeg(;n?gafza eapropose to set this parameter to approximately twice the
ustering lau : pectiv number of points corresponding to the population size of

hidden layer. The training process for each RBF mode]

) L - the MOEA, when no surrogate model is used. The upper
[)eyquﬂgea%;hoef.determmanon of the weighting parameiers limit aims at reducing the training cost associated to th&RB

models, specially for those where the tuning parameters are

1, ws o] = (HTH)" HTYs ©) adjusted for improving their accuracy.
) R Rl 2] -

L VI. RESULTS AND DISCUSSION
where Yg corresponds to the vector of the objective

functions for the sample points, and Table 1l summarizes the results obtained for the five ASO
MOPs adopted and for each of the two MOEAs compared.
In this table, the average HV measure, and its standard

%(?1) ¢2(§1) %’(?1) deviation are obtained from 32 independent runs for each
H— P1(X2) pa(X2) e pp(Xo) (10) MOP. The Hv measures shown here correspond to a total of
e : . 2000 real objective function evaluations. From this table,
o1(Xnrp) w2(XnTP) - @p(XnTP) can observe that the surrogate model approach consistently

. obtained better values than the approach not using it, both
MOEA parametersiVe used the following set of parameters.for the HV mean value and for their standard deviation.
According to a Wilcoxon rank-sum statistical test [22] with
a significance level of0.05, for all the ASo-MOPs, the

dsurrogate approach were significantly better.

MODE-LD+SS without surrogate modelling

F = 05, CR = 05, NB = 5, GMAX = 20 and
NP = 100 for the bi-objective problems. We only change
NB = 120 for the problems _vvith three quectives. We f i SO IOTES VoD Ss W |
defined a budget of 2000 objective function evaluationsT=wop || rvMean | SdbDev | FvMean | SdDev |
(OFEs). This was based on the OFEs commonly reporteqi ASO-MOP1 || 5.6593E-04] 5.3074E-06] 5.8790E-04 | 4.37/53E-06
in the specialized literature for the problems of our insgre ﬁgg:mgﬁg ?-g?igggg g-iég?g:gg i-gg‘;éggg i'%i—,‘ﬁiéigg
which range from 1000 [11] to 2000 [8]. ' ' ' '

[[ ASO-MOP#4 || 4.3639E-04| 3.4658E-06| 4.4202E-04 | 2.5353E-06 |
[ ASO-MOP5 || 5.8814E-09 | 3.0200E-10| 7.0975E-09 | 6.0863E-11 |

MODE-LD+SS with surrogate modelling
F =05, CR = 0.5, GMAX = 100 and NP = 300 3 TABLE Il
for both, the bi-objective and the three objective case® Th SUMMARY OF RESULTS
number of cycles in the surrogate approach was adjusted

for performing a total of 2000 OFEs. In order to better analyze the impact of the proposed surro-

. . - L . ate model approach, in Figures 4 through 8, we present, for
Weight \_/ecto_r index for the infilling .crlter_|onThe index . gll the test cazzs adopted, tghe Hv measugre convefgence plots
was def!ned n terms. of the curr_ent lteration or generatiofy the pareto fronts approximations obtained after 1000
(gen) using the following expression: OFEs. From these convergence plots we can observe that, in
P general, at the beginning of the evolutionary process, the p
Weight_Index = (SM; — 1) x N + Shift x (gen —1) posed surrogate model approach, has very good convergence
(11) properties. Considering as a first stage that defined up to
From this expression, we can observe that each surrogaégching 500 OFEs, a high improvement of the Hv measure
model starts the infilling criterion at a different weightis achieved by the surrogate model approach. In fact, in
vector, and then the whole set of vectors is swept duringll cases, except for the ASO-MOP4 problem, the surrogate
the evolutionary process. In this equatioNjP is the model approach attains a Hv measure similar to that obtained
population size used for the MOEA when the surrogatgfter performing 2000 OFEs with the MOEA that does not
model is searched fofy is the number of surrogate modelsincorporate a surrogate approach. For the case of the ASO-
adopted,gen is the current generation number asdift MOP4 test problem, about 50 additional OFEs are required
is a constant used for the sweeping process defined in th# attaining the same state. Thus, if we consider the Hv
infilling criterion. In our experiments, this constant wasmeasure improvement, we can estimate that our proposed
3A higher population size is adopted, because the evolutjopaocess is surrogate-base_d optimization approach can produce .savmg
performed on the surrogate model, ana, therefore, has adowpetational of about 75% in the number of OFEs performed. This sort
cost. of savings can be considered a significant one for the type



of application being analyzed, because it translates iatg v The third author acknowledges support from CONACyT
project no. 79809.

important CPU time reductions.

Taking a closer look at the convergence plots for ASO-
MOP1 and ASO-MOP3, after approximately 350 and 400
OFEs, respectively, we can observe that, prior to thesé!]
points, the convergence rate clearly shows a tendency to
be substantially reduced and probably even to stagnatég]
However, after these points, the convergence rate suddenly
increases. This behavior can be explained in part by the
combined action of the exploration/exploitation abiktief  [3]
the differents models incorporated in our approach. A more
detailed analysis is, however, required, to confirm our hyq4
pothesis. After performing 500 OFESs, our proposed approach
continues to show an improvement in the HV measure, bute!
the rate has considerably reduced. Nevertheless, ouragpro (g
is still able to consistently attain higher values than ¢&os
achieved by the MOEA without surrogate modelling. (7]

Looking at the Pareto front approximations, compared afg)
an intermediate stage of 1000 OFEs, we can also observe
that, in general, our proposed approach is able to, consi:@s—)]
tently, improve convergence towards the true Pareto front,
and to cover a wider area along it. The first condition is
clearly exemplified in the ASO-MOP3 problem, while the
second condition is clearly seen on the ASO-MOP1 and they
ASO-MOP2 problems. These same conditions apply to the
problems with three objectives.

VII. CONCLUSIONS ANDFUTURE WORK (11]

In this paper, we have presented a surrogate-based mul-
tiobjective evolutionary optimization approach. The main,,
characteristic of our proposed approach is that it uses not
only one surrogate model, but a set of them. Unlike othd#3]
approaches in which only one model is picked up from a set
of trained models, or several models are combined by means)
of a weighting approach, here, each model is searched for
Pareto optimal solutions using a MOEA. From the solutionﬁ_S]
obtained, some of them are selected to solve the MOP in
parallel and in a collaborative manner.

Our proposal was tested on five ASO MOPs. Our resulis®!
indicated that our proposal helps to speed up convergerce an
that it can produce a substantial reduction in the number of
objective function evaluations performed (reaching sgsin
of up to 75% with respect to the same MOEA not using
surrogates). [18]

As part of our future work, we plan to add more combina-
tions of surrogate models to the ones adopted here. It would
also be interesting to couple our surrogate-based approach
to other MOEAs and, more interestingly, to combinations of
them. This would allow a higher degree of variability during
the search which could probably lead to further reductiorigol
on the number of objective function evaluations performed.
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