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Abstract—Conventional mathematical programming tech-
nigues have several drawbacks related to lack of stability ad
premature convergence when applied to the identification of
adaptive IIR systems. Additionally, such mathematical metods
normally fail when reduced order adaptive models are used fo
the identification of higher order systems. In this paper, tte
IIR system identification task is formulated as an optimizaton
problem and a variant of differential evolution (DE) called
JADE is adopted to solve the problem. The explorative mutatn

scheme and innovative parameter adaptation schemes of JADE

avoid premature convergence and increase the robustness thife
DE algorithm. Both actual and reduced order identification of
some benchmark IIR plants is carried out through a simulation
study. The results indicate that the method adopted here iskde
to obtain better results than those found by several statefethe-
art metaheuristics.

predict its behavior. Most adaptive IIR filters are realized
direct form due to their relatively simple implementatiorda
analysis. However, some disadvantages of the direct form,
such as finite-precision effects and the complexity of §itsbi
monitoring, have led to the development of new structures
(see for example [8], [9]). The computational complexity
and convergence properties of adaptive algorithms depend o
the filter realization. This has aroused the interest of many
researchers to design suitable algorithms for the adapive
problem, including the use of evolutionary techniques [5],
[1].

Recently, Differential Evolution (DE) has emerged as a
powerful global optimizer. In this paper, we employ a recent

variant of the DE algorithm (named JADE [13]) for solving
the adaptive IIR filter identification problem. The study
presented here, tests the abilities of JADE components when
Infinite Impulse Response (IIR) is an important propertyjealing with this type of problem. The results obtained by
of systems dealing with Digital Signal Processing (DSPYADE are compared with respect to those achieved by five
Filter systems exhibiting this property are known as IIRiifferent state-of-the-art metaheuristics. As we will seer
filters, which can be defined as those digital filters havingn, JADE outperforms the other approaches with respect to
an infinite-duration unit sample response. On the other hanghich it was compared in all the test problems adopted.
Finite Impulse Response (FIR) filters have fixed-duration The remainder of this paper is organized as follows. In
impulse responses. Nowadays, adaptive IIR filtering is a8ection 11, we introduce the basic concepts related to IIR
emerging field of research due to its many applications ifjiters. Section Il shows the details of the JADE algorithm
signal processing and communications. To attain a pasiculyhich is adopted in this work. Section IV shows the results
level of performance, an IIR filter requires a lower number opptained in our study. In Section V, we present a short
coefficients than the corresponding FIR filter. That is beseau discussion of our results. Finally, Section VI provides our

the output of IIR filters is constituted by poles and zeros iRonclusions and some possible paths for future research.
comparison with FIR filters that only possess zeros [10].

However, the major snag that arises in adaptive IIR fil-
tering applications is given by the error landscape, which
is generally non-quadratic and multimodal in nature with |n the system identification configuration, the adaptive
respect to the filter coefficients. Therefore, mathematicalgorithm searches for the adaptive filter coefficients such
programming methods fail to converge to the optimal sahat its input/output relationship matches closely to tifahe
lution and get stuck at local optima due to the multimodalinknown system or plant. The block diagram of an adaptive
property of the error surface [12]. Further, during them&g | IR system identification is shown in Fig. 1. An IIR system

process, the movement of poles outside the unit circig defined by the following difference equation:
incorporates instability into adaptive IIR filters. Thewed,

stability monitoring is very important during identificati (1)

of higher order adaptive IIR filters. The properties of an

adaptive IIR filter are considerably more complex than thosehere x(n) and y(n) are the input and the output signals
of an adaptive FIR filter, and hence, it is more difficult toof the IIR plant, respectivelyH, (z) represents the transfer

I. INTRODUCTION

II. IR SYSTEM IDENTIFICATION

yo = Hp(z) - z(n)



Additive Noise

IIl. THE JADE ALGORITHM
A. Sandard Differential Evolution

Unknown
IIR System
(Plant)

Differential Evolution (DE) is a simple but powerful
algorithm originally developed by Rainer Storn and Kenneth
(n) e(n) Price in the mid-1990s [11]. This population-based evoluti

/ ary technique creates new candidate solutions by adding the
Adaptive weighted difference of several randomly selected indigldu
IR Filter to another individual. According to [11], [6], the standard
7 Adaptive DE algorithm consists of the following steps
Algorithm 1) Initialization of the Population: Considering a multi-
dimensional optimization problem wittD decision vari-

Fig. 1. Block diagram of an adaptive system identifier ables. DE initializes a population o P vectors of di-
mension D, which should cover the entire search space
as much as possible within minimum and maximum pre-

function of the unknown plant and is given by: defined boundsX.,in = (Z1,min, - - TD,min) ANAX 100 =
(1, mazs - - - s TD,maz ), FESPECtively.
Hy(z) = [A(Z)] @) Each vector represents a candidate solution to the opti-
B(2) mization problem. The subsequent generations are denoted

by G = {0,1,...,Gmnae} and thei’” vector of the pop-
whereA(z) = Y ga;z " and B(z) = 1 — Y_;2 bz~ are ulation at the current generation is denoted Bys =
z-domain feed-forward and feed-back coefficient polynomitz, ; ¢,...,zp; c).
als of the IIR plant, respectively. The overall output of the 2) Mutauon The mutation mechanism creates a donor
plant is defined then, as: vector V;  corresponding to each population member or
target vector)fi,g in the generationG. The two most
y(n) = yo(n) + v(n) ®3) widely used mutation strategies (and referred here) of DE

d ibed belotv.
whereu(n) is an additive noise. From equations (1) and (3)‘:”? Séfrgn?jll el

we have: o < R O "
A(z)] e =Xt I MR We'
n) = z(n) +v(n 4
v(n) {B(z) (n) +v(n) “ « DE/target-to-best/1:
The adaptive filter is governed by the difference equation: Viig =Xig+F - (Xpest,c — Xig) + F - ()?r;’,g - Xrg,cﬁ ©
§(n) = Hy(2)z(n) (5) In equations (8) and (9), the indice$ # r} # ri # i are

integers uniformly chosen from the st 2, ..., NP}, andi

where H(z) is the transfer function of the IIR model andrefers to the vector concerned in the population. The cansta
is stated as: F > 0is a scaling factor which controls the amplification of

A(z) the differential variationXbest,G represents the vector with
Mm(z) = |= (6) Dbest fitness in the population at generat®n
B(z) 3) Crossover: After the mutation step, a crossover oper-

, . L. . ation is carried out. There are two different strategies for
In]\?quatf)n (6),A(2) = 2iLo@iz " and B(z) = 1 —  he crossover: théinary (bin) and theexponential (exp)
>_j—q biz™" represents the feed-forward and the feed-backhemes. In the binary scheme (WhICh is adopted in this
coefﬁuent polynomials of the adaptlve filter, respectwel work) the trial vectorlU; ¢ = (u14.a,...,upic) IS con-

coefﬁuent of the model. The transfer function of the IIRvector and the target vector. That is:

plant is identified by using the transfer function of the
adaptive filter. This identification task is formulated as an i i (rand; ;(0,1) < Cr Of j = jrand)
optimization problem, where the Mean Square Error (MSE) UG = z; ;¢ Otherwise

(defined in equation (7)) is used as the cost function.
where,rand; ;(0, 1) is a uniformly distributed random num-

) N ) ber for eachj’” component of thé!” parameter vectoy,qnq
J = Ele"(n)] = + > e(n) (7) is a randomly chosen index ar@- € [0,1] represents the
n=1 crossover probability.

In equation (7)5( ) y( ) y( )IS the error S|gnaL7\7 IS 1Source codes of differential evolution are available anlirat

the number of input samples to be used df(d) represents hip:/iwww.icsi.berkeley.edu/storn/code.html
the statistical expectation operator. 2More schemes for mutation can be found in [6].



4) Selection: To determine whether the target or the trial0.1 (denoted byN (uc.,0.1)), and then truncated tw, 1].
vector survives to the next generation (i.e..Gat= G + 1) In an analogous wayF; of each individualX; ¢, is inde-

the following selection operation is employed: pendently generated according to a Cauchy distributioh wit
. _ = = location parameter» and scale parametérl (denoted by
Xigi1 = UjG i (f(U_ivG> < f(Xic)) Q(ur,0.1)), and then truncated to the interv@dl, 1]. S¢,- is
Xi,c otherwise denoted as the set of all successful crossover 1@ig's at

generationG. e, is initialized to be0.5 and then updated
at the end of the generation as follows:

HCr = (1 — C)/LCT +C- meanA(SCr) (10)

where f(X) is the objective function to be minimized.

B. The JADE Algorithm

The Adaptive Differential Evolution with Optional Exter- ) ) )
nal Archive (JADE) was proposed by Zhang and Sandersoffn€reC is a constant in the rangé, 1] and mean.(-) is
in [13]. This algorithm implements a new mutation strategy"€ @rithmetic mean operation. In an analogous vay,is
called “DE/current-to-p-pest with/without external ant ~ denoted as the set of alliccessiul mutation factors £7's at
and adaptively controls the parameters associated therddgneratior. up is initialized to be0.5 and then updated at
increasing the convergence speed and accuracy. JADE addff@ €nd of the generation as:

binary crossover and ane-to-one selection scheme. The pr = (1= C)up + C -meanr,(Sr) (11)
main aspects of JADE are summarized below. ] .

1) DE/current-to-p-best with/without external archive: wheremean (Sr) is the Lehmer mean, defined by:
“DE/current-to-p-best” is a generalization of the classic S res 2
“DE/current-to-best” mutation strategy. In this generet meany,(Sr) = T;F (12)

€SF

mutation strategy instead of just the best-solution infarm

tion, the information from other aspiring solutions is atmp JADE has shown better or at least competitive performance
as well. The strategy selects (randomly) any solution of thi8 terms of both the convergence rate and the reliability,
top 100p% (p € (0,1]) solutions. This plays the same rolecompared to other EAs. For a detailed description of JADE,
that the single best solution plays in the “DE/current-&sh  the interested reader is referred to [13].

strategy. To increase the exploration of the population and
also to avoid getting trapped at local optima, the diffeeenc : ) . . .
between the archived inferior solutions and the current po A simulation study was carried out n MA-I-_LAB in order
ulation can be incorporated into the mutation operatorsTh 0 assess the poten_tlal ,Of ‘]ADI_E for identifying ”_R plf_;mts.
is an optional choice for JADE and so the mutation utilizeJhe mput was a _Wh'Fe signal W'th Zero mean, unit variance
in JADE is called “DE/current-top-best with/without extei and uniform distribution. Th_e addm_ve noise em_ployed he“?
archive”. In this paper, we only consider the variant of JADé:orresponds to the Gaussian white signal with low vari-

with external archive and still denote it as JADE. In this Wayance. The results obtained b_y JADE were compared with
the mutation vector is generated in the following manner: respect to those reached by five state-of-the-art appreache
DE/rand/1/bin (a standard DE) [11], SaDE (DE with strategy

V;‘,G = Xi,G + F; - (Xfest7G - Xi,G) + F; - (Xr;‘,c; — X,‘;G) adaptation) [7], PSO (a particle swarm optimizer) [4], DMS-
PSO (a dynamic multi-swarm PSO with local search) [14],
G 2 . § CMA-ES (an evolution strategy) [2] and a GA (a genetic
best 100p% individuals in the current population, ank} algorithm) [3]. For a fair comparison, we used the best suite
is the mutation scale factor associated with and it is  arametric setup chosen with guidelines provided by their a
regenerated at each generation by an adaptation strate@ys The population size chosen for all these algorithas w
X, Is randomly selected from the uniafl U A, where o i 50 Different tests were carried out for identification
of three benchmark IIR systems. Two performance measures

P represents the current population aAdrepresents the
(Residual Mean Square Error (RMSE) and Mean Square

archive. X; g, X},  andX,; ; are selected fronP as in
equation (9). To achieve the archive operation, at the firg{ayiation (MSD)) were used to compare the performance

iteration, A is empty. After each generation, the parenig e aigorithms considered in our study. RMSE is defined

which are not selected for the next generation are added ¢ steady state MSE value and MSD is defined as:
to A. During this process, when the archive size exceeds

IV. SIMULATION RESULTS

where X’festc is a randomly chosen individual from the

a predefined thresholdMP in this work), some solutions 1 _ Ao
are randomly eliminated from to keep the archive size no MSD = Q - (®(2) — (1)) (13)
larger thanN P. =0

2) Control Parameter Adaptation: In JADE, the crossover where @ is the desired parameter vectab, is the esti-
rate Cr; and mutation factor; associated with each indi- mated parameter vector arfgl represents the total number
vidual vectorXi,G, are generated using two parameters;  of parameters to be estimated. An unknown plant can be
and ur, respectively. At each generati@n, a Cr; of each modeled in two ways: 1) using a filter of order equal to
individual )?LG is independently generated according to a@he order of the plant, and 2) using a reduced order filter.
normal distribution with meanuc,. and standard deviation The performance of an algorithm is mostly determined by



its ability to model a plant using a reduced order modeB. Example 2

For each standard test problem, a reduced order model wasrhe transfer function of the plant is given by:
used to assess the performance of the considered algorithms 02— 0421 40552

For same order modeling, we calculated both the RMSE  Hg(z) = [ — — 3}
and MSD metrics; however, for reduced order modeling, 1-0.627"+0.2527%—0.22
only RMSE was computed. This is because the number of 1) Case 1: This 3"¢ order plant can be modeled by using
coefficients for the original filter and the reduced ordeefilt a 3"¢ order IIR filter. Hence, the transfer function of the
are not the same, which means that the MSD formula i®odel is given by:

(15)

not valid. Next, we describe the test problems used in our " ao + a1zt + agz 2

experiments. s(z) = [1 —biz7l —byz—2 — bgz—?’]

A. Example 1 In this case, the number of fitness function evaluations

The transfer function Of the p|ant is given by was set to 10,000 (300 generations). F|g 3 ShOWS the
1 convergence plot for the algorithms when minimizing the
0.05 — 0.4z
Hs(z) = — — (14) MSE.
1—-1.13142"1+0.252—2

1) Case 1: This2"? order plant can be modeled by using 10

T T T
—=8— DE/rand/1/bin

a 2@ order IIR filter. Hence, the transfer function of the & —&— SaDE
model is given by: st e o
L (é) —<— CMA-ES
H (2) . ag+ar1z— P
o - 1-— b1271 + b2272 LE, 107
In this case, the total number of fithess function evaluatior & .
was set td, 500, i.e., 130 generations, for all the algorithms. ~ §*° |

Fig. 2 shows the convergence plot for the algorithms whe
minimizing MSE. 107

S

. . . . . . . . .
0 20 40 60 80 100 120 140 160 180 200
Iteration Number

Fig. 3. Convergence plot corresponding to Example 2 usisgaorder
filter.

# 2) Case 2: The 3"¢ order plant considered here, can be
modeled by using 2" order IIR filter. Hence, the transfer

—&— DE/rand/1/bin

Mean Square Error (MSE)

—6— SaDE function of the reduced order filter is stated as:
—6—PSO —1
Lol | & DuMs-Pso ) Hs(z) = ap + a1z
+ng—Es ] 1—b1z71 —boz2
P | ‘ ‘ ‘ ‘ The total number of fitness function evaluations in this case
0 20 40 60 80 100 120 140 was set tol0,000 (200 generations) for all the algorithms.

Iteration Number

Tables Il and IV show the estimation parameters for3fe
) . 3
Fig. 2. Convergence plot corresponding to Example 1 usigg%order order filter, and _the metrics fO.I‘ both ti3& and the reduced
filter. (2"%) order IIR filters, respectively.

C. Example 3

2) Case 2: This 2™ order plant can also be modeled by The transfer function of the plant is given by:

using a reduced order IIR filter. Therefore1& order IIR

filter can be used for modeling ti&? order plant. In this Hs(z) = { 1-0.927140.81272 — o.7zgz*3 }
case, the transfer function of the model is given by: L4 0.0474 4 0.2775272 — 02101279 + 0142740
ao 1) Case1: The4!" order plant can be modeled by using a
Hs(z) = [W} 4t order IIR filter. Hence, the transfer function of the model

In this case, the total number of fitness evaluations carried 9" by . Ly s

out was set ir2, 500 (50 generations). Tables | and Il show Hs(z) = { ag +a127" +az”° +azz }

the estimation parameters for tR&? order filter, and the L=biz7t —boz™2 —bgz™3 —byz™?

metrics for both the2"? and the reducedl{’) order IIR In this case, the total number of fitness function evaluation
filters, respectively. For an easy interpretation, the aktes was set t020,000 (400 generations). Fig. 4 shows the
reached by the algorithms are displayedaoidfacefor each convergence plot for the algorithms when minimizing the
metric. MSE.




= ‘ ‘ IR system identification. This evolutionary technique has
o OShanabin been applied to the identification of system components of
—e—Pso some benchmark IIR plants. The performance assessment
—H— DMS-PSO . . ..
—<— CMA-ES of JADE was not only carried out with a similar order
e but also with a reduced order model for each plant. Our
preliminary results indicate that JADE constitutes a \éabl
alternative for the identification of IIR plants, being ale
outperform several other state-of-the-art metaheusistis
part of our future work, we intend to hybridize mathematical
programming techniques with JADE. In this way, while the
evolutionary strategy explores the search space, matieahat
programming methods could be used to exploit promissory
regions within it.

10
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Mean Square Error (MSE)
=
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Fig. 4. Convergence plot corresponding to Example 3 usiBg@aorder
filter.

2) Case 2. The 4" order plant considered here can b
modeled by using 8" order IIR filter. Hence, the transfer
function of the model is given by:
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TABLE |
PARAMETER ESTIMATION FOREXAMPLE 1 MODELED BY USING A 2% ORDERIIR FILTER

Estimated Value
Parameter| Actual value | R —SaDE T PSO | DMS-PSO| CMAES | GA JADE
% 0.05 0.085 0.0509 | 0.096 | 0.089 0.099 | 0.0877 | 0.0507
a1 04 0425 04108 | -0.467 | -0.413 0487 | 04112 -0.4035
b 11314 1.165 11232 | 1204 | 1173 1186 | 1182 | L1242
bo 025 0298 02503 -0.316 | -0.307 031 | -0.305 | -0.2429
TABLE Il

RESULTS OF THERMSEAND MSD METRICS FOREXAMPLE 1 MODELED BY USING A 2% ORDER AND THE REDUCED(lSt) ORDERIIR FILTER

DE/rand/1/bin SaDE PSO DMS-PSO | CMA-ES GA JADE
RMSE Average 7.67E-004 2.89E-005| 3.67E-003| 5.09E-004 | 3.89E-003 | 8.87E-004 | 4.99E-006
Std. Dev 1.64E-005 9.46E-006| 1.18E-004| 2.02E-005| 3.49E-004 | 6.71E-005| 6.38E-007
MSD Average 3.03E-004 8.89E-005| 7.87E-003| 8.12E-004 | 7.89E-003 | 5.10E-004 | 5.06E-005
Std. Dev 4.67E-005 1.46E-006| 7.74E-004| 9.18E-005| 9.46E-004 | 1.55E-005| 3.48E-005
RMSE Average 1.14E-001 3.95E-002 | 8.99E-001| 7.59E-002 | 8.84E+003| 8.19E-002| 1.62E-002
(reduced order)| Std. Dev 8.79E-003 9.03E-003| 3.31E-003| 1.69E-003| 5.91E-003 | 2.29E-002| 1.48E-004
TABLE Il
PARAMETER ESTIMATION FOREXAMPLE 2 MODELED BY USING A 3"¢ ORDERIIR FILTER
Parameter| Actual value Estimated Value
DE/rand/1/bin| SaDE PSO DMS-PSO | CMA-ES GA JADE
ag -0.2 -0.2189 -0.1963 | -0.2163 -0.2128 -0.1989 | -0.2289 | -0.1963
al -0.4 -0.3965 -0.4171| -0.3919 -0.3991 -0.4165 | -0.4165 | -0.4032
a2 0.5 0.5132 0.4991 | 0.5192 0.5154 0.4932 0.5132 | 0.4946
by 0.6 0.6121 0.5964 | 0.6151 0.6117 0.5921 0.6121 | 0.5869
ba -0.25 -0.2431 -0.2472 | -0.2483 -0.2473 -0.2331 | -0.2431 | -0.2489
b3 0.2 0.2154 0.1982 | 0.2171 0.2118 0.1854 0.2254 | 0.1925
TABLE IV

RESULTS OF THERMSEAND MSD METRICS FOREXAMPLE 2 MODELED BY USING A 3" ORDER AND THE REDUCED(2"?) ORDERIIR FILTER

DE/rand/1/bin SaDE PSO DMS-PSO| CMA-ES GA JADE
RMSE Average 9.37E-005 8.35E-005| 2.13E-004| 7.68E-005| 2.71E-004 | 3.15E-004| 4.53E-005
Std. Dev 1.39E-005 6.55E-006| 5.79E-005| 7.57E-006| 6.48E-005 | 4.24E-005| 7.80E-007
MSD Average 4.55E-005 4.01E-005| 4.01E-005| 3.99E-005| 9.29E-005 | 8.29E-005| 9.75E-006
Std. Dev 6.55E-006 6.13E-006| 6.13E-006| 7.73E-006| 1.73E-005 | 7.73E-006| 8.96E-006
RMSE Average 3.73E-002 1.41E-003| 1.79E-003| 1.47E-003| 2.22323-03| 3.26E-002| 1.05E-003
(reduced order)| Std. Dev 1.88E-002 1.07E-004| 2.87E-004| 2.73E-004 | 2.89E-003 | 1.61E-002| 2.01E-005
TABLE V
PARAMETER ESTIMATION FOREXAMPLE 1 MODELED BY USING A 4t" ORDERIIR FILTER
Parameter| Actual value Estimated Value

DE/rand/1/bin SaDE PSO DMS-PSO | CMA-ES GA JADE

ag 1 0.8984 1.1421 0.9115 0.9012 0.9821 1.0432 | 0.9984

a1 -0.9 -0.9109 -0.9092 | -0.9123 -0.8971 -0.8912 | -0.8973 | -0.8967

a2 0.81 0.7963 0.7412 0.8075 0.8123 0.8321 0.8072 | 0.8074

as -0.729 -0.7066 -0.7241 | -0.7563 -0.6542 -0.7121 | -0.7123| -0.7268

b1 -0.04 -0.0455 -0.0422 | -0.0387 -0.0401 -0.0398 | -0.0342 | -0.0424

ba -0.2775 -0.2987 -0.29711 | -0.2763 -0.2741 -0.2512 | -0.2534 | -0.2826

b3 0.2101 0.2091 0.2285 0.1901 0.1984 0.2342 0.2011 | 0.2031

by -0.14 -0.1312 -0.1519 | -0.1564 -0.1451 -0.1523 | -0.1502 | -0.1435

TABLE VI

RESULTS OF THERMSEAND MSD METRICS FOREXAMPLE 3 MODELED BY USING A 4" ORDER AND THE REDUCED(Srd) ORDERIIR FILTER

DE/rand/1/bin SaDE PSO DMS-PSO | CMA-ES GA JADE
RMSE Average 9.56E-005 8.45E-005| 1.53E-004| 8.77E-005| 1.17E-004 | 9.23E-005| 4.73E-005
Std. Dev 6.76E-006 8.82E-006 | 5.97E-006| 7.73E-006 | 4.74E-005| 7.35E-006 | 8.02E-007
MSD Average 6.85E-004 7.37E-005| 4.76E-004| 9.36E-005| 9.89E-002| 8.48E-002| 2.11E-005
Std. Dev 5.87E-004 2.28E-005| 4.74E-004| 4.79E-005| 3.49E-002| 3.85E-002| 1.01E-005
RMSE Average 2.87E-002 6.13E-003| 3.65E-002| 8.97E-003 | 1.58E-002| 4.66E-002| 5.65E-003
(reduced order)| Std. Dev 1.95E-002 3.13E-003| 3.68E-002| 3.46E-003 | 2.13E-002| 2.33E-002| 4.59E-005




