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Abstract—Conventional mathematical programming tech-
niques have several drawbacks related to lack of stability and
premature convergence when applied to the identification of
adaptive IIR systems. Additionally, such mathematical methods
normally fail when reduced order adaptive models are used for
the identification of higher order systems. In this paper, the
IIR system identification task is formulated as an optimization
problem and a variant of differential evolution (DE) called
JADE is adopted to solve the problem. The explorative mutation
scheme and innovative parameter adaptation schemes of JADE
avoid premature convergence and increase the robustness ofthe
DE algorithm. Both actual and reduced order identification of
some benchmark IIR plants is carried out through a simulation
study. The results indicate that the method adopted here is able
to obtain better results than those found by several state-of-the-
art metaheuristics.

I. I NTRODUCTION

Infinite Impulse Response (IIR) is an important property
of systems dealing with Digital Signal Processing (DSP).
Filter systems exhibiting this property are known as IIR
filters, which can be defined as those digital filters having
an infinite-duration unit sample response. On the other hand,
Finite Impulse Response (FIR) filters have fixed-duration
impulse responses. Nowadays, adaptive IIR filtering is an
emerging field of research due to its many applications in
signal processing and communications. To attain a particular
level of performance, an IIR filter requires a lower number of
coefficients than the corresponding FIR filter. That is because
the output of IIR filters is constituted by poles and zeros in
comparison with FIR filters that only possess zeros [10].

However, the major snag that arises in adaptive IIR fil-
tering applications is given by the error landscape, which
is generally non-quadratic and multimodal in nature with
respect to the filter coefficients. Therefore, mathematical
programming methods fail to converge to the optimal so-
lution and get stuck at local optima due to the multimodal
property of the error surface [12]. Further, during the learning
process, the movement of poles outside the unit circle
incorporates instability into adaptive IIR filters. Therefore,
stability monitoring is very important during identification
of higher order adaptive IIR filters. The properties of an
adaptive IIR filter are considerably more complex than those
of an adaptive FIR filter, and hence, it is more difficult to

predict its behavior. Most adaptive IIR filters are realizedin
direct form due to their relatively simple implementation and
analysis. However, some disadvantages of the direct form,
such as finite-precision effects and the complexity of stability
monitoring, have led to the development of new structures
(see for example [8], [9]). The computational complexity
and convergence properties of adaptive algorithms depend on
the filter realization. This has aroused the interest of many
researchers to design suitable algorithms for the adaptiveIIR
problem, including the use of evolutionary techniques [5],
[1].

Recently, Differential Evolution (DE) has emerged as a
powerful global optimizer. In this paper, we employ a recent
variant of the DE algorithm (named JADE [13]) for solving
the adaptive IIR filter identification problem. The study
presented here, tests the abilities of JADE components when
dealing with this type of problem. The results obtained by
JADE are compared with respect to those achieved by five
different state-of-the-art metaheuristics. As we will seelater
on, JADE outperforms the other approaches with respect to
which it was compared in all the test problems adopted.

The remainder of this paper is organized as follows. In
Section II, we introduce the basic concepts related to IIR
filters. Section III shows the details of the JADE algorithm
which is adopted in this work. Section IV shows the results
obtained in our study. In Section V, we present a short
discussion of our results. Finally, Section VI provides our
conclusions and some possible paths for future research.

II. IIR SYSTEM IDENTIFICATION

In the system identification configuration, the adaptive
algorithm searches for the adaptive filter coefficients such
that its input/output relationship matches closely to thatof the
unknown system or plant. The block diagram of an adaptive
IIR system identification is shown in Fig. 1. An IIR system
is defined by the following difference equation:

y0 = Hp(z) · x(n) (1)

wherex(n) and y(n) are the input and the output signals
of the IIR plant, respectively.Hp(z) represents the transfer



Fig. 1. Block diagram of an adaptive system identifier

function of the unknown plant and is given by:

Hp(z) =

[

A(z)

B(z)

]

(2)

whereA(z) =
∑L

i=0 aiz
−i andB(z) = 1−

∑M
i=0 biz

−i are
z-domain feed-forward and feed-back coefficient polynomi-
als of the IIR plant, respectively. The overall output of the
plant is defined then, as:

y(n) = y0(n) + v(n) (3)

wherev(n) is an additive noise. From equations (1) and (3),
we have:

y(n) =

[

A(z)

B(z)

]

x(n) + v(n) (4)

The adaptive filter is governed by the difference equation:

ŷ(n) = HM (z)x(n) (5)

whereHM (z) is the transfer function of the IIR model and
is stated as:

HM (z) =

[

Â(z)

B̂(z)

]

(6)

In equation (6),Â(z) =
∑L

i=0 âiz
−i and B̂(z) = 1 −

∑M
i=0 b̂iz

−i represents the feed-forward and the feed-back
coefficient polynomials of the adaptive filter, respectively.
âi and b̂i denote the estimated feed-forward and feed-back
coefficient of the model. The transfer function of the IIR
plant is identified by using the transfer function of the
adaptive filter. This identification task is formulated as an
optimization problem, where the Mean Square Error (MSE)
(defined in equation (7)) is used as the cost function.

J = E[e2(n)] ≈
1

N

N
∑

n=1

e2(n) (7)

In equation (7),e(n) = y(n) = ŷ(n) is the error signal,N is
the number of input samples to be used andE(·) represents
the statistical expectation operator.

III. T HE JADE ALGORITHM

A. Standard Differential Evolution

Differential Evolution (DE) is a simple but powerful
algorithm originally developed by Rainer Storn and Kenneth
Price in the mid-1990s [11]. This population-based evolution-
ary technique creates new candidate solutions by adding the
weighted difference of several randomly selected individuals
to another individual. According to [11], [6], the standard
DE algorithm consists of the following steps1.

1) Initialization of the Population: Considering a multi-
dimensional optimization problem withD decision vari-
ables. DE initializes a population ofNP vectors of di-
mension D, which should cover the entire search space
as much as possible within minimum and maximum pre-
defined bounds:~Xmin = (x1,min, . . . , xD,min) and ~Xmax =
(x1,max, . . . , xD,max), respectively.

Each vector represents a candidate solution to the opti-
mization problem. The subsequent generations are denoted
by G = {0, 1, . . . , Gmax} and theith vector of the pop-
ulation at the current generation is denoted by~Xi,G =
(x1,i,G, . . . , xD,i,G).

2) Mutation: The mutation mechanism creates a donor
vector ~Vi,G corresponding to each population member or
target vector ~Xi,G in the generationG. The two most
widely used mutation strategies (and referred here) of DE
are described below.2

• DE/rand/1:
~Vi,G = ~X

ri
1

,G
+ F · ( ~X

ri
2

,G
− ~X

ri
3

,G
) (8)

• DE/target-to-best/1:

~Vi,G = ~Xi,G + F · ( ~Xbest,G − ~Xi,G) + F · ( ~X
ri
1

,G
− ~X

ri
2

,G
) (9)

In equations (8) and (9), the indicesri
1 6= ri

2 6= ri
3 6= i are

integers uniformly chosen from the set{1, 2, . . . , NP}, andi

refers to the vector concerned in the population. The constant
F > 0 is a scaling factor which controls the amplification of
the differential variation.~Xbest,G represents the vector with
best fitness in the population at generationG.

3) Crossover: After the mutation step, a crossover oper-
ation is carried out. There are two different strategies for
the crossover: thebinary (bin) and theexponential (exp)
schemes. In the binary scheme (which is adopted in this
work), the trial vector~Ui,G = (u1,i,G, . . . , uD,i,G) is con-
stituted by an exchange of components between the donor
vector and the target vector. That is:

uj,i,G =

{

vj,i,G if (randi,j(0, 1) ≤ Cr or j = jrand)

xi,j,G otherwise

where,randi,j(0, 1) is a uniformly distributed random num-
ber for eachjth component of theith parameter vector.jrand

is a randomly chosen index andCr ∈ [0, 1] represents the
crossover probability.

1Source codes of differential evolution are available online at
http://www.icsi.berkeley.edu/˜storn/code.html

2More schemes for mutation can be found in [6].



4) Selection: To determine whether the target or the trial
vector survives to the next generation (i.e., atG = G + 1)
the following selection operation is employed:

~Xi,G+1 =

{

~Ui,G if (f(~Ui,G) ≤ f( ~Xi,G))
~Xi,G otherwise

wheref( ~X) is the objective function to be minimized.

B. The JADE Algorithm

The Adaptive Differential Evolution with Optional Exter-
nal Archive (JADE) was proposed by Zhang and Sanderson
in [13]. This algorithm implements a new mutation strategy
called “DE/current-to-p-pest with/without external archive”
and adaptively controls the parameters associated thereby
increasing the convergence speed and accuracy. JADE adopts
binary crossover and aone-to-one selection scheme. The
main aspects of JADE are summarized below.

1) DE/current-to-p-best with/without external archive:
“DE/current-to-p-best” is a generalization of the classic
“DE/current-to-best” mutation strategy. In this generalized
mutation strategy instead of just the best-solution informa-
tion, the information from other aspiring solutions is adopted
as well. The strategy selects (randomly) any solution of the
top 100p% (p ∈ (0, 1]) solutions. This plays the same role
that the single best solution plays in the “DE/current-to-best”
strategy. To increase the exploration of the population and
also to avoid getting trapped at local optima, the difference
between the archived inferior solutions and the current pop-
ulation can be incorporated into the mutation operator. This
is an optional choice for JADE and so the mutation utilized
in JADE is called “DE/current-top-best with/without external
archive”. In this paper, we only consider the variant of JADE
with external archive and still denote it as JADE. In this way,
the mutation vector is generated in the following manner:

~Vi,G = ~Xi,G + Fi · ( ~X
p
best,G − ~Xi,G) + Fi · ( ~Xri

1
,G − ~Xri

2
,G)

where ~X
p
best,G is a randomly chosen individual from the

best 100p% individuals in the current population, andFi

is the mutation scale factor associated with~Xi,G and it is
regenerated at each generation by an adaptation strategy.
~Xri

2
,G is randomly selected from the unionP ∪ A, where

P represents the current population andA represents the
archive. ~Xi,G, ~X

p
best,G and ~Xri

1
,G are selected fromP as in

equation (9). To achieve the archive operation, at the first
iteration, A is empty. After each generation, the parents
which are not selected for the next generation are added
to A. During this process, when the archive size exceeds
a predefined threshold (NP in this work), some solutions
are randomly eliminated fromA to keep the archive size no
larger thanNP .

2) Control Parameter Adaptation: In JADE, the crossover
rate Cri and mutation factorFi associated with each indi-
vidual vector~Xi,G, are generated using two parameters:µCr

and µF , respectively. At each generationG, a Cri of each
individual ~Xi,G is independently generated according to a
normal distribution with meanµCr and standard deviation

0.1 (denoted byN(µCr, 0.1)), and then truncated to[0, 1].
In an analogous way,Fi of each individual ~Xi,G, is inde-
pendently generated according to a Cauchy distribution with
location parameterµF and scale parameter0.1 (denoted by
Q(µF , 0.1)), and then truncated to the interval(0, 1]. SCr is
denoted as the set of all successful crossover ratesCri’s at
generationG. µCr is initialized to be0.5 and then updated
at the end of the generation as follows:

µCr = (1 − C)µCr + C · meanA(SCr) (10)

whereC is a constant in the range[0, 1] and meanA(·) is
the arithmetic mean operation. In an analogous way,SF is
denoted as the set of allsuccessful mutation factors Fi’s at
generationG. µF is initialized to be0.5 and then updated at
the end of the generation as:

µF = (1 − C)µF + C · meanL(SF ) (11)

wheremeanL(SF ) is the Lehmer mean, defined by:

meanL(SF ) =

∑

F∈SF
F 2

∑

F∈SF
F

(12)

JADE has shown better or at least competitive performance
in terms of both the convergence rate and the reliability,
compared to other EAs. For a detailed description of JADE,
the interested reader is referred to [13].

IV. SIMULATION RESULTS

A simulation study was carried out in MATLAB in order
to assess the potential of JADE for identifying IIR plants.
The input was a white signal with zero mean, unit variance
and uniform distribution. The additive noise employed here,
corresponds to the Gaussian white signal with low vari-
ance. The results obtained by JADE were compared with
respect to those reached by five state-of-the-art approaches:
DE/rand/1/bin (a standard DE) [11], SaDE (DE with strategy
adaptation) [7], PSO (a particle swarm optimizer) [4], DMS-
PSO (a dynamic multi-swarm PSO with local search) [14],
CMA-ES (an evolution strategy) [2] and a GA (a genetic
algorithm) [3]. For a fair comparison, we used the best suited
parametric setup chosen with guidelines provided by their au-
thors. The population size chosen for all these algorithms was
set in 50. Different tests were carried out for identification
of three benchmark IIR systems. Two performance measures
(Residual Mean Square Error (RMSE) and Mean Square
Deviation (MSD)) were used to compare the performance
of the algorithms considered in our study. RMSE is defined
as the steady state MSE value and MSD is defined as:

MSD =
1

Q

Q−1
∑

i=0

(Φ(i) − Φ̂(i))2 (13)

where Φ is the desired parameter vector,Φ̂ is the esti-
mated parameter vector andQ represents the total number
of parameters to be estimated. An unknown plant can be
modeled in two ways: 1) using a filter of order equal to
the order of the plant, and 2) using a reduced order filter.
The performance of an algorithm is mostly determined by



its ability to model a plant using a reduced order model.
For each standard test problem, a reduced order model was
used to assess the performance of the considered algorithms.
For same order modeling, we calculated both the RMSE
and MSD metrics; however, for reduced order modeling,
only RMSE was computed. This is because the number of
coefficients for the original filter and the reduced order filter
are not the same, which means that the MSD formula is
not valid. Next, we describe the test problems used in our
experiments.

A. Example 1

The transfer function of the plant is given by:

HS(z) =

[

0.05 − 0.4z−1

1 − 1.1314z−1 + 0.25z−2

]

(14)

1) Case 1: This 2nd order plant can be modeled by using
a 2nd order IIR filter. Hence, the transfer function of the
model is given by:

HS(z) =

[

a0 + a1z
−1

1 − b1z−1 + b2z−2

]

In this case, the total number of fitness function evaluations
was set to6, 500, i.e.,130 generations, for all the algorithms.
Fig. 2 shows the convergence plot for the algorithms when
minimizing MSE.
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Fig. 2. Convergence plot corresponding to Example 1 using a2nd order
filter.

2) Case 2: This 2nd order plant can also be modeled by
using a reduced order IIR filter. Therefore, a1st order IIR
filter can be used for modeling the2nd order plant. In this
case, the transfer function of the model is given by:

HS(z) =

[

a0

1 − b1z−1

]

In this case, the total number of fitness evaluations carried
out was set in2, 500 (50 generations). Tables I and II show
the estimation parameters for the2nd order filter, and the
metrics for both the2nd and the reduced (1st) order IIR
filters, respectively. For an easy interpretation, the bestvalues
reached by the algorithms are displayed inboldface for each
metric.

B. Example 2

The transfer function of the plant is given by:

HS(z) =

[

−0.2 − 0.4z−1 + 0.5z−2

1 − 0.6z−1 + 0.25z−2 − 0.2z−3

]

(15)

1) Case 1: This 3rd order plant can be modeled by using
a 3rd order IIR filter. Hence, the transfer function of the
model is given by:

HS(z) =

[

a0 + a1z
−1 + a2z

−2

1 − b1z−1 − b2z−2 − b3z−3

]

In this case, the number of fitness function evaluations
was set to10, 000 (300 generations). Fig. 3 shows the
convergence plot for the algorithms when minimizing the
MSE.
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Fig. 3. Convergence plot corresponding to Example 2 using a3rd order
filter.

2) Case 2: The 3rd order plant considered here, can be
modeled by using a2nd order IIR filter. Hence, the transfer
function of the reduced order filter is stated as:

HS(z) =

[

a0 + a1z
−1

1 − b1z−1 − b2z−2

]

The total number of fitness function evaluations in this case
was set to10, 000 (200 generations) for all the algorithms.
Tables III and IV show the estimation parameters for the3rd

order filter, and the metrics for both the3rd and the reduced
(2nd) order IIR filters, respectively.

C. Example 3
The transfer function of the plant is given by:

HS(z) =

»

1 − 0.9z−1 + 0.81z−2 − 0.729z−3

1 + 0.04z−1 + 0.2775z−2 − 0.2101z−3 + 0.14z−4

–

(16)
1) Case 1: The4th order plant can be modeled by using a

4th order IIR filter. Hence, the transfer function of the model
is given by

HS(z) =

[

a0 + a1z
−1 + a2z

−2 + a3z
−3

1 − b1z−1 − b2z−2 − b3z−3 − b4z−4

]

In this case, the total number of fitness function evaluations
was set to20, 000 (400 generations). Fig. 4 shows the
convergence plot for the algorithms when minimizing the
MSE.
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Fig. 4. Convergence plot corresponding to Example 3 using a3rd order
filter.

2) Case 2: The 4th order plant considered here can be
modeled by using a3rd order IIR filter. Hence, the transfer
function of the model is given by:

HS(z) =

[

a0 + a1z
−1 + a2z

−2

1 − b1z−1 − b2z−2 − b3z−3

]

In this case,15, 000 fitness function evaluations were carried
out (i.e.,300 iterations). Tables V and VI show the estimation
parameters for the4th order filter, and the metrics for both
the 4th and the reduced (3rd) order IIR filters, respectively.
The maximum number of fitness function evaluations was
chosen based on the complexity of the plant. Evidently, for
higher order plants the complexity increases.

V. D ISCUSSION OFRESULTS

According to the results presented in Tables II to VI, JADE
has clearly shown its superiority in terms of the performance
measures considered here. These tables provide a quantitative
assessment of the performance of JADE in terms of the
RMSE, parameter estimation and MSD. That means that
JADE not only provides the best average results from all
the algorithms compared in terms of RMSE but also that it
has been able to successfully identify the IIR system com-
ponents, since it outperformed the other approaches in terms
of MSD, as well. The remarkable performance of JADE
can be attributed to its algorithmic components, namely its
parameter adaptation and mutation schemes. The parameter
adaptation schemes which are based on recorded historical
information, ensure that JADE converges to its minimum
MSE with relatively few fitness function evaluations. The
explorative mutation scheme of JADE also worked properly
in the problems studied here, since no premature convergence
occurred in any of our experiments.

VI. CONCLUSIONS ANDFUTURE WORK

DSP has emerged as a field of research since several years
ago. IIR systems have established themselves as an important
component for applications in DSP. In this paper, a variant
of Differential Evolution (JADE) has been introduced for

IIR system identification. This evolutionary technique has
been applied to the identification of system components of
some benchmark IIR plants. The performance assessment
of JADE was not only carried out with a similar order
but also with a reduced order model for each plant. Our
preliminary results indicate that JADE constitutes a viable
alternative for the identification of IIR plants, being ableto
outperform several other state-of-the-art metaheuristics. As
part of our future work, we intend to hybridize mathematical
programming techniques with JADE. In this way, while the
evolutionary strategy explores the search space, mathematical
programming methods could be used to exploit promissory
regions within it.
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TABLE I
PARAMETER ESTIMATION FOREXAMPLE 1 MODELED BY USING A 2nd ORDER IIR FILTER

Parameter Actual value Estimated Value
DE/rand/1/bin SaDE PSO DMS-PSO CMA-ES GA JADE

a0 0.05 0.085 0.0509 0.096 0.089 0.099 0.0877 0.0507
a1 -0.4 -0.425 -0.4108 -0.467 -0.413 -0.487 -0.4112 -0.4035
b1 1.1314 1.165 1.1232 1.204 1.173 1.186 1.182 1.1242
b2 -0.25 -0.298 -0.2503 -0.316 -0.307 -0.31 -0.305 -0.2429

TABLE II
RESULTS OF THERMSEAND MSD METRICS FOREXAMPLE 1 MODELED BY USING A 2nd ORDER AND THE REDUCED(1st) ORDER IIR FILTER

DE/rand/1/bin SaDE PSO DMS-PSO CMA-ES GA JADE

RMSE Average 7.67E-004 2.89E-005 3.67E-003 5.09E-004 3.89E-003 8.87E-004 4.99E-006
Std. Dev 1.64E-005 9.46E-006 1.18E-004 2.02E-005 3.49E-004 6.71E-005 6.38E-007

MSD Average 3.03E-004 8.89E-005 7.87E-003 8.12E-004 7.89E-003 5.10E-004 5.06E-005
Std. Dev 4.67E-005 1.46E-006 7.74E-004 9.18E-005 9.46E-004 1.55E-005 3.48E-005

RMSE Average 1.14E-001 3.95E-002 8.99E-001 7.59E-002 8.84E+003 8.19E-002 1.62E-002
(reduced order) Std. Dev 8.79E-003 9.03E-003 3.31E-003 1.69E-003 5.91E-003 2.29E-002 1.48E-004

TABLE III
PARAMETER ESTIMATION FOREXAMPLE 2 MODELED BY USING A 3rd ORDER IIR FILTER

Parameter Actual value Estimated Value
DE/rand/1/bin SaDE PSO DMS-PSO CMA-ES GA JADE

a0 -0.2 -0.2189 -0.1963 -0.2163 -0.2128 -0.1989 -0.2289 -0.1963
a1 -0.4 -0.3965 -0.4171 -0.3919 -0.3991 -0.4165 -0.4165 -0.4032
a2 0.5 0.5132 0.4991 0.5192 0.5154 0.4932 0.5132 0.4946
b1 0.6 0.6121 0.5964 0.6151 0.6117 0.5921 0.6121 0.5869
b2 -0.25 -0.2431 -0.2472 -0.2483 -0.2473 -0.2331 -0.2431 -0.2489
b3 0.2 0.2154 0.1982 0.2171 0.2118 0.1854 0.2254 0.1925

TABLE IV
RESULTS OF THERMSEAND MSD METRICS FOREXAMPLE 2 MODELED BY USING A 3rd ORDER AND THE REDUCED(2nd ) ORDER IIR FILTER

DE/rand/1/bin SaDE PSO DMS-PSO CMA-ES GA JADE

RMSE Average 9.37E-005 8.35E-005 2.13E-004 7.68E-005 2.71E-004 3.15E-004 4.53E-005
Std. Dev 1.39E-005 6.55E-006 5.79E-005 7.57E-006 6.48E-005 4.24E-005 7.80E-007

MSD Average 4.55E-005 4.01E-005 4.01E-005 3.99E-005 9.29E-005 8.29E-005 9.75E-006
Std. Dev 6.55E-006 6.13E-006 6.13E-006 7.73E-006 1.73E-005 7.73E-006 8.96E-006

RMSE Average 3.73E-002 1.41E-003 1.79E-003 1.47E-003 2.22323-03 3.26E-002 1.05E-003
(reduced order) Std. Dev 1.88E-002 1.07E-004 2.87E-004 2.73E-004 2.89E-003 1.61E-002 2.01E-005

TABLE V
PARAMETER ESTIMATION FOREXAMPLE 1 MODELED BY USING A 4th ORDER IIR FILTER

Parameter Actual value
Estimated Value

DE/rand/1/bin SaDE PSO DMS-PSO CMA-ES GA JADE
a0 1 0.8984 1.1421 0.9115 0.9012 0.9821 1.0432 0.9984
a1 -0.9 -0.9109 -0.9092 -0.9123 -0.8971 -0.8912 -0.8973 -0.8967
a2 0.81 0.7963 0.7412 0.8075 0.8123 0.8321 0.8072 0.8074
a3 -0.729 -0.7066 -0.7241 -0.7563 -0.6542 -0.7121 -0.7123 -0.7268
b1 -0.04 -0.0455 -0.0422 -0.0387 -0.0401 -0.0398 -0.0342 -0.0424
b2 -0.2775 -0.2987 -0.29711 -0.2763 -0.2741 -0.2512 -0.2534 -0.2826
b3 0.2101 0.2091 0.2285 0.1901 0.1984 0.2342 0.2011 0.2031
b4 -0.14 -0.1312 -0.1519 -0.1564 -0.1451 -0.1523 -0.1502 -0.1435

TABLE VI
RESULTS OF THERMSEAND MSD METRICS FOREXAMPLE 3 MODELED BY USING A 4th ORDER AND THE REDUCED(3rd) ORDER IIR FILTER

DE/rand/1/bin SaDE PSO DMS-PSO CMA-ES GA JADE

RMSE Average 9.56E-005 8.45E-005 1.53E-004 8.77E-005 1.17E-004 9.23E-005 4.73E-005
Std. Dev 6.76E-006 8.82E-006 5.97E-006 7.73E-006 4.74E-005 7.35E-006 8.02E-007

MSD Average 6.85E-004 7.37E-005 4.76E-004 9.36E-005 9.89E-002 8.48E-002 2.11E-005
Std. Dev 5.87E-004 2.28E-005 4.74E-004 4.79E-005 3.49E-002 3.85E-002 1.01E-005

RMSE Average 2.87E-002 6.13E-003 3.65E-002 8.97E-003 1.58E-002 4.66E-002 5.65E-003
(reduced order) Std. Dev 1.95E-002 3.13E-003 3.68E-002 3.46E-003 2.13E-002 2.33E-002 4.59E-005


