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Abstract. This paper presents a new artificial immune system algo-
rithm for solving multi-objective optimization problems, based on the
clonal selection principle and the hypervolume contribution. The main
aim of this work is to investigate the performance of this class of algo-
rithm with respect to approaches which are representative of the state-of-
the-art in multi-objective optimization using metaheuristics. The results
obtained by our proposed approach, called multi-objective artificial im-
mune system based on hypervolume (MOAIS-HV) are compared with
respect to those of the NSGA-II. Our preliminary results indicate that
our proposed approach is very competitive, and can be a viable choice
for solving multi-objective optimization problems.

Keywords: Multi Objective Optimization, Artificial Immune System,
Hypervolume

1 Introduction

For the last decades, metaheuristics have been widely used to solve multi-objective
optimization problems (MOPs). The main advantage of metaheuristics in gen-
eral, is that at each generation, the algorithm is able to provide solutions (exact
or approximate) in a reasonably low amount of time, even if the problem has a
highly nonlinear or very large search space. On the other hand, mathematical
programming techniques may not work properly under certain conditions (e.g.,
in some highly nonlinear problems or when the objective function is not available
in algebraic form). In spite of their theoretical limitations, metaheuristics tend
to generate approximations of the global optimum that are generally sufficiently
good to justify their use in a wide variety of practical applications.

⋆ The authors acknowledge partial support of the UMI LAFMIA 3175 CNRS located at
CINVESTAV-IPN. The second author also acknowledges support from CONACyT
project no. 103570.
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From the many metaheuristics in current use, Artificial Immune Systems
(AISs) are among the less commonly adopted for numerical optimization, in
spite of their good performance in certain domains (see for example [1]). Here,
we explore the performance of a multi-objective artificial immune system which
incorporates a hypervolume-based selection mechanism (we call it MOAIS-HV).
The aim is to show that this sort of approach can be a viable alternative for
dealing with complex multi-objective optimization problems, even when facing
a high number of objectives.

The remainder of this paper is organized as follows. Section 2 provides the
basic concepts required to understand the rest of the paper. In Section 3, we pro-
vide a generic outline of multi-objective artificial immune systems (MOAISs).
The previous related work is briefly reviewed in Section 4. Our proposed ap-
proach is described in detail in Section 5. A comparison of results between our
proposed approach and NSGA-II is presented in Section 6. Finally, our conclu-
sions and some possible paths for future research are provided in Section 7.

2 Basic Concepts

We are interested in solving problems of the type3:

minimize f(x) := [f1(x), f2(x), . . . , fk(x)] (1)

subject to:
gi(x) ≤ 0 i = 1, 2, . . . , m (2)

hi(x) = 0 i = 1, 2, . . . , p (3)

where x = [x1, x2, . . . , xn]
T

is the vector of decision variables, fi : IRn → IR,
i = 1, ..., k are the objective functions and gi, hj : IRn → IR, i = 1, ..., m,
j = 1, ..., p are the constraint functions of the problem.

To describe the concept of optimality in which we are interested, we will
introduce next a few definitions.

Definition 1. Given two vectors x, y ∈ IRk, we say that x ≤ y if xi ≤ yi for
i = 1, ..., k, and that x dominates y (denoted by x ≺ y) if x ≤ y and x 6= y.

Definition 2. We say that a vector of decision variables x ∈ X ⊂ IRn is non-
dominated with respect to X , if there does not exist another x′ ∈ X such that
f(x′) ≺ f(x).

Definition 3. We say that a vector of decision variables x∗ ∈ F ⊂ IRn (F is
the feasible region) is Pareto-optimal if it is nondominated with respect to F .

Definition 4. The Pareto Optimal Set P∗ is defined by:

3 Without loss of generality, we will assume only minimization problems.
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P∗ = {x ∈ F|x is Pareto-optimal}

Definition 5. The Pareto Front PF∗ is defined by:

PF∗ = {f(x) ∈ IRk|x ∈ P∗}

We thus wish to determine the Pareto optimal set from the set F of all the
decision variable vectors that satisfy (2) and (3). Note however that in practice,
not all the Pareto optimal set is normally desirable (e.g., it may not be desirable
to have different solutions that map to the same values in objective function
space) or achievable.

When working with multi-objective optimization problems, there are two
main aims: to generate solutions as close as possible to the true Pareto front and
to have a set of nondominated solutions well distributed along the Pareto front.

3 Multi Objective Artificial Immune Systems

The immune system’s role is to defend the body against infections. It has several
defenses against outside attacks: the barrier of the skin, mucous membranes, and
the passive system defense of cells, but the functioning of antibodies is its main
element. Usually, when a foreign element is detected by the immune system, an
immediate elimination reaction sets in. This reaction involves phagocytic cells
and lymphocytes that circulate continuously throughout the body. This reaction
is fast and called non-specific, meaning that the immune system attacks the
antigen without knowing its nature.

Depending on the severity of the infection, this rapid and non-specific immune
response may not be sufficient to eliminate the intruder. A second reaction,
slower and more specific is then set up: it puts into play the recognition of
the foreign element by immune cells. Following the recognition, immune cells
specifically adapted for the destruction of the foreign agent (lymphocytes) will
multiply rapidly. Some of these clones may be corrupt, and a risk of generating
autoimmune cells occurs. The immune system is able to suppress self-generated
cells (suppression of similar individuals). Subsequently, the organism keeps track
of this encounter with the foreign element (thanks to the B cells). There is some
form of memory in the immune system. This optimizes the specific immune
response, which will be faster at a forthcoming encounter with the same foreign
element.

In the design of a multi-objective artificial immune system (MOAIS), two
sets of solutions are normally considered: antibodies (Ab) and antigens (Ag).
The differences between them is defined by the designer of the algorithm, but
normally one set represents “good” solutions (e.g., nondominated solutions to a
multi-objective optimization problem) and the other represents “bad” solutions
(e.g., the solutions that are dominated by others). The interactions between the
solutions (e.g., Ag-Ab, Ag-Ag, and so on) are defined by an affinity function.
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It is normally the case that the measures of quality in which we are interested
on (e.g., Pareto dominance and the spread of the solutions, in the case of multi-
objective optimization) are embedded into the affinity function. Depending on
the affinity value, a selection and a cloning process occurs, and then the clones
are mutated. Finally, a certain strategy is used to generate the new population
and to store the best solutions found so far (normally, an external archive that
stores only nondominated solutions is adopted for this sake). Campelo et al. [2],
provide a canonical algorithm of a MOAIS (see Algorithm 1).

Algorithm 1: Outline of a canonical MOAIS

1 Define the search space S , objectives functions fi, constraints gj , hk ;
2 A(t = 0)←− Initialize offline population;
3 B(t = 0)←− Initialize online population with random individuals;
4 while ¬ stop criterion do

5 Evaluate population B(t) using fi, gj , hk;
6 B1(t)←− Define affinities(B(t), [A(t)]);
7 B2(t)←− Selection for cloning(B1(t), [A(t)]);
8 B3(t)←− Proliferation and mutation(B2(t));
9 B4(t)←− Diversification & Suppression;

10 B(t + 1)←− B3(t) ∪B4(t) ;
11 A(t + 1)←− Update(A(t),B(t + 1));
12 t←− t + 1;

13 end

It is worth noting that the canonical MOAIS of Campelo et al. [2] adopts the
clonal selection priciple. The reason is that, most MOAISs currently available in
the literature follow this principle.

Algorithm 1 first defines the problem, like all population-based algorithms
(line 1). An archive is defined (line 2) in order to store the nondominated so-
lutions found so far. The main (or internal) population is initialized (line 3)
containing the solutions from the current generation. The main loop starts and
performs the following steps until a stop criterion is met. The algorithm evalu-
ates the online (or main) population (line 5) using the objective functions and
constraints of the problem. Depending on the choices made, the solutions of the
set B are analyzed and given an affinity value (line 6), the archive A can be used,
for example, to define the new affinities between the current solutions and the
best solutions found so far. Cloning selection is then triggered following either
stochastic or deterministic rules (line 7), and based on affinities values or not.
The cloning process is usually done based on the affinity values (proportional
cloning), while the mutation of each individual can have several variants (line 8).
The two previous steps constitute the so-called clonal selection principle. The
diversification procedure (line 9) is not mandatory, and its goal is to maintain
diversity in the population usually by creating new random individuals. Sup-
pression is not mandatory either and can be applied to delete some individuals
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(responsible for autoimmune disorder), particularly to individuals that are not
relevant for further optimization. The new population is generated taking into
account the best clones (line 10), applying some predefined rules. Eventually,
the archive is updated (line 11). At the end of the run, the archive will contain
the set of nondominated solutions that constitutes our approximation of the true
Pareto front of the problem.

4 Previous Related Work

An overview of MOAISs is provided in [3]. It shows that MISA (Multiobjective
Immune System Algorithm), which was originally introduced in 2002 [4] is con-
sidered as the first Pareto-based MOAIS reported in the specialized literature4

[6]. The algorithm is designed to fit the immune system metaphor and it fol-
lows the canonical algorithm previously presented. MISA uses Pareto ranking
to classify solutions and to determine which of them will be cloned. The num-
ber of clones depends on antibody-antibody affinities. The clones are uniformly
mutated according to their antigen-antibody affinities whereas other solutions
use non-uniform mutation. An adaptive grid is used to ensure diversity in the
(fixed size) external archive. Selection to access the archive is determined by
some pre-defined rules based on Pareto ranking. The results obtained by MISA
showed that the use of AISs for solving multi-objective optimization problems
was a viable alternative. Over the years, several other MOAISs were introduced.
The approaches that will be discussed here were selected based on the fulfillment
of the five following criteria:

1. The approach follows the structure and behavior of a canonical AIS.
2. The approach does not adopt a recombination operator.
3. The approach allows the use of real-numbers encoding (as the approach

proposed in this paper).
4. Its authors provide detailed results of the algorithm’s performance.
5. The approach is relatively recent (2005 to date).

4.1 Vector Artificial Immune System (VAIS)

This approach was proposed in [7], and it uses a Pareto-based selection, cloning,
mutation, suppression and an archiving process. For the nondominated individ-
uals, fitness is determined by the strength defined in SPEA2 [8]. For dominated
solutions, fitness corresponds to the number of individuals which dominate them.

4 The first direct use of an artificial immune system to solve multi-objective opti-
mization problems reported in the literature is due to Yoo and Hajela [5]. However,
this approach uses a linear aggregating function to combine objective function and
constraint information into a scalar value that is used as the fitness function of a
genetic algorithm. Thus, this approach is really a hybrid algorithm and does not rely
on Pareto optimality.
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A suppression procedure is used for the archive as well as a diversification pro-
cedure by allowing a fixed number of random individuals to enter the archive.
Results are compared with respect to the NSGA-II [9]. The authors show that
VAIS can outperform NSGA-II in several unconstrained and constrained prob-
lems. However, it is worth noting that VAIS was not tested in the Deb-Thiele-
Laumanns-Zitzler (DTLZ) test suite [10], which is a standard benchmark for
multi-objective evolutionary algorithms (MOEAs).

4.2 Immune Dominance Clonal Multiobjective
Algorithm/Nondominated Neighbor Immune Algorithm
(IDCMA/NNIA)

The Immune Dominance Clonal Multiobjective Algorithm (IDCMA) was intro-
duced in [11]. However, the difficulties of this algorithm for solving the DTLZ
test suite [10], motivated the development of an improved version, which was
called Nondominated Neighbor Immune Algorithm (NNIA), which was intro-
duced in [12]. The selection mechanism which is responsible of choosing the set
of candidates to be cloned, aims for the nondominated solutions. However, if
the nondominated solutions are beyond a certain threshold, then the crowding
distance is used. The archiving process uses the same methods to select candi-
dates to enter the archive (i.e., nondominated solutions are always preferred).
In NNIA, recombination is adopted. However, the authors also present results
without the use of recombination (which is the reason why we selected this ap-
proach for this section). Nevertheless, the authors indicate that recombination
provides a significant improvement of results for NNIA in some of the DTLZ
test problems.

4.3 Immune Forgetting Multiobjective Optimization Algorithm
(IFMOA)

This approach was introduced in [13]. In this case, the affinity assignment is
based on the Pareto strength from SPEA2 [8]. This approach also adopts an
antibody-antibody affinity which is inversely proportional to the sum of the two
smallest Euclidean distances between an antibody and the rest of the popula-
tion. The “immune forget unit” is a set of solutions that do not participate in
the clonal proliferation. The results of this approach are compared with respect
to MOGA [14] and SPEA2 on six unconstrained problems. The results pre-
sented by the authors show a good performance of IFMOA, but none of the test
problems adopted is particularly difficult by today’s standards in evolutionary
multi-objective optimization.

4.4 Omni-aiNet

This approach was introduced in [15] and can be used for both single- and multi-
objective optimization. First, all the individuals are cloned Nc times (Nc is a
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user-defined parameter). A random variation with rates inversely proportional
to the affinity to the antigen is applied to each generated clone. Polynomial
mutation is used to apply variations to the clones. Solutions are arranged in
classes, so that the better the class, the smaller the variation. The algorithm
adopts both suppression and diversification. Unfortunately, the authors provide
results only with respect to those of another approach called DT omni-optimizer.
Additionally, results are presented only in graphical form and for three problems.
This does not allow to know how competitive is this approach with respect to
state-of-the-art MOEAs.

Based on the previous discussion, it should be clear that most of the cur-
rent MOAISs still adopt some form of Pareto ranking. Nowadays, however, sev-
eral efforts have been focused on the development of indicator-based MOEAs.
The main motivation for this is to overcome the poor performance exhibited
by Pareto-based selection when dealing with problems that have four or more
objectives [16]. Although several indicator-based MOEAs have been proposed in
the last few years, no indicator-based MOAIS has been proposed so far, to the
authors’ best knowledge. We believe that the approach introduced in this paper
is the first of such indicator-based MOAISs.

It is worth noting that not just any performance indicator can be adopted
for selecting solutions. The most commonly adopted is an indicator known as
Hypervolume.5 The main advantage of the hypervolume indicator is that it has
been proved that its maximization is equivalent to finding the Pareto optimal set
[18]. This has been empirically corroborated [19] and, in fact, the maximization
of this indicator also leads to sets of solutions whose spread along the Pareto
front is maximized (although the distribution of such solutions is not necessarily
uniform). Because of its popularity, we decided to adopt hypervolume for the
MOAIS reported in this paper.

5 Our Proposed Approach

In this section, our proposed approach, called MOAIS-HV (HV stands for hy-
pervolume) is described in detail. The main goal of the work reported here was
to investigate the feasibility of incorporating a hypervolume-based selection into
a MOAIS. It is worth noting that our proposed approach follows the main fea-
tures of an AIS (we do not adopt any recombination operator, unlike most of
the hypervolume-based MOEAs in current use).

5.1 Description of the algorithm

The main idea of MOAIS-HV is to maintain an online population of antigens
and antibodies. The antigens are considered to be the good solutions, and the
antibodies are the bad ones. These two sets form two new subpopulations. The

5 The hypervolume (also known as the S metric or the Lebesgue Measure) of a set of
solutions measures the size of the portion of objective space that is dominated by
those solutions collectively [17].
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antigens are cloned (the best antibodies are cloned, too, if the number of anti-
gens is insufficient) and a mutation operator is applied. If only one rank exists,
candidates to be cloned are selected from individuals that contribute the most to
maximize the hypervolume; otherwise, successive ranks are selected and hyper-
volume selection is only applied to the last one. The clones and the best antigens
found are merged and the size of the main population is maintained by discard-
ing individuals that contribute the least in maximizing the hypervolume. In the
algorithm, the following notations will be used: Q, P : the main population and
the pool, Ab, Ag: the sets of antibodies and antigens (subsets of Q), n: size of
the main population, m, ngen: number of objectives and number of generations.

1. Initializing populations: Initialize population Q (Main population) by generating
random individuals.
→ fixed size n.
Initialize Antibodies population Ab to empty.
→ fixed size n.
Initialize Antigens (or Archive) population Ag to empty.
→ fixed size n. Store the best individuals found so far.
Initialize a pool P to empty (to store the clones).
→ fixed size 2 ∗ n.

2. Evaluate all individuals of the population Q.
→ Feasibility and objective values
→ Fast non-dominated ranking

3. “Split” the population Q into two sets:
Constrained problems:
Antigens:
→ Feasible and non-dominated
Antibodies:
→ Infeasible and non-dominated
→ Feasible and dominated
→ Infeasible and dominated
Unconstrained problems:
Antigens:
→ Non-dominated
Antibodies:
→ Dominated

4. Define Affinity for antibodies and antigens.
Defining affinity on antibodies:
For each antibody, select randomly one antigen in Ag. The affinity value of an
antibody Ab is defined by its euclidean distance to the selected antigen Ag.
Defining affinity on antigens:
For each antigen, the affinity is based on its hypervolume contribution:
The algorithm that computes the hypervolume contribution is shown in Algo-
rithm 2.
For both antibodies and antigens, the greater the affinity, the better.

5. Clonal selection principle

Most of the population-based algorithms don’t discard dominated individuals when
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Algorithm 2: Algorithm for computing hypervolume contributions

1 Input: Population Ag ;
2 Initialize Affinities(Ag) to 0.0 ;
3 for i from 1 to m do

4 Sort Ag by obj i;
5 for j from 1 to Ag.size() do

6 Ag.ind[j].affinity += (Ag.ind[j].obj[i] − Ag.ind[j + 1].obj[i]);
7 end

8 end

9 for j from 1 to Ag.size() do

10 Ag.ind[j].affinity += maxj(Aff(Abj));
11 end

selecting solutions to be cloned or mutated. The main aim in doing this is to keep
some diversity in the population. After some experiments, the choice for our al-
gorithm was to select dominated solutions only if necessary (if non-dominated
solutions are less than the number of clones). Some previous results have shown
that cloning the antibodies gives worse results (convergence metric) than consid-
ering the best individuals found so far, the antigens. In order to fit to the immune
system metaphor, one can consider here that if the main population already con-
tains a certain number of antigens, it means that the immune system has already
recognized some pathogen agents and it will use them to perform the cloning pro-
cess (the antibody which reached the pathogen agent and is now considered as an
antigen). The number of clones is usually defined as about 20% of the population.
Nevertheless, a more thorough statistical analysis is still required and for now, we
adopt a user-defined parameter to control the number of candidates. In the main
population, the antigens and antibodies are classified according to their affinity.
The first best NC solutions are chosen and for each of them, a different number
of clones is calculated depending on their affinity. Moreover, these candidates are
split into two sets j = 1, 2: the extreme solutions and the others. For each set, we
define their total number of clones. The extreme solutions will be cloned more at
the beginning and less at the end.

For each NC solution, the number of clones of each candidate (NCC) is given by:

NCC(Ai,j) = Pj ∗
Aff(Ai,j)

Pnj

i=0
Aff(Ai,j)

∀i, j

where: Ai,j is the ith antigen or the ith antibody of the set j, Pj is the total number
of clones for the set j, nj is the number of candidates in the set j.

6. Mutation

Regarding mutation, two important choices have to be made:

– Mutation probability: It controls the probability to mutate one variable of a
vector.

– Mutation step-size: It controls the degree of perturbation given to the variable
selected to be mutated.
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Concerning the mutation probability, the aim of this study is to simplify the algo-
rithm in order to emphasize the combination MOAIS/Hypervolume and investigate
this new idea. Furthermore, since we compare results with respect to NSGA-II, we
decided to adopt its same mutation probability. Thus, the mutation probability
mp remained fixed in the experiments reported next.

mp =
1

nreal

7. Hybrid mutation

Each time a variable has to be mutated, we compute the following value:

p mut type =
1.0

(1.0 + exp(−2.0 ∗ (x + p)))

where: x = −6.0 + (t/ngen) ∗ 12.0, increasing with the number of generations.
p = −4.0+ ls ∗ 8.0, where ls is a parameter which determines the tradeoff between
GL and GG.
While the algorithm is running, the probability to choose GL will increase and the
mutation will perform more local searches. Local Gaussian mutation is performed
following the formula:

x∗i = xi + (maxi −mini) ∗ 0.1 ∗ N (0, st1)

Global Gaussian mutation is performed following the formula:

x∗i = xi + (maxi −mini) ∗ 0.1 ∗ N (0, st2)

where: maxi, mini are the bounds of each decision variable, xi is the variable to
be mutated, N (0, x) is the Normal distribution with mean 0 and standard devia-
tion x, st1 ∈ [0.1, 0.5], parameter which controls the local Gaussian mutation step,
st2 ∈ [0.5, 1.5], parameter which controls the global Gaussian mutation step.

8. Evaluate the pool: Objectives, feasibility.
9. Add the Antigens into the pool P

10. Non-dominated sorting in the pool P
11. Update the main population Q

The archiving process is quite simple but some choices have to be made when the
archive is full and the candidates that aim to enter are non-dominated individuals.
The main aim of the archive is to increase the value of the whole hypervolume at
each generation. In order to achieve this, new individuals are added to the archive
only if they dominate a previous individual. An archiving method is presented in
[20] but the complexity is, once again, exponential with the number of objectives.
Here, the hypervolume maximization of the archive will be ensured by only accept-
ing individuals that dominate previous individuals. One drawback of this method
is that we assume that the previous generation has a good spread to ensure that all
the solutions of the Pareto front are reachable (relatively, because of the bounded
size of the archive) - this is not so in most cases. The following method is adopted
in order to find a good spread of solutions before accepting only individuals that
will maximize the hypervolume:

12. Fill the main population with successive ranks from the pool P .
13. Split the population (Antigens & Antibodies)
14. Go to step 4 if the stop criterion is not met.
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15. Return the antigen population as the approximation of the Pareto front obtained
by the algorithm.

A MOAIS algorithm can be considered as a MOEA whose features are
changed for selection, proliferation, mutation and archiving. In order to keep
the comparison with NSGA-II as fair as possible, the implementation of the
new algorithm is based on the data structures used in [9]. Other data struc-
tures used are simply arrays and the code is easily understandable and main-
tainable for further work (we adopted the code provided by Kalyanmoy Deb in
http://www.iitk.ac.in/kangal/codes.shtml.

A competitive complexity is always hard to achieve when dealing with hyper-
volume, because of the high computational cost associated to it. Nevertheless,
the complexity of the algorithm presented here is O(mn3) and O(mn2logn) on
average. This low complexity makes the algorithm suitable for real-world prob-
lems.

6 Comparison of Results

The aim of this document is to compare the results obtained by our proposed
MOAIS-HV with respect to those of NSGA-II [9]. In order to allow a fair compar-
ison, the same number of function evaluations was adopted for both algorithms.
The same population size and the same number of generations were adopted for
both algorithms.

We adopted both the Zitzler-Deb-Thiele (ZDT) test suite [21] (which con-
tains bi-objective problems) and the DTLZ test suite [10] (which contains scal-
able problems that were implemented with 3 objectives, except for DTLZ4-4,
which has 4 objectives). Due to space limitations, we only provide a summary
of our results in Table 1. The performance measures adopted were hypervolume
[17], inverted generational distance (IGD) [6] (which measures convergence) and
spread [9] (which measures uniform distribution along the Pareto front).

As expected, MOAIS-HV performs better with respect to the hypervolume
in all the test problems adopted, except for ZDT4, which is multi-frontal (i.e., it
has several false Pareto fronts), which seems to produce some problems to our
selection mechanism, although we still manage to produce a reasonably good final
result. It is remarkable, however, that MOAIS-HV can produce good results in
ZDT3, which has a disconnected Pareto front that normally produces problems
to MOAISs (e.g., in [12] the authors have to rely on the use of recombination to
properly solve this problem).

Something interesting is that the other convergence measure adopted (in-
verted generational distance) seems to contradict the hypervolume (which also
measures convergence). The differences, however, are negligible in most cases,
since both algorithms produce values close to zero in all cases. It is also interest-
ing to note that the results obtained by our approach with respect to spread are
quite competitive, although the hypervolume does not really emphasize uniform
distribution of nondominated solutions.
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Table 1. Comparison of the average results obtained by NSGA-II and our proposed
MOAIS-HV for the ZDT and DTLZ test problems. The reference point adopted to
compute the hypervolume is provided in the last column.

Test Spread IGD Hypervolume
problem NSGA-II MOAIS-HV NSGA-II MOAIS-HV NSGA-II AIS-HV Ref. point

ZDT1 2.54e-01 1.91e-01 1.98e-04 1.67e-04 8.88e-01 8.92e-01 (1.1, 1.1)

ZDT2 2.51e-01 1.77e-01 1.96e-04 1.63e-04 5.67e-01 5.71e-01 (1.1, 1.1)

ZDT3 4.42e-01 5.27e-01 2.61e-04 3.66e-04 1.115 1.119 (0.935,1.1)

ZDT4 3.02e-01 4.64e-01 6.79e-04 1.28e-03 8.54e-01 7.34e-01 (1.1, 1.1)

ZDT6 2.45e-01 1.68e-01 4.90e-04 1.10e-04 3.47e-01 3.66e-01 (0.935,1.1)

DTLZ1 3.51e-01 4.16e-01 1.21e-03 1.99e-03 1.425 1.422 (1.1, 1.1, 1.1)

DTLZ2 2.56e-01 2.05e-01 1.23e-03 1.25e-03 1.14 1.16 (1.1, 1.1, 1.1)

DTLZ2-4 0.56 0.69 1.2e-02 1.8e-02 4.60e-01 4.65e-01 (1,1,1,1)

DTLZ3 3.52e-01 8.58e-01 1.28e-03 8.14e-03 3.1002 3.1003 (5.0, 5.0, 5.0)

DTLZ4 2.74e-01 1.92e-01 1.19e-03 3.28e-03 9.23e-01 9.17e-01 (1.1, 1.1, 1.1)

DTLZ7 5.60e-01 5.15e-01 1.25e-03 1.33e-03 2.04 2.05 (1.1, 1.1, 7.0)

Our results indicate that MOAIS-HV can produce very competitive results in
both bi-objective and three-objective problems. This is remarkable if we consider
that no recombination operator was adopted. It is also worth noting that we did
not include comparisons with respect to other MOAISs because most of them
did not adopt the DTLZ test problems in their experiments.

Additionally, we included one example with four objectives (DTLZ2-4). Al-
though the differences are marginal, it can be seen that our MOAIS-HV still
provides better results than NSGA-II with respect to hypervolume. In fact, if
we increase more the number of objectives, it is expected that the difference
will become more significant very quickly, because of the fast degradation of
Pareto-based selection.

7 Conclusions and Future Work

We have presented here what we believe to be the first indicator-based MOAIS.
The aim of this work was to investigate the suitability of using hypervolume
for designing a MOAIS that can be competitive with respect to state-of-the-art
MOEAs.

Our preliminary results indicate that our proposed approach provides a com-
petitive performance with respect to a state-of-the-art MOEA (NSGA-II) in a
variety of difficult test problems that had not been used (in full) before for assess-
ing performance of a MOAIS. It is also worth remarking that the hypervolume
contribution discard process was simplified with the purpose of lowering the com-
plexity of the algorithm. This was done, however, at the expense of decreasing
the quality of the results. However, as part of our future work, we are interested
in exploring the use of a faster algorithm for computing the hypervolume that
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was recently introduced in [22]. With this new algorithm we expect to produce
a more competitive MOAIS, that has a lower computational complexity.

As part of our future work, we are also interested in adding new methods
taken from the immune system metaphor for improving our results. For exam-
ple, implementing an immune system memory seems to be relevant in order to
avoid cloning candidates in bad regions of the objective space. Another interest-
ing idea is to use a diversity function to add some random elements “between”
two good solutions. These solutions would be nondominated solutions that were
suppressed previously by the hypervolume discard process. Such a mechanism
should improve the uniform distribution of solutions along the Pareto front ob-
tained by our algorithm.
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