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Abstract—In this paper, we propose a new selection operator  In the current literature, we can identify three main ap-
(based on a maximin scheme and a clustering tecnique), which proaches to cope with many-objectives problems, namgly: (i
is incorporated into a differential evolution algorithm to solve to adopt or propose a preference relation that induces a finer

multi-objective optimization problems. The resulting algorithm . . .
is called Maximin-Clustering Differential Evolution (MCD E)  9rain order on the solutions than that induced by the Pareto

and, is validated using standard test problems and performace ~ dominance relation [3], [4], [5], [6], (ii) to reduce the niver
measures taken from the specialized literature. Our prelininary  of objectives of the problem during the search process [7]

results indicate that MCDE is able to outperform NSGA-II and or, a posteriorj during the decision making process [8], [9],
that is competitive with a hypervolume-based approach (SMS 5,4 iii) to adopt a selection scheme that does not rely
EMOA), but at a significantly lower computational cost. . . - . .
on Pareto optimality (e.g., using compromise functiong,[10
alternative ranking schemes [11] or a selection mechanism
based on a performance measure (from which hypervdiume
Many optimization problems arising in the real worldhas been a popular choice, in spite of its considerably high
involve multiple objective functions which must be satidfie computational cost [13], [14]). Here, we study an approach
simultaneously. They are generically calledultiobjective  from the third class, using differential evolution as ouars
optimization problems (MOPsind usually their objectives engine. The main motivation of this work is to propose
are in conflict. In MOPs, the notion of optimality refers t@th gn alternative selection mechanism for MOEAs that can
best possible trade-offs among the objectives. Conselyuenproperly deal with many-objective optimization problents a
no single solution exists, but several (the so-calRedeto g reasonably low computational cost.
optimal setvhose image is called tieareto fron). When ap-  The focus of our study is thenaximin fitness function
plying evolutionary algorithms to solve MOPs, we normally(15]. This technique assigns a fitness to each individual in
have two main goals [1]: (i) to find solutions that are, ashe population without using the concept of Pareto optitpali
close as possible, to the true Pareto front and, (i) to preduThis scheme encompasses a guidance mechanism based on
solutions that are spread along the Pareto front as uniformjery simple (and computationally efficient) operations.r Ou
as possible. preliminary study of this approach has indicated its slitsto
When studying multi-objective evolutionary algorithmsas a selection operator in a MOEA whose search engine
(MOEAs), we find two main types of approaches: (i) thosadopts differential evolution [16], even in the presenceaof
that incorporate the concept of Pareto optimality in theihigh number of objectives. However, its lack of an appropri-
selection mechanism, and (ii) those that do not use Paredte diversity maintenance mechanism makes it inapprapriat
dominance to select individuals. with respect to state-of-the-art MOEAs, which led us to
Although the use of Pareto-based selection (mainlgropose the incorporation of a clustering technique. The
through the use of some Pareto ranking scheme [1]) hasoposed approach, called Maximin-Clustering Differainti
been the most popular choice within the specialized litgeat Evolution (MCDE) is validated with several standard test
for the last 15 years, such type of approach has sevegaoblems and performance measures. As will be seen later
limitations. From them, its poor scalability (when incrie&s on, our proposed MCDE is able to outperform NSGA-II [17]
the number of objectives) is, perhaps, the most remarkabbnd is competitive with a state-of-the-art hypervolumeduh
The quick increase in the number of nondominated solutiodOEA (SMS-EMOA) [14], but requiring a much lower
as we increase the number of objectives, rapidly dilutes tlemputational cost.
effect of the selection mechanism of a MOEA [2]. This has The remainder of this paper is organized as follows.
triggered an important amount of research on the so-call&ection Il states the problem of our interest. The maximin
“many-objective optimization”, which refers to the studfy o fitness function is briefly described in Section Ill. Sectloh
problems having four or more objective functions. describes in detail the selection operator that we propode a
in Section V we present a full description of our approach.
Adriana Menchaca-Mendez anq’ Carlos A. Coello Coello areh wit The experiments performed and the results obtained are
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Il. PROBLEM STATEMENT The algorithm to calculate the fithess of each individual of

The problem of our interest is the general multi-objectivé® Population is shown in Algorithm 1. The complexity of
optimization problem (MOP) which is defined as follows: this algorithm isO(K P*), whereK is the number of objec-

Find #* = [2}, 3, ...,2%]7 which optimizes tive fuctions andP is the population size. In Algorithm 1,
" we multiply the fitness of each individual by1 in order
(@) = @), f2(D), ..., fu@)]" (1) to obtain a higher fitness for the individuals which are non-

dominated and a lower fitness for the individuals which are
such thatz* € Q, whereQ2 C R" defines the feasible gominated.

region of the problem. Assuming minimization problems, we
have the following definitions.

Definition 1: We say that a vectoii = [ug,...,u,]T
dominates to vectov = [vy,...,v,]T, denoted byii <, 7,
if and only if f;(a) < f;(¢) for all i € {1, ..., k} and there
exists ani € {1,...,k} such thatf;(a) < f;(7).

Definition 2: A point™* € Q is Pareto optimal if and only
if for all © € 2 we have thatt™ <, ¥ wherez™ # .

Algorithm 1: MaximinFitnessFunction
Input : X (Current population with their normalized
objective values)P (population size) andis
(number of objectives).
Output: X (Current population with the fithess updated
of each individual).

Definition 3: For a given MOPf(:E’), the Pareto optimal for i 1 tolP do .
set is defined asP* = {7 € Q|-37 € Q: f(§) <, f(@)}. ]Z”“x.’ma oo
= . or j— 1to P do
Definition 4: Let f(&) be a given MOP an®* the Pareto if j i then
optimal set. Then the Pareto Front is defined BT = minimal — 0o
/(@) [7eP. for k — 1to K do
[1l. M AXIMIN FITNESS FUNCTION it XT[i]. f[k] — X[j].f[k] < minimal
The maximin fitness function presented in [15] is derived then . . , ]
from the Definition 1 and, we can use it to solve MOPs. | minimal «— X[i]. fIk] = X[j]. f[K];
Let's consider a MOP with/X' objectives and let's assume end
that each objective is normalized. Let's consider an evolu- _end . )
tionary algorithm whose population size i Let f; be the if minimal > maximal then
normalized value of thé'" objective for thei’" individual | mazimal — minimal;
in a particular generation. Assuming minimization, tj& end
individual dominates the!" individual if: o de”d
‘ X[i]. fitness < —1 x maximal;
fl<fi vke{l,...,K} and (2) end

Fke{l,... . K}|fl<fi

Eq. (2) is equivalent to:
IV. SELECTION OPERATOR

. i g
mink(fi, = fi) 2 0 3 When studying the maximin fithess function, we identified
The i individual in a particular generation will be an important disadvantage of this approach when solving
dominated by another individual in the generation if: MOPs. If we take a look at the part where we get the mini-
‘ _ mum of the difference between normalized objective values
maxj; (ming(fi, — f1)) >0 (4) of two given solutions, we can notice that if a particular

objective is minimized more quickly than the others, then th
remaining objectives are not considered. Let's assumenthat
have a MOP with two objective functiongy(and f2) and

. i . i 4 that the objectivef; is easier to optimize than objectivi.
fitness' = maz;i(mink (fi. = fi)) ©) In this case, when the maximin fitness function calculates th

In eq. (5), themin is taken over all the objectives from minimum, it will often obtain the component of objectiye,
1 to K, and themax is taken over all the individuals in the without regardingf,. Thus, if the maximin fitness function is
population from1 to P, except for the same individual incorporated into an evolutionary algorithm, it may ocdatt
From eq. (5), we know that any individual whose maximirwe only obtain solutions that minimizg, instead of finding
fitness is greater than zero is a dominated solution aride best possible trade-offs among the objectives, which is
that, any individual whose maximin fitness is less than zerour aim. Evidently, we cannot assume that the objectives
is a non-dominated solution. Finally, any individual whose&an be optimized separately, since that assumption would
maximin fitness is equal to zero is either a dominated saiuticonly be reasonable when the objectives have no conflict
or a duplicate non-dominated solution. among themselves, which makes employing a multi-objective

Then, the maximin fitness function of individual is
defined as:



approach unnecessary (a single-objective optimizer wobeald Algorithm 3: MaximinSelection

sufficient in that case). Input : X,oreqa (Sorted population from high to low,

In order to address this problem, we propose to check according to the fitness values?, (population
if the individual that we want to select is similar in at size), K (number of objectives) and (the
least one objective to another (selected) individual. The number of individuals to choose).

process to verify similarity between individuals is shown oQutput: Y (individuals selected)

in Algorithm 2. As can be seen, we need the parameter 5 . {:

min_di f which indicates the minimum difference that must ; . 1:

separate the two selected individuals in objective fumctio /«pBef ore sel ecting individuals, verify
space (this is similar to the niche radius adopted with fines  that there is not a sinilar one * |

sharing [18]). while s < S AND i < P do
The complexity of Algorithm 2 isO(K P), where K is while IsSimilarToANYK sor¢cali], Y) = 1 AND
the number of objectives anB is the population size. The i< P do
full selection process based on a maximin fitness function is | i—i+1;
shown in Algorithm 3 and its complexity i© (K P?). end
if + < P then
Algorithm 2: IsSimilarToAny Y[s] «— Xsorted|i];
Input : min_dif (Minimum difference)x s—s+1;
(individual), Y (population),P (population end
size), K (number of objectives). end _ _
Output: Returnsl, if the individual z is similar to any /=Select only according to fitness =/
individual in the populatiorY”; otherwise, i1
returnso. while s < 5 do
for i — 1to P do if Xsortea[i] has not been selectetien

for k — 1to K do Y[S] — Xsorted[i];

it |z.f[k] — YT]i].f[k]| < min_dif then s s+ 1
| Returns 1; end
end 1 — 1+ 1;
end end
end ReturnsY’;
Returns 0;

As indicated before, the search engine of a MOEA has twef randomly selecting three individuals for becoming p&sen
main goals: (i) to find solutions which are as close as passib{as normally done in the DE algorithm), we use a binary tour-
to the true Pareto front and, (ii) to produce solutions that anament selection for choosing the three individuals needed
spread along the Pareto front as uniformly as possible. At each tournament, two individuals are randomly selected

The first of these goals is achieved by the mechanisgnd the one with the higher fitness value is chosen. Finally,
described in Algorithm 3. However, we need one mordlgorithm 5 shows the full algorithm of our proposed MCDE
mechanism, so that we can fulfill the second objective. Her@pproach.

we propose to use the clustering technique described in
Algorithm 4. VI. EXPERIMENTAL RESULTS

V. MAXIMIN -CLUSTERING DIFFERENTIAL EVOLUTION We compared our proposed MCDE with respect to two

The approach that we propose here is called Maximid//OEAs representative of the state-of-the-art in the area:
Clustering Differential Evolution (MCDE) and is described « The Nondominated Sorting Genetic Algorithm I
next. (NSGA-II) [17], which is a well-known MOEA whose

MCDE adopts the operators of differential evolution to selection mechanism is based on Pareto dominance.
create new individuals but the selection process is modified NSGA-II also incorporates a crowded comparison op-

as follows: If the size of the population B, MCDE creates erator to produce well-distributed solutions along the
P new individuals. After that, it combines the population of Pareto front. This MOEA was chosen because is perhaps
parents and offspring to obtain a population of size Then, the most representative of the Pareto-based MOEAs.
MCDE uses Algorithms 3 and 4 to choose tRandividuals o The S Metric Selection-Evolutionary Multiobjective Op-
that will take part of the following generation. timization Algorithm (SMS-EMOA) [14], which bases

In order to speed up convergence, we also propose to mod- its selection mechanism on the hypervolume perfor-
ify the process in which parents are selected to participate mance measure [12] combined with the non-dominated
in the process of mutation and crossover as follows. Instead sorting procedure adopted in NSGA-Il. This approach



Algorithm 4: ClusteringSelection

Algorithm 5: Maximin-Clustering Differential Evolution

Input : X,.reqa (Sorted population from high to low, Input

according to fitness)P (population size) K
(number of objectives) and (number of
individuals to choose).

Output: Y (individuals selected).

/*Choose the first S individuals as

centers of the clusters C * [
Cj = {Xsorted[j]};
/*Do clustering */

for i — S+ 1to P do
if Xsortealt] is closer toC; then
| Cj — Cj U Xsorted[i];
end
end
/*Cbtain the new centers of the
clusters x [
for j «— 1to S do
‘ w2 Xl
X[ileC;
end
/+*Sel ect to individuals who are
cl osest to the centers of the
clusters */
for j «— 1to S do
if X[é] | X[i] € C; is the nearest to the center;

: P (population size) g4, (maximum number
of generations))NV (number of decision
variables),K (number of objective functions)
Cr (crossover probability) anchin_di f
(minimum difference between objectives).

Output: Last population.

contGen «— 0;

Create a random initial population;
repeat

fori<— 1toPdo

Select three parents{(i;], X[i2] and X[is)]) ;
Obtain the new individualX,,.., [¢]) from DE’s
mutation and crossover operators;

end
Y — XU Xpew;
Ysorteqa < SortCurrentPopulation(X);

if The number of nondominated individuals is
greater to.S then

| X — ClusteringSelection(,orted, P, K, S);
else

| X «— MaximinSelection{sopseq, P, K, S);
end
contGen «— contGen + 1;
until contGen < gmaz;

then

| Y]~ X[ . .

end the same value for the maximum number of generations
end with the three algorithms compared. All three algorithms
Returnsy: performed the same number of objective function evalua-

tions (for the ZDT test problems they performed 10,000

evaluations, and for the DTLZ test problems they performed
) 20,000 evaluations, except for ZDT4 and DTLZ3 in which
was chosen because is a state-of-the-art hypervolumgey performed 36,000 and 25,000 evaluations, respeglivel

based MOEA.

Itis important to emphasize that we chose these algorithms
because our aim was to validate the selection mechanism of
our proposed approach. Although there are several MOEAs
based on DE (see for example [19], [20], [21], [22]), most
of them adopt a Pareto-based selection mechanism and,
therefore, were not considered for our comparative study (w
decided to adopt NSGA-II instead, because of its widespread
use and availability (its source code is available in thelipub
domain)). We believe that it would be more interesting to
compare results with respect to an scalarization methol suc
as MOEA/D (there is a version based on DE) [23], but this
was not done here because of time constraints.

F Prer man_dif P G
ZDT1 0.5 0.9 0.00001 | 100 | 100
ZDT2 0.5 0.9 0.001 100 | 100
ZDT3 0.5 0.9 0.00001 | 100 | 100
ZDT4 0.5 0.23 0.001 120 | 300
ZDT6 0.5 0.9 0.001 100 | 100
DTLZ1 | 0.5 0.0001 0.0001 100 | 200
DTLZ2 | 0.5 0.01 0.001 100 | 200
DTLZ3 | 0.5 | 0.00001 0.001 100 | 250
DTLZ4 | 0.5 | 0.00001 0.001 100 | 200

DTLZ5 | 0.5 0.5 0.00001 | 100 | 200

DTLZ6 | 0.5 0.3 0.00001 | 100 | 200

DTLZ7 | 0.5 0.1 0.00001 | 100 | 200

TABLE |

PARAMETERS ADOPTED BY OUR PROPOSEMCDE ALGORITHM. F' AND

We performed 30 independent runs for each test problemrer ARE PARAMETERS USED BY THEDE ALGORITHM; min_dif 1S

The parameters adopted for our proposed MCDE are sho
in Table | (these values were empirically derived after nume
ous experiments). For both NSGA-Il and SMS-EMOA, we

adopted the parameters suggested by the authors of NSGA-

WﬁED BY OUR PROPOSED SELECTION OPERATQ® IS THE POPULATION
SIZE AND GG IS THE MAXIMUM NUMBER OF GENERATIONS.

Il: crossover probabilityp. = 0.9, mutation probability A Test problems

pm = 1/n, wheren is the number of decision variables,
for crossover and mutation operatoys,= 15 andn,, = 20,

To validate our proposed MCDE, we adopted two sets of
problems. The first consists of five bi-objective test proide

respectively. Finally, we used the same population size anaken from the Zitzler-Deb-Thiele suite [24]. The second



consists of seven problems having three or more objectiveS, Results
taken from the Deb-Thiele-Laumanns-Zitzler (DTLZ) suite In Table Il, we can observe that our proposed MCDE

[25]. For the DTLZ test problems, we uséd= 5 and, three, o, iherforms both NSGA-Il and SMS-EMOA, in most of the
four and five objetive functions (i.eAf = 3,4, and 5). ZDT test problems (the best results are showhaidface).
As shown in Tables Il and V, in the DTLZ test problems

B. Quality indicators having three and five objective functions, SMS-EMOA is
To assess performance, we adopted the following indicgetter than MCDE in four test problems and MCDE is
tors: better than SMS-EMOA in three test problems. As shown

. . . _ in Table IV, for the test problems having four objective
1) Generational DistancéD). This indicator was pro functions, SMS-EMOA is better than MCDE in five test

osed by Van Veldhuizen in [26] and, it represents how : .
?ar a setyA is from the Paret[o onnP. Forrﬁally it is problems and MCDE is better than SMS-EMOA only in two.

defi . It is important to note that our proposed MCDE presents a
efined as: . . . ; ;
consistent behavior when increasing the number of objec-
4| tives, unlike NSGA-II whose performance quickly degrades,
GD — E Zdz (6) reaching a value of zero for the hypervolume indicator when
Al \ = solving three of the DTLZ test problems.
To validate the results in our experiments, we performed
whered; is the Euclidean distance, in objective func-statistical analysis using Wilcoxon’s rank sum. Table VII
tion space, between; and the nearest member ofshows the results. With respect to generational distanee, w
P. Lower GD values represent better approximations can say that our algorithm, MCDE, is significantly bettemtha
For the calculation of th& D indicator, we used the SMS-EMOA in DTLZ6 and DTLZ7, with three objective

N

following: functions, and also in DTLZ7, with four objective functions
. Pareto optimal sets generated by an enumeratiR@cause the hypothesis that the medians are equal can be
approach for the ZDT test problems [1]. rejected. In most of the remaining problems, we can say
« A set of equations that describe the Pareto fronf$1at SMS-EMOA and MCDE have a similar behavior, except
for the DTLZ test problems 1 to 6. for ZDT6, DTLZ5, with three objective functions, DTLZ1,
« A value of the functiong for the test problem DTLZ3 and DTLZ4, with five objective functions because
DTLZ7. the probability that the hypothesis is true is less than 0.5.

2) Hypervolume indicatoty). It was originally proposed Regarding the hypervolume indicator only in DTLZ2 with
i ._ five objectives, we can say that SMS-EMOA is significantly

by Zitzler and Thiele in [27], and it's defined as the Slzeoetter than MCDE. Finally, we can say that SMS-EMOA

of the space covered by the Pareto optimal solutipns. d MCDE have a similar behavior in most of the ZDT and
rewards convergence towards the Pareto front as w . i o :
LZ problems with three and five objective functions.

as the maximum spread of the solutions obtained\ If )
P A Based on the results shown before, we claim that the

denotes the Lebesgue measyrds defined as: performance of MCDE is competitive with respect to the per-
formance of SMS-EMOA. However, it is important to note
(A, Yref) = /\ U W |y <y < yres} (7) that t.he computational cost of the SMS-EMOA algorithm is
yeA considerably larger than that of MCDE. Table VI shows the
CPU time, per run, required by each algorithm. In this table,
where y,.y € Ry denotes a reference point thatwe can note that MCDE needs only 1 or 2 seconds in any
should be dominated by all the Pareto optimal pointsf the test problems adopted, even for instances having five
Fleischer proved in [28] that, given a finite search spacgbjectives. In contrast, SMS-EMOA needs up to 11 hours,
and a reference pointnaximizing the hypervolume per run, for the test problems having five objectives.
indicator is equivalent to finding the Pareto optimal This difference is due to the fact that computing the
set The disadvantage of this indicator is its highmaximim fitness function is an inexpensive process (its
computational cost (the running time for calculatingcomplexity is linear with respect to the number of objectjve
¢ is exponential in the number of objective functions)whereas the computation of the hypervolume is exponential
To computep, we used the following reference points:with respect to the number of objectives. Thus, we argue

« For ZDT functions, we used,.; = [1, 1]. that MCDE can be a good alternative for dealing with many-

« For function DTLZ1, we usedy..; = objective optimization problems, unless we can afford g ver
Yi,...,ym) |y =0.7Vi=1,..., M. high computational cost.

o For functions DTLZ(2-6), we usedy,.y =
Wis-- oy |yi=11Vi=1,... M. VIlI. CONCLUSIONS AND FUTURE WORK

o For function DTLZ7, we usedy,; = We have proposed a new selection operator to solve mul-
[Y1,---,ym] yu = 6.1 and y; = 1.1 Vi = tiobjective optimization problems using a single-objeeti

L....,M—1 evolutionary algorithm (differential evolution in our &gs



Fl 1 NSGA-II SMS-EMOA MCDE
G 0.843798 (0.003867) | 0.865892 (0.001641) | 0.866497 (0.001268)
gd 0.001896 (0.000259) | 0.000449 (0.000053) | 0.000161 (0.000063)
A 0.477477 (0.067691) | 0.528328 (0.002507) | 0.529499 (0.002874)
gd 0.002925 (0.000679) | 0.000581 (0.000110) | 0.000410 (0.000141)
I 1.294509 (0.006019) | 0.711646 (0.010531) | 1.323276 (0.003000)
gd 0.001384 (0.000222) | 0.020268 (0.001389) | 0.006132 (0.030231)
N 0.869855 (0.001417) | 0.869862 (0.002264) | 0.859478 (0.032763)
gd 0.000496 (0.000058) | 0.002413 (0.010458) |  0.000894 (0.002144)
5| ¢ 0.233452 (0.031991) | 0.230881 (0.035046) | 0.501168 (0.001371)
gd 0.022658 (0.003359) | 0.021088 (0.003213) | 0.000112 (0.000013)

RESULTS OBTAINED IN THEZDT TEST PROBLEMS WE SHOW AVERAGE VALUES OVER30 INDEPENDENT RUNS THE VALUES IN PARENTHESES
CORRESPOND TO THE STANDARD DEVIATIONS

TABLE Il

Jl

I NSGA-II SMS-EMOA MCDE
1] @ 0.168104 (0.121049) | 0.282027 (0.071556) | 0.301742 (0.050681)
gd 0.056767 (0.060737) | 0.012122 (0.024779) | 0.275396 (0.745076)
o | 0.695722 (0.007437) | 0.757970 (0.000048) | 0.721690 (0.011281)
gd 0.000327 (0.000132) | 0.000000 (0.000000) | 0.000003 (0.000013)
3| ¢ 0.495070 (0.296949) | 0.663793 (0.230938) | 0.574081 (0.287628)
gd 0.041826 (0.061893) | 0.013266 (0.033151) | 1.027464 (3.315866)
G 0.688702 (0.011839) | 0.757973 (0.000044) | 0.707000 (0.014417)
gd 0.000361 (0.000179) | 0.000000 (0.000000) | 0.000044 (0.000147)
| v 0.437974 (0.000258) | 0.439344 (0.000018) | 0.427400 (0.005107)
gd 0.000066 (0.000037) | 0.000000 (0.000000) | 0.000498 (0.000084)
5| ¥ 0.263933 (0.023633) | 0.401663 (0.021284) | 0.429099 (0.008223)
gd 0.017425 (0.002951) | 0.003793 (0.001723) | 0.000000 (0.000000)
o 1.871739 (0.143621) | 1.824769 (0.346389) | 1.956336 (0.012535)
gd 0.727283 (0.123080) | 0.850543 (0.087943) | 0.000000 (0.000000)

TABLE Il
RESULTS OBTAINED IN THEDTLZ TEST PROBLEMS WITH THREE OBJECTIVE FUNCTIONSNE SHOW AVERAGE VALUES OVER30 INDEPENDENT RUNS

THE VALUES IN PARENTHESES CORRESPOND TO THE STANDARD DEVIADNS.

I NSGA-II SMS-EMOA MCDE
1] 0.020431 (0.049314) | 0.216245 (0.047649) | 0.203586 (0.060700)
gd 0.426400 (0.484402) | 0.012505 (0.030799) | 0.019485 (0.043234)
5| ¥ 0.864022 (0.019920) |  1.044446 (0.000062) | 0.957406 (0.019200)
gd 0.000962 (0.000296) | 0.000002 (0.000001) | 0.000231 (0.000747)
3| ¢ 0.320878 (0.364497) | 0.827933 (0.414164) | 0.775603 (0.312009)
gd 0.175820 (0.161358) | 0.020897 (0.039890) | 0.743255 (2.924236)
4| ¢ 0.852050 (0.020846) | 1.044515 (0.000087) | 0.961788 (0.010907)
gd 0.001021 (0.000273) | 0.000001 (0.000001) | 0.000166 (0.000679)
i 0.429414 (0.002911) | 0.439084 (0.000260) | 0.277086 (0.029985)
gd 0.021393 (0.004046) | 0.045849 (0.003666) | 0.057070 (0.002998)
5| ¢ 0.000000 (0.000000) | 0.220479 (0.016245) | 0.240899 (0.037808)
gd 0.155895 (0.014608) | 0.140056 (0.007726) | 0.156666 (0.014808)
7 0.518986 (0.060112) | 0.345574 (0.248708) | 0.602277 (0.037409)
gd 0.737255 (0.092109) | 0.860942 (0.102134) | 0.000000 (0.000000)

TABLE IV
RESULTS OBTAINED IN THEDTLZ TEST PROBLEMS WITH FOUR OBJECTIVE FUNCTIONSNVE SHOW AVERAGE VALUES OVER30 INDEPENDENT RUNS
THE VALUES IN PARENTHESES CORRESPOND TO THE STANDARD DEVIADNS.

This operator takes into account the two main objectivesf our proposed approach with respect to a state-of-the-art
of a MOEA: it uses a maximin technique to find solutionsPareto-based MOEA (NSGA-II) and with respect to a state-
as close as possible to the true Pareto front and it usesofithe-art hypervolume-based MOEA (SMS-EMOA) using
clustering technique to provide a good distribution of sucktandard test problems and performance measures taken from
solutions along the Pareto front. We chose these techniqubg specialized literature. Our results show that MCDE out-
in order to obtain a selection operator capable of solvingerforms NSGA-Il in all cases (low- and high-dimensionalit
problems of both low dimensionality (with two or threetest problems) and produces competitive results with &spe
objective functions) and high dimensionality (more thareéh to SMS-EMOA, but at a much lower computational cost.

objective functions).
) ) As part of our future work, we plan to incorporate our

In our experimental study, we compared the performanalection operator into other evolutionary algorithms ides



SMS-EMOA

MCDE

0.153918 (0.031912)
0.018024 (0.039251)

0.155104 (0.020443)
0.012216 (0.020552)

1.295810 (0.000108)
0.000007 (0.000002)

1.147529 (0.026441)
0.000976 (0.002029)

1.245409 (0.231560)
0.004221 (0.018154)

0.826641 (0.421045)
2.353595 (7.336803)

1.296010 (0.000114)
0.000002 (0.000001)

1.164448 (0.027469)
0.000631 (0.001325)

0.449985 (0.000421)
0.059179 (0.002101)

0.196839 (0.017682)
0.065526 (0.004445)

0.156974 (0.016202)
0.165866 (0.012073)

0.166601 (0.053506)
0.161178 (0.015361)

I I NSGA-II
1| @ 0.000000 (0.000000)
gd 6.702562 (2.084582)
S| ¥ 0.978240 (0.024770)
gd 0.003487 (0.000808)
3| ¥ 0.000000 (0.000000)
gd 11.347256 (4.076464)
4l @ 0.970531 (0.031486)
gd 0.002992 (0.001193)
5| ¢ 0.423968 (0.010354)
gd 0.043428 (0.006622)
5| ¥ 0.000000 (0.000000)
gd 0.272611 (0.024261)
. 0.074212 (0.011193)
gd 0.743493 (0.123118)

0.084705 (0.065528)
0.804493 (0.095978)

0.044723 (0.019550)
0.030316 (0.026227)

TABLE V
RESULTS OBTAINED IN THEDTLZ TEST PROBLEMS WITH FIVE OBJECTIVE FUNCTIONSWE SHOW AVERAGE VALUES OVER30 INDEPENDENT RUNS
THE VALUES IN PARENTHESES CORRESPOND TO THE STANDARD DEVIADNS.
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